Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation?
Abstract
:1. Introduction
2. Results
2.1. Nitric Oxide Synthase Immunodetection and Immunolocalization
2.2. Role of Nitric Oxide in Ram Sperm Capacitation
2.2.1. Changes in Nitric Oxide Levels During Incubation in Capacitating Conditions
2.2.2. Influence of Nitric Oxide on Capacitation Status
2.2.3. Influence of Nitric Oxide on Sperm Motility
2.3. Effect of Melatonin on the Nitric Oxide Metabolism
2.3.1. Effect of Melatonin on Nitric Oxide Synthase Levels and Immunolocation
2.3.2. Effect of Melatonin on Nitric Oxide Levels
3. Discussion
4. Materials and Methods
4.1. Semen Collection and Processing
4.2. In Vitro Capacitation
4.3. Sperm Motility Evaluation
4.4. Western Blotting
4.5. Indirect Immunofluorescence
4.6. Flow Cytometry Analysis
4.6.1. Evaluation of Sperm Membrane Integrity
4.6.2. Intracellular Nitric Oxide Levels
4.7. Determination of Capacitation Status
4.8. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hellstrom, W.J.G.; Bell, M.; Wang, R.; Sikka, S.C. Effects of sodium nitroprusside on sperm motility, viability and lipid peroxidation. Fertil. Steril. 1994, 61, 1117–1122. [Google Scholar] [CrossRef]
- Buzadzic, B.; Vucetic, M.; Jankovic, A.; Stancic, A.; Korac, A.; Korac, B.; Otasevic, V. New insights into male (in)fertility: The importance of NO. Br. J. Pharmacol. 2015, 172, 1455–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.E.; Donnelly, E.T.; Sterling, E.S.; Kennedy, M.S.; Thompson, W.; Chakravarthy, U. Nitric oxide synthase and nitrite production in human spermatozoa: Evidence that endogenous nitric oxide is beneficial to sperm motility. Mol. Hum. Reprod. 1996, 2, 873–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeoman, R.R.; Jones, W.D.; Rizk, B.M. Evidence for nitric oxide regulation of hamster sperm hyperactivation. J. Androl. 1998, 19, 58–64. [Google Scholar] [PubMed]
- De Lamirande, E.; Lamothe, G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic. Biol. Med. 2009, 46, 502–510. [Google Scholar] [CrossRef]
- Zini, A.; De Lamirande, E.; Gagnon, C. Low levels of nitric oxide promote human sperm capacitation in vitro. J. Androl. 1995, 16, 424–431. [Google Scholar]
- Leal, A.C.; Caldas-Bussiere, M.C.; Carvalho, C.S.; Viana, K.S.; Quirino, C.R. Role of nitric oxide on quality of freshly ejaculated bull spermatozoa during heparin-induced in vitro capacitation. Anim. Reprod. Sci. 2009, 116, 38–49. [Google Scholar] [CrossRef]
- Herrero, M.B.; De Lamirande, E.; Gagnon, C. Nitric oxide regulates human sperm capacitation and protein-tyrosine phosphorylation in vitro. Biol. Reprod. 1999, 61, 575–581. [Google Scholar] [CrossRef]
- Aquila, S.; Giordano, F.; Guido, C.; Rago, V.; Carpino, A. Nitric oxide involvement in the acrosome reaction triggered by leptin in pig sperm. Reprod. Biol. Endocrinol. 2011, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.B.; Gagnon, C. Nitric oxide: A novel mediator of sperm function. J. Androl. 2001, 22, 349–356. [Google Scholar]
- Roessner, C.; Paasch, U.; Glander, H.J.; Grunewald, S. Activity of nitric oxide synthase in mature and immature human spermatozoa. Andrologia 2010, 42, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Gorsky, L.D.; Pollock, J.S.; Ishii, K.; Schmidt, H.H.; Heller, M.; Murad, F. Hormone-induced biosynthesis of endothelium-derived relaxing factor/nitric oxide-like material in N1E-115 neuroblastoma cells requires calcium and calmodulin. Mol. Pharmacol. 1990, 38, 7–13. [Google Scholar] [PubMed]
- Cho, H.J.; Xie, Q.W.; Calaycay, J.; Mumford, R.A.; Swiderek, K.M.; Lee, T.D.; Nathan, C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J. Exp. Med. 1992, 176, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef] [PubMed]
