Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications
Abstract
:1. Introduction
2. Synthesis of Shape Anisotropic Nanoparticles
2.1. Elongated Nanoparticles
2.2. Nano- Films, Sheets and Plates
2.3. Nanocubes and Flowers
3. Biomedical Applications of Anisotropic Iron Oxide Nanoparticles
3.1. Magnetic Drug Delivery
3.2. Magnetic Hyperthermia Therapy
3.3. Magnetic Resonance Imaging (MRI)
4. Cytotoxicity of Iron Oxide Nanoparticles
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, G.; Roy, I.; Yang, C.; Prasad, P. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Kantoff, P.; Wooster, R.; Farokhzad, O. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2016, 17, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Rutka, J.; Chan, W. Nanomedicine. N. Engl. J. Med. 2010, 363, 2434–2443. [Google Scholar] [CrossRef] [Green Version]
- Kolhatkar, A.; Jamison, A.; Litvinov, D.; Willson, R.; Lee, T. Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 2013, 14, 15977–16009. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Hou, Y.; Gao, S. Nanomagnetism: Principles, nanostructures, and biomedical applications. Chin. Phys. B 2014, 23, 1–8. [Google Scholar] [CrossRef]
- Issa, B.; Obaidat, I.; Albiss, B.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [Green Version]
- Mathew, D.; Juang, R. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 2007, 129, 51–65. [Google Scholar] [CrossRef]
- Rana, S.; Gallo, A.; Srivastava, R.; Misra, R. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: Functionalization, conjugation and drug release kinetics. Acta Biomater. 2007, 3, 233–242. [Google Scholar] [CrossRef]
- Sulaiman, N.; Ghazali, M.; Majlis, B.; Yunas, J.; Razali, M. Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery. Biomed. Mater. Eng. 2015, 26, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Dey, C.; Baishya, K.; Ghosh, A.; Goswami, M.; Ghosh, A.; Mandal, K. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 2017, 427, 168–174. [Google Scholar] [CrossRef]
- Lee, S.; Bae, S.; Takemura, Y.; Shim, I.; Kim, T.; Kim, J.; Lee, H.; Zurn, S.; Kim, C. Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. J. Magn. Magn. Mater. 2007, 310, 2868–2870. [Google Scholar] [CrossRef]
- Doaga, A.; Cojocariu, A.; Amin, W.; Heib, F.; Bender, P.; Hempelmann, R.; Caltun, O. Synthesis and characterizations of manganese ferrites for hyperthermia applications. Mater. Chem. Phys. 2013, 143, 305–310. [Google Scholar] [CrossRef]
- Sharifi, I.; Shokrollahi, H.; Amiri, S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 2012, 324, 903–915. [Google Scholar] [CrossRef]
- Shultz, M.; Calvin, S.; Fatouros, P.; Morrison, S.; Carpenter, E. Enhanced ferrite nanoparticles as MRI contrast agents. J. Magn. Magn. Mater. 2007, 311, 464–468. [Google Scholar] [CrossRef]
- Tromsdorf, U.; Bigall, N.; Kaul, M.; Bruns, O.; Nikolic, M.; Mollwitz, B.; Sperling, R.; Reimer, R.; Hohenberg, H.; Parak, W.; et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 2007, 7, 2422–2427. [Google Scholar] [CrossRef]
- Bárcena, C.; Sra, A.; Chaubey, G.; Khemtong, C.; Liu, J.; Gao, J. Zinc ferrite nanoparticles as MRI contrast agents. Chem. Comm. 2008, 19, 2224–2226. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Z.; Song, J.; Chen, X. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 2019, 48, 5140–5176. [Google Scholar] [CrossRef]
- Islam, M.; Masud, M.; Nguyen, N.; Gopalan, V.; Alamri, H.; Alothman, Z.; Hossain, M.; Yamauchi, Y.; Lamd, A.; Shiddiky, M. Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosens. Bioelectron. 2018, 101, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Orza, A.; Wu, H.; Xu, Y.; Lu, Q.; Mao, H. One-step facile synthesis of highly magnetic and surface functionalized iron oxide nanorods for biomarker-targeted applications. ACS Appl. Mater. Interfaces 2017, 9, 20719–20727. [Google Scholar] [CrossRef]
