The Lack of Evidence for an Association between Cancer Biomarker Conversion Patterns and CTC-Status in Patients with Metastatic Breast Cancer
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Patients
4.3. Therapy
4.4. PFS and OS
4.5. CTC Enumeration
4.6. Receptor Status Assessment
4.7. Data Collection and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; Anderson, B.O.; et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016 a systematic analysis for the global burden of disease study global burden o. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar] [PubMed]
- International Agency for Research on Cancer Cancer Today. Available online: http://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=908_276&key=asr&sex=2&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=5&group_cancer=1&include_nmsc=1&include_nmsc_other=1#collapse-group-0-4 (accessed on 22 December 2019).
- Katalinic, A.; Eisemann, N.; Kraywinkel, K.; Noftz, M.R.; Hübner, J. Breast cancer incidence and mortality before and after implementation of the German mammography screening program. Int. J. Cancer 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holleczek, B.; Jansen, L.; Brenner, H. Breast Cancer Survival in Germany: A Population-Based High Resolution Study from Saarland. PLoS ONE 2013, 8, e70680. [Google Scholar] [CrossRef] [Green Version]
- Holleczek, B.; Stegmaier, C.; Radosa, J.C.; Solomayer, E.-F.; Brenner, H. Risk of loco-regional recurrence and distant metastases of patients with invasive breast cancer up to ten years after diagnosis—Results from a registry-based study from Germany. BMC Cancer 2019, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennari, A.; Conte, P.; Rosso, R.; Orlandini, C.; Bruzzi, P. Survival of metastatic breast carcinoma patients over a 20-year period. Cancer 2005, 104, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.K.; Speers, C.H.; D’yachkova, Y.; Kang, A.; Malfair-Taylor, S.; Barnett, J.; Coldman, A.; Gelmon, K.A.; O’Reilly, S.E.; Olivotto, I.A. The impact of new chemotherapeutic and hormone agents on survival in a population-based cohort of women with metastatic breast cancer. Cancer 2007, 110, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Güth, U.; Elfgen, C.; Montagna, G.; Schmid, S.M. Long-Term Survival and Cure in Distant Metastatic Breast Cancer. Oncology 2019, 97, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Kimbung, S.; Kovács, A.; Danielsson, A.; Bendahl, P.O.; Lövgren, K.; Stolt, M.F.; Tobin, N.P.; Lindström, L.; Bergh, J.; Einbeigi, Z.; et al. Contrasting breast cancer molecular subtypes across serial tumor progression stages: Biological and prognostic implications. Oncotarget 2015, 6, 33306–33318. [Google Scholar] [CrossRef]
- Liedtke, C.; Broglio, K.; Moulder, S.; Hsu, L.; Kau, S.W.; Symmans, W.F.; Albarracin, C.; Meric-Bernstam, F.; Woodward, W.; Theriault, R.L.; et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 2009, 20, 1953–1958. [Google Scholar] [CrossRef]
- Wallwiener, M.; Riethdorf, S.; Hartkopf, A.D.; Modugno, C.; Nees, J.; Madhavan, D.; Sprick, M.R.; Schott, S.; Domschke, C.; Baccelli, I.; et al. Serial enumeration of circulating tumor cells predicts treatment response and prognosis in metastatic breast cancer: A prospective study in 393 patients. BMC Cancer 2014, 14. [Google Scholar] [CrossRef]
- Giordano, A.; Giuliano, M.; De laurentiis, M.; Arpino, G.; Jackson, S.; Handy, B.C.; Ueno, N.T.; Andreopoulou, E.; Alvarez, R.H.; Valero, V.; et al. Circulating tumor cells in immunohistochemical subtypes of metastatic breast cancer: Lack of prediction in HER2-positive disease treated with targeted therapy. Ann. Oncol. 2012, 23, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Han, E.Y.; Guo, M.; Pusztai, L.; Sneige, N. Stability of estrogen receptor status in breast carcinoma. Cancer 2011, 117, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Hoefnagel, L.D.C.; Moelans, C.B.; Meijer, S.L.; Van Slooten, H.J.; Wesseling, P.; Wesseling, J.; Westenend, P.J.; Bart, J.; Seldenrijk, C.A.; Nagtegaal, I.D.; et al. Prognostic value of estrogen receptor α and progesterone receptor conversion in distant breast cancer metastases. Cancer 2012, 118, 4929–4935. [Google Scholar] [CrossRef] [PubMed]
- Hoefnagel, L.D.C.; van de Vijver, M.J.; van Slooten, H.J.; Wesseling, P.; Wesseling, J.; Westenend, P.J.; Bart, J.; Seldenrijk, C.A.; Nagtegaal, I.D.; Oudejans, J.; et al. Receptor conversion in distant breast cancer metastases. Breast Cancer Res. 2010, 12. [Google Scholar] [CrossRef] [Green Version]
- Lindström, L.S.; Karlsson, E.; Wilking, U.M.; Johansson, U.; Hartman, J.; Lidbrink, E.K.; Hatschek, T.; Skoog, L.; Bergh, J. Clinically Used Breast Cancer Markers Such As Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor Receptor 2 Are Unstable Throughout Tumor Progression. J. Clin. Oncol. 2012, 30, 2601–2608. [Google Scholar] [CrossRef]