- Buzadzic, B.; Korac, A.; Petrovic, V.; Korac, B. Redox regulation of brown adipocytes: Molecular and cellular targets in tissue remodeling. Acta Physiol. Pharamacol. Serb. 2006, 42, 141–159. [Google Scholar]
- Moncada, S.; Higgs, E.A. Endogenous nitric oxide: Physiology, pathology and clinical relevance. Eur. J. Clin. Investig. 1991, 21, 361–374. [Google Scholar] [CrossRef]
- Francavilla, F.; Santucci, R.; Macerola, B.; Ruvolo, G.; Romano, R. Nitric oxide synthase inhibition in human sperm affects sperm-oocyte fusion but not zona pellucida binding. Biol. Reprod. 2000, 63, 425–429. [Google Scholar] [CrossRef] [Green Version]
- O’Bryan, M.K.; Zini, A.; Cheng, C.Y.; Schlegel, P.N. Human sperm endothelial nitric oxide synthase expression: Correlation with sperm motility. Fertil. Steril. 1998, 70, 1143–1147. [Google Scholar] [CrossRef]
- Revelli, A.; Soldati, G.; Costamagna, C.; Pellerey, O.; Aldieri, E.; Massobrio, M.; Bosia, A.; Ghigo, D. Follicular fluid proteins stimulate nitric oxide (NO) synthesis in human sperm: A possible role for NO in acrosomal reaction. J. Cell. Physiol. 1999, 178, 85–92. [Google Scholar] [CrossRef]
- Meiser, H.; Schulz, R. Detection and localization of two constitutive NOS isoforms in bull spermatozoa. Anat. Histol. Embryol. 2003, 32, 321–325. [Google Scholar] [CrossRef]
- O’Flaherty, C.; Rodriguez, P.; Srivastava, S. l-Arginine promotes capacitation and acrosome reaction in cryopreserved bovine spermatozoa. Biochim. Biophys. Acta (BBA) Gen. Subj. 2004, 1674, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.B.; Perez Martinez, S.; Viggiano, J.M.; Polak, J.M.; De Gimeno, M.F. Localization by indirect immunofluorescence of nitric oxide synthase in mouse and human spermatozoa. Reprod. Fertil. Dev. 1996, 8, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Bittman, E.L.; Dempsey, R.J.; Karsch, F.J. Pineal melatonin secretion drives the reproductive response to daylength in the ewe. Endocrinology 1983, 113, 2276–2283. [Google Scholar] [CrossRef]
- Gonzalez-Arto, M.; Hamilton, T.R.; Gallego, M.; Gaspar-Torrubia, E.; Aguilar, D.; Serrano-Blesa, E.; Abecia, J.A.; Perez-Pe, R.; Muino-Blanco, T.; Cebrian-Perez, J.A.; et al. Evidence of melatonin synthesis in the ram reproductive tract. Andrology 2016, 4, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casao, A.; Cebrian, I.; Asumpcao, M.E.; Perez-Pe, R.; Abecia, J.A.; Forcada, F.; Cebrian-Perez, J.A.; Muino-Blanco, T. Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes. Reprod. Biol. Endocrinol. 2010, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Brzezinski, A.; Seibel, M.M.; Lynch, H.J.; Deng, M.H.; Wurtman, R.J. Melatonin in human preovulatory follicular fluid. J. Clin. Endocrinol. Metab. 1987, 64, 865–867. [Google Scholar] [CrossRef]
- Casao, A.; Mendoza, N.; Perez-Pe, R.; Grasa, P.; Abecia, J.A.; Forcada, F.; Cebrian-Perez, J.A.; Muino-Blanco, T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J. Pineal Res. 2010, 48, 39–46. [Google Scholar] [CrossRef]
- Du Plessis, S.S.; Hagenaar, K.; Lampiao, F. The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 2010, 42, 112–116. [Google Scholar] [CrossRef]
- Espino, J.; Ortiz, A.; Bejarano, I.; Lozano, G.M.; Monllor, F.; Garcia, J.F.; Rodriguez, A.B.; Pariente, J.A. Melatonin protects human spermatozoa from apoptosis via melatonin receptor- and extracellular signal-regulated kinase-mediated pathways. Fertil. Steril. 2011, 95, 2290–2296. [Google Scholar] [CrossRef]
- Jang, H.Y.; Kim, Y.H.; Kim, B.W.; Park, I.C.; Cheong, H.T.; Kim, J.T.; Park, C.K.; Kong, H.S.; Lee, H.K.; Yang, B.K. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod. Domest. Anim. 2010, 45, 943–950. [Google Scholar] [CrossRef]