- Ling, T.; Yan, D.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X.; Mao, J.; Du, X.; Hu, Z.; Jaroniec, M.; et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, J.; Fernández-García, M.; Magén, C.; Mendes, A.; Araújo, J.; Sousa, C. Double-walled iron oxide nanotubes via selective chemical etching and Kirkendall process. Sci. Rep. 2019, 9, 11994. [Google Scholar] [CrossRef] [PubMed]
- Lisjak, D.; Mertelj, A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Prog. Mater. Sci. 2018, 95, 286–328. [Google Scholar] [CrossRef]
- Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018, 8, 3284–3307. [Google Scholar] [CrossRef]
- Bruschi, M.; de Toledo, L. Pharmaceutical applications of iron-oxide magnetic nanoparticles. Magnetochemistry 2019, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Hosu, O.; Tertis, M.; Cristea, C. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry 2019, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046. [Google Scholar] [CrossRef]
- Arias, L.; Pessan, J.; Vieira, A.; Lima, T.; Delbem, A.; Monteiro, D. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Amendola, V.; Meneghetti, M.; Granozzi, G.; Agnoli, S.; Polizzi, S.; Riello, P.; Boscaini, A.; Anselmi, C.; Fracasso, G.; Colombatti, M.; et al. Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. J. Mater. Chem. 2011, 21, 3803. [Google Scholar] [CrossRef]
- Amendola, V.; Riello, P.; Meneghetti, M. Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J. Phys. Chem. C 2010, 115, 5140–5146. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, F.; Sun, J.; Sheng, J.; Wang, F.; Sun, M. Bio and nanomaterials based on Fe3O4. Molecules 2014, 19, 21506–21528. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.; Ali, J.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidi, S.; Zeinali Sehrig, F.; Farkhani, S.; Soleymani Goloujeh, M.; Akbarzadeh, A. Current methods for synthesis of magnetic nanoparticles. Artif. Cells Nanomed. Biotechnol. 2014, 44, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, Z.; Han, S.; Li, C.; Lei, B.; Stewart, M.; Tour, J.; Zhou, C. Magnetite (Fe3O4) core–shell nanowires: Synthesis and magnetoresistance. Nano Lett. 2004, 4, 2151–2155. [Google Scholar] [CrossRef]
- Liu, F.; Cao, P.; Zhang, H.; Tian, J.; Xiao, C.; Shen, C.; Li, J.; Gao, H. Novel nanopyramid arrays of magnetite. Adv. Mater. 2005, 17, 1893–1897. [Google Scholar] [CrossRef]
- Mathur, S.; Barth, S.; Werner, U.; Hernandez-Ramirez, F.; Romano-Rodriguez, A. Chemical vapor growth of one-dimensional magnetite nanostructures. Adv. Mater. 2008, 20, 1550–1554. [Google Scholar] [CrossRef]
- Ding, Y.; Morber, J.; Snyder, R.; Wang, Z. Nanowire structural evolution from Fe3O4 to ϵ-Fe2O3. Adv. Funct. Mater. 2007, 17, 1172–1178. [Google Scholar] [CrossRef]
- Movlaee, K.; Ganjali, M.; Norouzi, P.; Neri, G. Iron-based nanomaterials/graphene composites for advanced electrochemical sensors. Nanomaterials 2017, 7, 406. [Google Scholar] [CrossRef] [Green Version]
- Ahn, T.; Kim, J.; Yang, H.; Lee, J.; Kim, J. Formation pathways of magnetite nanoparticles by coprecipitation method. J. Phys. Chem. C 2012, 116, 6069–6076. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, S.; Wu, Q.; Ran, J.; Wu, S.; Liu, Y. Convenient synthesis of anisotropic Fe3O4 nanorods by reverse co-precipitation method with magnetic field-assisted. Mater. Lett. 2011, 65, 1973–1975. [Google Scholar] [CrossRef]
- Shen, L.; Qiao, Y.; Guo, Y.; Meng, S.; Yang, G.; Wu, M.; Zhao, J. Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram. Int. 2014, 40, 1519–1524. [Google Scholar] [CrossRef]
- Unni, M.; Uhl, A.; Savliwala, S.; Savitzky, B.; Dhavalikar, R.; Garraud, N.; Arnold, D.; Kourkoutis, L.; Andrew, J.; Rinaldi, C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 2017, 11, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.; Wang, E.; Kang, Z.; Bai, Y.; Gao, L.; Jiang, M.; Hu, C.; Xu, L. Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun. 2004, 129, 485–490. [Google Scholar] [CrossRef]