- Thompson, A.M.; Jordan, L.B.; Quinlan, P.; Anderson, E.; Skene, A.; Dewar, J.A.; Purdie, C.A. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: The Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res. 2010, 12. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.S.; Slodkowska, E.A. Circulating and Disseminated Tumor Cells in the Management of Breast Cancer. Am. J. Clin. Pathol. 2009, 132, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Nan, S.W.; Kahn, H.J.; Zhang, L.; Oldfield, S.; Yang, L.Y.; Marks, A.; Trudeau, M.E. Prognostic significance of circulating tumour cells enumerated after filtration enrichment in early and metastatic breast cancer patients. Breast Cancer Res. Treat. 2006, 99, 63–69. [Google Scholar]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.M.M.; et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, M.; Giordano, A.; Jackson, S.; De Giorgi, U.; Mego, M.; Cohen, E.N.; Gao, H.; Anfossi, S.; Handy, B.C.; Ueno, N.T.; et al. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res. 2014, 16, 440. [Google Scholar] [CrossRef] [Green Version]
- Alunni-Fabbroni, M.; Müller, V.; Fehm, T.; Janni, W.; Rack, B. Monitoring in metastatic breast cancer: Is imaging outdated in the era of circulating tumor cells? Breast Care 2014, 9, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreard, L.; Fan, C.; Quackenbush, J.F.; Mullins, M.; Gauthier, N.P.; Nelson, E.; Mone, M.; Hansen, H.; Buys, S.S.; Rasmussen, K.; et al. Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res. 2006, 8, R23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, N.U.; Vanderplas, A.; Hughes, M.E.; Theriault, R.L.; Edge, S.B.; Wong, Y.N.; Blayney, D.W.; Niland, J.C.; Winer, E.P.; Weeks, J.C. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 2012, 118, 5463–5472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, S.; Broglio, K.; Buzdar, A.U.; Hortobagyi, G.N.; Giordano, S.H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: An institutional-based review. J. Clin. Oncol. 2010, 28, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, J.M.S.; Brookes, C.L.; Robson, T.; Van De Velde, C.J.H.; Billingham, L.J.; Campbell, F.M.; Grant, M.; Hasenburg, A.; Hille, E.T.M.; Kay, C.; et al. Estrogen receptor and progesterone receptor as predictive biomarkers of response to endocrine therapy: A prospectively powered pathology study in the tamoxifen and exemestane adjuvant multinational trial. J. Clin. Oncol. 2011, 29, 1531–1538. [Google Scholar] [CrossRef]
- Gong, Y.; Booser, D.J.; Sneige, N. Comparison of HER-2 status determined by fluorescence in situ hybridization in primary and metastatic breast carcinoma. Cancer 2005, 103, 1763–1769. [Google Scholar] [CrossRef]
- Zidan, J.; Dashkovsky, I.; Stayerman, C.; Basher, W.; Cozacov, C.; Hadary, A. Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br. J. Cancer 2005, 93, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Stefanovic, S.; Wirtz, R.; Deutsch, T.M.; Hartkopf, A.; Sinn, P.; Varga, Z.; Sobottka, B.; Sotiris, L.; Taran, F.A.; Domschke, C.; et al. Tumor biomarker conversion between primary and metastatic breast cancer: mRNA assessment and its concordance with immunohistochemistry. Oncotarget 2017, 8, 51416–51428. [Google Scholar] [CrossRef] [Green Version]
- Emi, Y.; Kitamura, K.; Shikada, Y.; Kakeji, Y.; Takahashi, I.; Tsutsui, S. Metastatic breast cancer with HER2/neu-positive cells tends to have a morbid prognosis. Surgery 2002, 131. [Google Scholar] [CrossRef]
- Wallwiener, M.; Hartkopf, A.D.; Riethdorf, S.; Nees, J.; Sprick, M.R.; Schönfisch, B.; Taran, F.-A.; Heil, J.; Sohn, C.; Pantel, K.; et al. The impact of HER2 phenotype of circulating tumor cells in metastatic breast cancer: A retrospective study in 107 patients. Bmc Cancer 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, M.; Giordano, A.; Jackson, S.; Hess, K.R.; De Giorgi, U.; Mego, M.; Handy, B.C.; Ueno, N.T.; Alvarez, R.H.; De Laurentiis, M.; et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res. 2011, 13, R67. [Google Scholar] [CrossRef] [Green Version]
- Wolff, A.C.; Elizabeth Hale Hammond, M.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/ college of American pathologists clinical practice guideline focused update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bado, I.; Gugala, Z.; Fuqua, S.A.W.; Zhang, X.H.F. Estrogen receptors in breast and bone: From virtue of remodeling to vileness of metastasis. Oncogene 2017, 36, 4527–4537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thill, M.; Jackisch, C.; Janni, W.; Müller, V.; Albert, U.-S.; Bauerfeind, I.; Blohmer, J.; Budach, W.; Dall, P.; Diel, I.; et al. AGO Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2019. Breast Care 2019, 14, 247–255. [Google Scholar] [CrossRef]
- AGO-Online—Mamma. Available online: https://www.ago-online.de/de/infothek-fuer-aerzte/leitlinienempfehlungen/mamma/ (accessed on 23 December 2019).
- Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 2000, 92, 205–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riethdorf, S.; Müller, V.; Zhang, L.; Rau, T.; Loibl, S.; Komor, M.; Roller, M.; Huober, J.; Fehm, T.; Schrader, I.; et al. Detection and HER2 expression of circulating tumor cells: Prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res. 2010, 16, 2634–2645. [Google Scholar] [CrossRef] [Green Version]
Statistics | Stable Subtype | Subtype Converters | p |
---|---|---|---|
Total, n (%) | 200 (100%) | 61 (100%) | |
CTC positive, n (%) | 70 (35%) | 20 (32.8%) | 0.75 |
CTC count, median (range) | 1 (0–200,000) | 0 (0–840) | 0.54 |
Age at initial diagnosis, median (range) | 50 (23–87) | 48 (28–69) | 0.15 |
Age at enrollment, median (range) | 56 (24–87) | 56 (30–78) | 0.31 |
ER positive PT, n (%) | 151 (75.5%) | 41 (67.2%) | 0.2 |
HER2 positive PT, n (%) | 27 (13.5%) | 24 (39.3%) | <0.001 |
ER positive MT, n (%) | 151 (75.5%) | 31 (50.8%) | <0.001 |
HER2 positive MT, n (%) | 27 (13.5%) | 25 (41%) | <0.001 |
Number of metastatic sites | 0.87 | ||
One site, n (%) | 48 (24%) | 14 (23%) | |
Multiple sites, n (%) | 152 (76%) | 47 (77%) | |
Site of metastasis | |||
Bone, n (%) | 118 (59%) | 35 (57.4%) | 0.82 |
Visceral, n (%) | 163 (81.5%) | 50 (82%) | 0.93 |
Metastatic therapy | |||
First line, n (%) | 25 (12.5%) | 10 (16.4%) | 0.41 |
Second line, n (%) | 66 (33%) | 15 (24.6%) | |
Other, n (%) | 109 (54.5%) | 36 (59%) | |
Metastatic chemotherapy | |||
First line, n (%) | 62 (31%) | 16 (26.2%) | |
Second line, n (%) | 64 (32%) | 14 (23%) | 0.15 |
Other, n (%) | 74 (38%) | 31 (50.8%) | |
PFS, median (range) | 5 (0–76) | 5 (0–32) | 0.88 |
OS, median (range) | 18 (0–94) | 13 (0–55) | 0.33 |
Statistics | Total, n (%) | CTC Positive, n (%) | CTC Count, Median (Range) | PFS, Median (Range) | OS, Median (Range) |
---|---|---|---|---|---|
Receptors (PT > MT) | |||||
ER + HER2 Ø > ER + HER2 Ø | 138 (100%) | 53 (38.4%) | 1 (0–200,000) | 6 (1–76) | 20.5 (0–94) |
ER Ø HER2 Ø > ER Ø HER2 Ø | 35 (100%) | 14 (40%) | 1 (0–74) | 4.5 (0–18) | 11 (0–94) |
ER + HER2 + > ER Ø HER2 Ø | 19 (100%) | 8 (42.1%) | 3 (0–840) | 5 (0–19) | 10 (0–29.5) |
HER2 + > HER2 + | 35 (100%) | 3 (8.6%) | 0 (0–100) | 4 (0–26) | 15 (0–92) |
HER2 Ø > HER2 + | 17 (100%) | 5(29.4%) | 0 (0–91) | 7 (1–30) | 29 (4–55) |
ER Ø HER2 + > ER + HER2 Ø | 9 (100%) | 4(44.4%) | 0 (0–840) | 4.5 (2–14) | 7 (3–43) |
ER Ø HER2 Ø > ER + HER2 Ø | 8 (100%) | 3(37.5%) | 3 (0–22) | 3 (1–32) | 21 (0–55) |
p | 0.04 | 0.23 | 0.6 | 0.07 |
Statistics | ER + HER2 Ø > ER + HER2 Ø | ER Ø HER2 Ø > ER Ø HER2 Ø | ER + HER2 + > ER Ø HER2 Ø | Other | p |
---|---|---|---|---|---|
Total, n (%) | 138 (100%) | 35 (100%) | 19 (100%) | 69 (100%) | |
CTC positive, n (%) | 53 (38.4%) | 14 (40%) | 8 (42.1%) | 15 (21.7%) | 0.08 |