- Rao, M.V.; Gangadharan, B. Antioxidative potential of melatonin against mercury induced intoxication in spermatozoa in vitro. Toxicol. In Vitro 2008, 22, 935–942. [Google Scholar] [CrossRef]
- Aitken, R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, S.; Yerer, M.B.; Goktas, A. Melatonin and nitric oxide. J. Endocrinol. Investig. 2006, 29, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Jang, H.Y.; Park, C.K.; Cheong, H.T.; Park, I.C.; Yang, B.K. Melatonin attenuates nitric oxide induced oxidative stress on viability and gene expression in bovine oviduct epithelial cells, and subsequently increases development of bovine IVM/IVF embryos. Asian Australas J. Anim. Sci. 2011, 24, 190–197. [Google Scholar] [CrossRef]
- Zhang, S.; Li, W.; Gao, Q.; Wei, T. Effect of melatonin on the generation of nitric oxide in murine macrophages. Eur. J. Pharmacol. 2004, 501, 25–30. [Google Scholar] [CrossRef]
- Staicu, F.D.; Carmen, M.P. Nitric oxide: Key features in spermatozoa. In Nitric Oxide Synthase—Simple Enzyme-Complex Roles; Saravi, S., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 137–154. [Google Scholar]
- Heeba, G.H.; Hamza, A.A. Rosuvastatin ameliorates diabetes-induced reproductive damage via suppression of oxidative stress, inflammatory and apoptotic pathways in male rats. Life Sci. 2015, 141, 13–19. [Google Scholar] [CrossRef]
- Nathan, C.F.; Hibbs, J.B., Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 1991, 3, 65–70. [Google Scholar] [CrossRef]
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta 2014, 1840, 2709–2729. [Google Scholar] [CrossRef]
- Staicu, F.D.; Lopez-Ubeda, R.; Romero-Aguirregomezcorta, J.; Martinez-Soto, J.C.; Matas Parra, C. Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. J. Assist. Reprod. Genet. 2019, 36, 1721–1736. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.-L.; Huang, S.-Y.; Lai, Y.-K.; Lee, W.-C. Geldanamycin augments nitric oxide production and promotes capacitation in boar spermatozoa. Anim. Reprod. Sci. 2008, 104, 56–68. [Google Scholar] [CrossRef]
- Funahashi, H. Induction of capacitation and the acrosome reaction of boar spermatozoa by L-arginine and nitric oxide synthesis associated with the anion transport system. Reproduction 2002, 124, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P.C.; O’Flaherty, C.M.; Beconi, M.T.; Beorlegui, N.B. Nitric oxide induces acrosome reaction in cryopreserved bovine spermatozoa. Andrologia 2005, 37, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.C.; Atreja, S.K. Tyrosine phosphorylation of a 38-kDa capacitation-associated buffalo (Bubalus bubalis) sperm protein is induced by L-arginine and regulated through a cAMP/PKA-independent pathway. Int. J. Androl. 2008, 31, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.W.; Polakoski, K.L. L-arginine stimulation of human sperm motility in vitro. Biol. Reprod. 1975, 13, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, H.; Mirshokrai, P.; Shirazi, A.; Aminian, A. Effect of nitric oxide on ram sperm motility in vitro. Pak. J. Biol. Sci. 2007, 10, 2374–2378. [Google Scholar] [CrossRef]
- Ratnasooriya, W.D.; Dharmasiri, M.G. L-arginine, the substrate of nitric oxide synthase, inhibits fertility of male rats. Asian J. Androl. 2001, 3, 97–103. [Google Scholar]
- Rosselli, M.; Dubey, R.K.; Imthurn, B.; Macas, E.; Keller, P.J. Effects of nitric oxide on human spermatozoa: Evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum. Reprod. 1995, 10, 1786–1790. [Google Scholar] [CrossRef]
- De Andrade, A.F.C.; Arruda, R.P.; Torres, M.A.; Pieri, N.C.G.; Leite, T.G.; Celeghini, E.C.C.; Oliveira, L.Z.; Gardes, T.P.; Bussiere, M.C.C.; Silva, D.F. Nitric oxide in frozen-thawed equine sperm: Effects on motility, membrane integrity and sperm capacitation. Anim. Reprod. Sci. 2018, 195, 176–184. [Google Scholar] [CrossRef]