- Li, W.; Yao, X.; Guo, Z.; Liu, J.; Huang, X. Fe3O4 with novel nanoplate-stacked structure: Surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J. Electroanal. Chem. 2015, 749, 75–82. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, J.; Lou, X. Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries. J. Phys. Chem. C 2011, 115, 9814–9820. [Google Scholar] [CrossRef]
- Sundar, S.; Venkatachalam, G.; Kwon, S. Sol-gel mediated greener synthesis of γ-Fe2O3 nanostructures for the selective and sensitive determination of uric acid and dopamine. Catalysts 2018, 8, 512. [Google Scholar] [CrossRef] [Green Version]
- Woo, K.; Lee, H.; Ahn, J.; Park, Y. Sol-gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 2003, 15, 1761–1764. [Google Scholar] [CrossRef]
- Kumar, R.; Koltypin, Y.; Xu, X.; Yeshurun, Y.; Gedanken, A.; Felner, I. Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 2001, 89, 6324–6328. [Google Scholar] [CrossRef]
- Abbas, M.; Takahashi, M.; Kim, C. Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J. Nanopart. Res. 2013, 15, 1354. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, Z.; Li, S.; Zhang, X.; Ying, A. Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Mater. Lett. 2008, 62, 4053–4055. [Google Scholar] [CrossRef]
- Cabrera, L.; Gutierrez, S.; Menendez, N.; Morales, M.; Herrasti, P. Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim. Acta 2008, 53, 3436–3441. [Google Scholar] [CrossRef]
- Karami, H.; Chidar, E. Pulsed-electrochemical synthesis and characterizations of magnetite nanorods. Int. J. Electrochem. Sci. 2012, 7, 2077–2090. [Google Scholar]
- Bharde, A.; Wani, A.; Shouche, Y.; Joy, P.; Prasad, B.; Sastry, M. Bacterial aerobic synthesis of nanocrystalline magnetite. J. Am. Chem. Soc. 2005, 127, 9326–9327. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Liu, G.; Dong, B.; Zhou, J.; Wang, A.; Wang, J.; Jin, R.; Lv, H.; Dou, Z.; Huang, W. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Sci. Rep. 2015, 5, 13515. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Yang, S.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016, 8, 1237–1259. [Google Scholar] [CrossRef]
- Qiao, L.; Fu, Z.; Li, J.; Ghosen, J.; Zeng, M.; Stebbins, J.; Prasad, P.; Swihart, M. Standardizing size- and shape-controlled synthesis of monodisperse magnetite (Fe3O4) nanocrystals by identifying and exploiting effects of organic impurities. ACS Nano 2017, 11, 6370–6381. [Google Scholar] [CrossRef]
- Kasparis, G.; Erdocio, A.; Tuffnell, J.; Thanh, N. Synthesis of size-tuneable β-FeOOH nanoellipsoids and a study of their morphological and compositional changes by reduction. CrystEngComm 2019, 21, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Qin, T.G.; Pei, W.; Ren, Y.; Zhang, Y.; Esling, C.; Zuo, L. Capping groups induced size and shape evolution of magnetite particles under hydrothermal condition and their magnetic properties. J. Am. Ceram. Soc. 2009, 92, 631–635. [Google Scholar] [CrossRef]
- Fatima, H.; Lee, D.; Yun, H.; Kim, K. Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents. RSC Adv. 2018, 8, 22917–22923. [Google Scholar] [CrossRef] [Green Version]
- Daniel, P.; Shylin, S.; Lu, H.; Tahir, M.; Panthöfer, M.; Weidner, T.; Möller, A.; Ksenofontov, V.; Tremel, W. The surface chemistry of iron oxide nanocrystals: Surface reduction of γ-Fe2O3 to Fe3O4 by redox-active catechol surface ligands. J. Mater. Chem. C 2018, 6, 326–333. [Google Scholar] [CrossRef]
- Ramzannezhad, A.; Gill, P.; Bahari, A. Fabrication of magnetic nanorods and their applications in medicine. BioNanoMaterials 2017, 18, 20170008. [Google Scholar] [CrossRef]