CTC count, median (range) | 1 (0–200,000) | 1 (0–74) | 3 (0–840) | 0 (0–840) | 0.10 |
Age at initial diagnosis, median (range) | 50 (43–87) | 51 (33–68) | 44 (33–66) | 48 (23–69) | 0.008 |
Age at enrollment, median (range) | 59 (24–87) | 52 (35–74) | 50 (35–78) | 53 (29–63) | 0.005 |
Number of metastatic sites | 0.70 | ||||
One site, n (%) | 31 (22.5%) | ||||
Multiple sites, n (%) | 107 (77.5%) | ||||
Site of metastasis | |||||
Bone, n (%) | 93 (67.4%) | 11 (31.4%) | 11 (57.9%) | 38 (57.9%) | 0.002 |
Visceral, n (%) | 113 (81.9%) | 29 (82.9%) | 15 (78.9%) | 56 (81.2%) | 0.99 |
Metastatic therapy | |||||
First line, n (%) | 18 (13%) | 4 (11.4%) | 4 (21.1%) | 9 (13%) | 0.4 |
Second, n (%) | 45 (32.6%) | 14 (40%) | 7 (36.8%) | 15 (21.7%) | |
Other, n (%) | 75 (54.3%) | 17 (48.6%) | 8 (42.1%) | 45 (65.2%) | |
Metastatic chemotherapy | |||||
First line, n (%) | 48 (34.8%) | 8 (22.9%) | 6 (31.6%) | 16 (23.2%) | 0.048 |
Second, n (%) | 45 (32.6%) | 12 (34.3%) | 7 (36.8%) | 14 (20.3%) | |
Other, n (%) | 45 (32.6%) | 15 (42.9%) | 6 (31.6%) | 39 (56.6%) | |
PFS, median (range) | 6 (1–76) | 4.5 (0–18) | 5 (0–19) | 4 (0–32) | 0.6 |
OS, median (range) | 20.5 (0–94) | 11 (0–94) | 10 (0–29.5) | 18 (0–92) | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanovic, S.; Deutsch, T.M.; Riethdorf, S.; Fischer, C.; Hartkopf, A.; Sinn, P.; Feisst, M.; Pantel, K.; Golatta, M.; Brucker, S.Y.; et al. The Lack of Evidence for an Association between Cancer Biomarker Conversion Patterns and CTC-Status in Patients with Metastatic Breast Cancer. Int. J. Mol. Sci. 2020, 21, 2161. https://doi.org/10.3390/ijms21062161
Stefanovic S, Deutsch TM, Riethdorf S, Fischer C, Hartkopf A, Sinn P, Feisst M, Pantel K, Golatta M, Brucker SY, et al. The Lack of Evidence for an Association between Cancer Biomarker Conversion Patterns and CTC-Status in Patients with Metastatic Breast Cancer. International Journal of Molecular Sciences. 2020; 21(6):2161. https://doi.org/10.3390/ijms21062161
Chicago/Turabian StyleStefanovic, Stefan, Thomas M. Deutsch, Sabine Riethdorf, Chiara Fischer, Andreas Hartkopf, Peter Sinn, Manuel Feisst, Klaus Pantel, Michael Golatta, Sara Y. Brucker, and et al. 2020. "The Lack of Evidence for an Association between Cancer Biomarker Conversion Patterns and CTC-Status in Patients with Metastatic Breast Cancer" International Journal of Molecular Sciences 21, no. 6: 2161. https://doi.org/10.3390/ijms21062161
APA StyleStefanovic, S., Deutsch, T. M., Riethdorf, S., Fischer, C., Hartkopf, A., Sinn, P., Feisst, M., Pantel, K., Golatta, M., Brucker, S. Y., Sütterlin, M., Schneeweiss, A., & Wallwiener, M. (2020). The Lack of Evidence for an Association between Cancer Biomarker Conversion Patterns and CTC-Status in Patients with Metastatic Breast Cancer. International Journal of Molecular Sciences, 21(6), 2161. https://doi.org/10.3390/ijms21062161