- Kameshwari, D.B.; Siva, A.B.; Shivaji, S. Inhibition of in vitro capacitation of hamster spermatozoa by nitric oxide synthase inhibitors. Cell. Mol. Biol. (Noisy-le-Grand) 2003, 49, 421–428. [Google Scholar]
- Ortiz, A.; Espino, J.; Bejarano, I.; Lozano, G.M.; Monllor, F.; Garcia, J.F.; Pariente, J.A.; Rodriguez, A.B. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J. Pineal Res. 2011, 50, 132–139. [Google Scholar] [CrossRef]
- Gimeno-Martos, S.; Casao, A.; Yeste, M.; Cebrian-Perez, J.A.; Muino-Blanco, T.; Perez-Pe, R. Melatonin reduces cAMP-stimulated capacitation of ram spermatozoa. Reprod. Fertil. Dev. 2019, 31, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Ollero, M.; Muino-Blanco, T.; Lopez-Perez, M.J.; Cebrian-Perez, J.A. Viability of ram spermatozoa in relation to the abstinence period and successive ejaculations. Int. J. Androl. 1996, 19, 287–292. [Google Scholar] [CrossRef] [PubMed]
- García-López, N.; Ollero, M.; Muiño-Blanco, T.; Cebrián-Pérez, J.A. A dextran swim-up procedure for separation of highly motile and viable ram spermatozoa from seminal plasma. Theriogenology 1996, 46, 141–151. [Google Scholar] [CrossRef]
- Parrish, J.J.; Susko-Parrish, J.; Winer, M.A.; First, N.L. Capacitation of bovine sperm by heparin. Biol. Reprod. 1988, 38, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Colas, C.; James, P.; Howes, L.; Jones, R.; Cebrian-Perez, J.A.; Muino-Blanco, T. Cyclic-AMP initiates protein tyrosine phosphorylation independent of cholesterol efflux during ram sperm capacitation. Reprod. Fertil. Dev. 2008, 20, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Grasa, P.; Cebrian-Perez, J.A.; Muino-Blanco, T. Signal transduction mechanisms involved in in vitro ram sperm capacitation. Reproduction 2006, 132, 721–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Harrison, R.A.; Vickers, S.E. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J. Reprod. Fertil. 1990, 88, 343–352. [Google Scholar] [CrossRef]
- Lampiao, F.; Strijdom, H.; Du Plessis, S.S. Direct nitric oxide measurement in human spermatozoa: Flow cytometric analysis using the fluorescent probe, diaminofluorescein. Int. J. Androl. 2006, 29, 564–567. [Google Scholar] [CrossRef]
- Gillan, L.; Evans, G.; Maxwell, W.M. Capacitation status and fertility of fresh and frozen-thawed ram spermatozoa. Reprod. Fertil. Dev. 1997, 9, 481–487. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel-Jiménez, S.; Carvajal-Serna, M.; Calvo, S.; Casao, A.; Cebrián-Pérez, J.Á.; Muiño-Blanco, T.; Pérez-Pe, R. Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation? Int. J. Mol. Sci. 2020, 21, 2093. https://doi.org/10.3390/ijms21062093
Miguel-Jiménez S, Carvajal-Serna M, Calvo S, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pe R. Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation? International Journal of Molecular Sciences. 2020; 21(6):2093. https://doi.org/10.3390/ijms21062093
Chicago/Turabian StyleMiguel-Jiménez, Sara, Melissa Carvajal-Serna, Silvia Calvo, Adriana Casao, José Álvaro Cebrián-Pérez, Teresa Muiño-Blanco, and Rosaura Pérez-Pe. 2020. "Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation?" International Journal of Molecular Sciences 21, no. 6: 2093. https://doi.org/10.3390/ijms21062093
APA StyleMiguel-Jiménez, S., Carvajal-Serna, M., Calvo, S., Casao, A., Cebrián-Pérez, J. Á., Muiño-Blanco, T., & Pérez-Pe, R. (2020). Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation? International Journal of Molecular Sciences, 21(6), 2093. https://doi.org/10.3390/ijms21062093