- Schrittwieser, S.; Reichinger, D.; Schotter, J. Applications, surface modification and functionalization of nickel nanorods. Materials 2017, 11, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avolio, M.; Gavilán, H.; Mazario, E.; Brero, F.; Arosio, P.; Lascialfari, A.; Puerto Morales, M. Elongated magnetic nanoparticles with high-aspect ratio: A nuclear relaxation and specific absorption rate investigation. Phys. Chem. Chem. Phys. 2019, 21, 18741–18752. [Google Scholar] [CrossRef] [PubMed]
- Mazuel, F.; Mathieu, S.; Di Corato, R.; Bacri, J.; Meylheuc, T.; Pellegrino, T.; Reffay, M.; Wilhelm, C. Forced- and self-rotation of magnetic nanorods assembly at the cell membrane: A biomagnetic torsion pendulum. Small 2017, 13, 1701274. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.; Jung, I.; Kang, Y.; Lee, D.; Park, S. Multi-block magnetic nanorods for controlled drug release modulated by Fourier transform surface plasmon resonance. Nanoscale 2018, 10, 18690–18695. [Google Scholar] [CrossRef]
- Schlörb, H.; Haehnel, V.; Khatri, M.; Srivastav, A.; Kumar, A.; Schultz, L.; Fähler, S. Magnetic nanowires by electrodeposition within templates. Phys. Status Solidi 2010, 247, 2364–2379. [Google Scholar] [CrossRef]
- Pecko, D.; Arshad, M.; Sturm, S.; Kobe, S.; Rozman, K. Magnetization-switching study of fcc Fe–Pd nanowire and nanowire arrays studied by in-field magnetic force microscopy. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Li, C.; Wu, Q.; Yue, M.; Xu, H.; Palaka, S.; Elkins, K.; Ping Liu, J. Manipulation of morphology and magnetic properties in cobalt nanowires. AIP Adv. 2017, 7, 056229. [Google Scholar] [CrossRef]
- Huang, W.; Yang, F.; Zhu, L.; Qiao, R.; Zhao, Y. Manipulation of magnetic nanorod clusters in liquid by non-uniform alternating magnetic fields. Soft Matter 2017, 13, 3750–3759. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, F.; Jiang, Q.; Du, B.; Sun, H. 12-Hydrothermal synthesis and characterization of Fe3O4 nanorods. J. Inorg. Organomet. Polym. 2012, 23, 379–384. [Google Scholar] [CrossRef]
- Wan, J.; Chen, X.; Wang, Z.; Yang, X.; Qian, Y. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J. Cryst. Growth 2005, 276, 571–576. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, L.; Mai, Z.; Zhu, D. Polymer-controlled synthesis of Fe3O4 single-crystal nanorods. J. Colloid Interface Sci. 2004, 278, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Ma, J.; Wu, H.; Yao, W.; Hu, K. A low-cost and high-yield production of magnetite nanorods with high saturation magnetization. J. Chil. Chem. Soc. 2015, 60, 2799–2802. [Google Scholar] [CrossRef] [Green Version]
- Xi, G.; Wang, C.; Wang, X. The Oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods. Eur. J. Inorg. Chem. 2008, 2008, 425–431. [Google Scholar] [CrossRef]
- Hou, X.; Feng, J.; Xu, X.; Zhang, M. Synthesis and characterizations of spinel MnFe2O4 nanorod by seed-hydrothermal route. J. Alloy. Compd. 2010, 491, 258–263. [Google Scholar] [CrossRef]
- Sodaee, T.; Ghasemi, A.; Razavi, R. Controlled growth of large-area arrays of gadolinium-substituted cobalt ferrite nanorods by hydrothermal processing without use of any template. Ceram. Int. 2016, 42, 17420–17428. [Google Scholar] [CrossRef]
- Jia, Z.; Ren, D.; Zhu, R. Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater. Lett. 2012, 66, 128–131. [Google Scholar] [CrossRef]
- Ji, G.; Tang, S.; Ren, S.; Zhang, F.; Gu, B.; Du, Y. Simplified synthesis of single-crystalline magnetic CoFe2O4 nanorods by a surfactant-assisted hydrothermal process. J. Cryst. Growth 2004, 270, 156–161. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.; Jiao, Q.; Li, H. Microemulsion-based synthesis of porous Co–Ni ferrite nanorods and their magnetic properties. J. Alloy. Compd. 2013, 555, 95–100. [Google Scholar] [CrossRef]
- Singh, S.; Yadav, B.; Prakash, R.; Bajaj, B.; Lee, J. Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 2011, 257, 10763–10770. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Tang, F. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity. Chem. Commun. 2005, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Shi, J.; Yuan, B.; Fu, M. Synthesis of porous magnetic ferrite nanowires containing Mn and their application in water treatment. J. Mater. Chem. A 2013, 1, 5902. [Google Scholar] [CrossRef]
- Ji, G.; Tang, S.; Xu, B.; Gu, B.; Du, Y. Synthesis of CoFe2O4 nanowire arrays by sol-gel template method. Chem. Phys. Lett. 2003, 379, 484–489. [Google Scholar] [CrossRef]
- El-Sheikh, S.; Harraz, F.; Hessien, M. Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique. Mater. Chem. Phys. 2010, 123, 254–259. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, D.; Han, S.; Li, C.; Lei, B.; Lu, W.; Fang, J.; Zhou, C. Single crystalline magnetite nanotubes. ChemInform 2005, 127, 6–7. [Google Scholar]
- Menchaca-Nal, S.; Londoño-Calderón, C.; Cerrutti, P.; Foresti, M.; Pampillo, L.; Bilovol, V.; Candal, R.; Martínez-García, R. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template. Carbohyd. Polym. 2016, 137, 726–731. [Google Scholar] [CrossRef]
- Ji, G.; Su, H.; Tang, S.; Du, Y.; Xu, B. Simplified synthesis of cobalt ferrite nanotubes using sol–gel method. Chem. Lett. 2005, 34, 86–87. [Google Scholar] [CrossRef]
- Mohapatra, J.; Mitra, A.; Tyagi, H.; Bahadur, D.; Aslam, M. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale 2015, 7, 9174–9184. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Wei, A. Uniform gold nanorod arrays from polyethylenimine-coated alumina templates. J. Phys. Chem. B 2005, 109, 23336–23341. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yin, Y.; Chen, C.; Chiou, J. Influence of polyethyleneimine and ammonium on the growth of zno nanowires by hydrothermal method. J. Phys. Chem. C 2011, 115, 20913–20919. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Liz-Marzán, L. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Lalwani, S.; Marichi, R.; Mishra, M.; Gupta, G.; Singh, G.; Sharma, R. Edge enriched cobalt ferrite nanorods for symmetric/asymmetric supercapacitive charge storage. Electrochim. Acta 2018, 283, 708–717. [Google Scholar] [CrossRef]
- Zukova, A.; Teiserskis, A.; Rohava, Y.; Baranov, A.; van Dijken, S.; Gun’ko, Y. Deposition of magnetite nanofilms by pulsed injection MOCVD in a magnetic field. Nanomaterials 2018, 8, 1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoriev, D.; Gorin, D.; Sukhorukov, G.; Yashchenok, A.; Maltseva, E.; Möhwald, H. Polyelectrolyte/magnetite nanoparticle multilayers: Preparation and structure characterization. Langmuir 2007, 23, 12388–12396. [Google Scholar] [CrossRef]
- Gorin, D.; Yashchenok, A.; Koksharov, Y.; Neveshkin, A.; Serdobintsev, A.; Grigoriev, D.; Khomutov, G. Surface morphology and optical and magnetic properties of polyelectrolyte/magnetite nanoparticles nanofilms. Tech. Phys. 2009, 54, 1675–1680. [Google Scholar] [CrossRef] [Green Version]
- Kafshgari, L.; Ghorbani, M.; Azizi, A. Synthesis and characterization of manganese ferrite nanostructure by co-precipitation, sol-gel, and hydrothermal methods. Particul. Sci. Technol. 2018, 37, 904–910. [Google Scholar] [CrossRef]
- De-hui, S.; De-xin, S.; Hao, Y. Controlled synthesis of Fe3O4 nanosheets via P123 micelle template. Mater. Sci. Forum 2011, 663–665, 1125–1128. [Google Scholar]
- Wang, W.; Zhu, Y. Microwave-assisted synthesis of magnetite nanosheets in mixed solvents of ethylene glycol and water. Curr. Nanosci. 2007, 3, 171–176. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, W.; Zhao, Y.; Shen, H.; Lin, H.; Liang, J. Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci. Rep. 2015, 5, 9320. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.; Chong, G.; Poh, C.; Van, L.; Sow, C.; Lin, J.; Wee, A. Large-scale synthesis of Fe3O4 nanosheets at low temperature. J. Phys. Chem. C 2007, 111, 9136–9141. [Google Scholar] [CrossRef]
- Dong, B.; Li, M.; Xiao, C.; Ding, D.; Gao, G.; Ding, S. Tunable growth of perpendicular cobalt ferrite nanosheets on reduced graphene oxide for energy storage. Nanotechnology 2016, 28, 055401. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xiang, J.; Cao, Y. Hierarchically porous CoFe2O4 nanosheets supported on Ni foam with excellent electrochemical properties for asymmetric supercapacitors. Appl. Surf. Sci. 2017, 413, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Ravindran Madhura, T.; Viswanathan, P.; Gnana kumar, G.; Ramaraj, R. Nanosheet-like manganese ferrite grown on reduced graphene oxide for non-enzymatic electrochemical sensing of hydrogen peroxide. J. Electroanal. Chem. 2017, 792, 15–22. [Google Scholar] [CrossRef]
- Yao, X.; Kong, J.; Tang, X.; Zhou, D.; Zhao, C.; Zhou, R.; Lu, X. Facile synthesis of porous CoFe2O4 nanosheets for lithium-ion battery anodes with enhanced rate capability and cycling stability. RSC Adv. 2014, 4, 27488–27492. [Google Scholar] [CrossRef]
- Lu, J.; Jiao, X.; Chen, D.; Li, W. Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates. J. Phys. Chem. C 2009, 113, 4012–4017. [Google Scholar] [CrossRef]
- Moradlou, O.; Dehghanpour Farashah, S.; Masumian, F.; Banazadeh, A. Magnetite nanoplates decorated on anodized aluminum oxide nanofibers as a novel adsorbent for efficient removal of As(III). Int. J. Sci. Environ. Technol. 2016, 13, 1149–1158. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Ma, R.; Shi, D.; Liu, F.; Zhang, X. Rapid growth of magnetite nanoplates by ultrasonic irradiation at low temperature. Ultrason. Sonochem. 2011, 18, 1038–1042. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, M.; Li, D.; Jiang, D. Facile synthesis and characterisation of hexagonal magnetite nanoplates. Micro Nano Lett. 2013, 8, 383–385. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, Y.; Guo, Z.; Gu, N. Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction. Nanoscale Res. Lett. 2013, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wei, Z.; He, P.; Duan, X.; Yang, Z.; Zhou, Y.; Jia, D. Seed-mediated growth of ultra-thin triangular magnetite nanoplates. Chem. Commun. 2017, 53, 11052–11055. [Google Scholar] [CrossRef] [Green Version]
- Kamta Tedjieukeng, H.; Tsobnang, P.; Fomekong, R.; Etape, E.; Joy, P.; Delcorte, A.; Lambi, J. Structural characterization and magnetic properties of undoped and copper-doped cobalt ferrite nanoparticles prepared by the octanoate coprecipitation route at very low dopant concentrations. RSC Adv. 2018, 8, 38621–38630. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Zink, J.; Khashab, N. Selective Magnetic Evolution of MnxFe1−xO Nanoplates. J. Phys. Chem. C 2015, 119, 10740–10748. [Google Scholar] [CrossRef] [Green Version]
- Maaz, K.; Duan, J.; Karim, S.; Chen, Y.; Zhai, P.; Xu, L.; Yao, H.; Liu, J. Fabrication and size dependent magnetic studies of NixMn1−xFe 2O4 (x = 0.2) cubic nanoplates. J. Alloy. Compd. 2016, 684, 656–662. [Google Scholar] [CrossRef]
- Khan, M.; Duan, J.; Chen, Y.; Yao, H.; Lyu, S.; Shou, H.; Heng, K.; Xu, Q. Superparamagnetic nickel–substituted manganese ferrite (Mn0.8Ni0.2Fe2O4) nanoplates as anode materials for lithium-ion batteries. J. Alloy. Compd. 2017, 701, 147–152. [Google Scholar] [CrossRef]
- Sayed, F.; Polshettiwar, V. Facile and sustainable synthesis of shaped iron oxide nanoparticles: Effect of iron precursor salts on the shapes of iron oxides. Sci. Rep. 2015, 5, 9733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Xia, F.; Wang, Z.; Zhang, L.; Xi, L.; Zuo, Y. Flowerlike iron oxide nanostructures and their application in microwave absorption. J. Alloy. Compd. 2015, 631, 183–191. [Google Scholar] [CrossRef]
- Wang, D.; Yang, P.; Huang, B. Three-dimensional flowerlike iron oxide nanostructures: Morphology, composition and metal ion removal capability. Mater. Res. Bull. 2016, 73, 56–64. [Google Scholar] [CrossRef]
- Li, X.; Tian, L.; Ali, Z.; Wang, W.; Zhang, Q. Design of flexible dendrimer-grafted flower-like magnetic microcarriers for penicillin G acylase immobilization. J. Mater. Sci. 2017, 53, 937–947. [Google Scholar] [CrossRef]
- Wang, X.; Huang, H.; Li, G.; Liu, Y.; Huang, J.; Yang, D. Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants. Nanoscale Res. Lett. 2014, 9, 648. [Google Scholar] [CrossRef] [Green Version]
- Gavilán, H.; Kowalski, A.; Heinke, D.; Sugunan, A.; Sommertune, J.; Varón, M.; Bogart, L.; Posth, O.; Zeng, L.; González-Alonso, D.; et al. Colloidal flower-shaped iron oxide nanoparticles: Synthesis strategies and coatings. Part. Part. Syst. Charact. 2017, 34, 1700094. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Xu, F.; Gu, H. Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J. Chem. 2011, 35, 1072. [Google Scholar] [CrossRef]
- Shubitidze, F.; Kekalo, K.; Stigliano, R.; Baker, I. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. J. Appl. Phys. 2015, 117, 094302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhou, Z.; Bao, J.; Wang, Z.; Hu, J.; Chi, X.; Ni, K.; Wang, R.; Chen, X.; Chen, Z.; et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat. Commun. 2013, 4, 2266. [Google Scholar] [CrossRef]
- Sharma, V.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z.; Demir, H. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1–T2 MRI contrast agents. Nanoscale 2015, 7, 10519–10526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Lee, N.; Park, M.; Kim, B.; An, K.; Hyeon, T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455. [Google Scholar] [CrossRef]
- Muro-Cruces, J.; Roca, A.; López-Ortega, A.; Fantechi, E.; del-Pozo-Bueno, D.; Estradé, S.; Peiró, F.; Sepúlveda, B.; Pineider, F.; Sangregorio, C.; et al. Precise size control of the growth of Fe3O4 nanocubes over a wide size range using a rationally designed one-pot synthesis. ACS Nano 2019, 13, 7716–7728. [Google Scholar] [CrossRef] [Green Version]
- Indira, T.; Lakshmi, P. Magnetic nanoparticles—A Review. Int. J. Pharm. Sci. Nanotechnol. 2010, 3, 1035–1042. [Google Scholar]
- Zhu, K.; Ju, Y.; Xu, J.; Yang, Z.; Gao, S.; Hou, Y. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res. 2018, 51, 404–413. [Google Scholar] [CrossRef]
- Gupta, A.; Naregalkar, R.; Vaidya, V.; Gupta, M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007, 2, 23–39. [Google Scholar] [CrossRef]
- Veiseh, O.; Gunn, J.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Zhang, Z. Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals. J. Am. Chem. Soc. 2004, 126, 6164–6168. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Alvarez, G.; Qin, J.; Šepelák, V.; Bergmann, I.; Vasilakaki, M.; Trohidou, K.; Ardisson, J.; Macedo, W.; Mikhaylova, M.; Muhammed, M.; et al. Cubic versus spherical magnetic nanoparticles: The role of surface anisotropy. J. Am. Chem. Soc. 2008, 130, 13234–13239. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Muir, B.; Moffat, B.; Harbour, P.; Murray, K.; Moubaraki, B.; Suzuki, K.; Madsen, I.; Agron-Olshina, N.; Waddington, L.; et al. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C 2010, 115, 327–334. [Google Scholar] [CrossRef]
- Fang, J. Enhanced permeability and retention effect based nanomedicine, a solution for cancer. World J. Pharmacol. 2015, 4, 168–171. [Google Scholar] [CrossRef]
- Greish, K. Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: Are we there yet? Drug Discov. Today Technol. 2012, 9, 161–166. [Google Scholar] [CrossRef]
- Singh, A.; Sahoo, S. Magnetic nanoparticles: A novel platform for cancer theranostics. Drug Discov. Today 2014, 19, 474–481. [Google Scholar] [CrossRef]
- Cole, A.; Yang, V.; David, A. Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011, 29, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Castelló, J.; Gallardo, M.; Busquets, M.; Estelrich, J. Chitosan (or alginate)-coated iron oxide nanoparticles: A comparative study. Colloids Surf. A Physicochem. Eng. Aspects 2015, 468, 151–158. [Google Scholar] [CrossRef]
- Berry, C.; Wells, S.; Charles, S.; Curtis, A. Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 2003, 24, 4551–4557. [Google Scholar] [CrossRef]
- Rodrigues, A.R.O.; Ramos, J.; Gomes, I.T.; Almeida, B.; Araújo, J.P.; Queiroz, M.J.R.P.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs. RSC Adv. 2016, 6, 17302–17313. [Google Scholar] [CrossRef] [Green Version]
- Couto, D.; Freitas, M.; Carvalho, F.; Fernandes, E. Iron oxide nanoparticles: An insight into their biomedical applications. Curr. Med. Chem. 2015, 22, 1808–1828. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Webster, T. Magnetic nanoparticles: Biomedical applications and challenges. J. Mater. Chem. 2010, 20, 8760–8767. [Google Scholar] [CrossRef]
- Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment (Review). Mol. Clin. Oncol. 2017, 7, 738–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kralj, S.; Makovec, D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano 2015, 9, 9700–9707. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Kaittanis, C.; Ramachandran, V.; Dalal, N.; Perez, J. Synthesis, magnetic characterization, and sensing applications of novel dextran-coated iron oxide Nanorods. Chem. Mater. 2009, 21, 1761–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Wang, W.; Huang, Y.; Sheu, H.; Lo, Y.; Tsai, T.; Shieh, D.; Yeh, C. Porous iron oxide based nanorods developed as delivery nanocapsules. Chem. A Eur. J. 2007, 13, 3878–3885. [Google Scholar] [CrossRef]
- Son, S.; Bai, X.; Nan, A.; Ghandehari, H.; Lee, S. Template synthesis of multifunctional nanotubes for controlled release. J. Control. Release 2006, 114, 143–152. [Google Scholar] [CrossRef]
- Son, S.; Reichel, J.; He, B.; Schuchman, M.; Lee, S. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc. 2005, 127, 7316–7317. [Google Scholar] [CrossRef]
- Yue, Z.; Wei, W.; You, Z.; Yang, Q.; Yue, H.; Su, Z.; Ma, G. Iron Oxide Nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs. Adv. Funct. Mater. 2011, 21, 3446–3453. [Google Scholar] [CrossRef]
- Yu, P.; Xia, X.; Wu, M.; Cui, C.; Zhang, Y.; Liu, L.; Wu, B.; Wang, C.; Zhang, L.; Zhou, X.; et al. Folic acid-conjugated iron oxide porous nanorods loaded with doxorubicin for targeted drug delivery. Colloids Surf. B Biointerfaces 2014, 120, 142–151. [Google Scholar] [CrossRef]
- Xiong, F.; Chen, Y.; Chen, J.; Yang, B.; Zhang, Y.; Gao, H.; Hua, Z.; Gu, N. Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. J. Control. Release 2013, 172, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Fortin, J.; Gazeau, F.; Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 2007, 37, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Makridis, A.; Topouridou, K.; Tziomaki, M.; Sakellari, D.; Simeonidis, K.; Angelakeris, M.; Yavropoulou, M.; Yovos, J.; Kalogirou, O. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J. Mater. Chem. B 2014, 2, 8390–8398. [Google Scholar] [CrossRef]
- Hedayatnasab, Z.; Abnisa, F.; Daud, W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 2017, 123, 174–196. [Google Scholar] [CrossRef]
- Cotin, G.; Perton, F.; Blanco-Andujar, C.; Pichon, B.; Mertz, D.; Bégin-Colin;, S. Design of anisotropic iron-oxide-based nanoparticles for magnetic hyperthermia. In Nanomaterials for Magnetic and Optical Hyperthermia Applications; Micro and Nano Technologies; Fratila, R.M., De la Fuente, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–60. [Google Scholar]
- Guardia, P.; Di Corato, R.; Lartigue, L.; Wilhelm, C.; Espinosa, A.; Garcia-Hernandez, M.; Gazeau, F.; Manna, L.; Pellegrino, T. Water-soluble iron oxide Nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 2012, 6, 3080–3091. [Google Scholar] [CrossRef]
- Kakwere, H.; Leal, M.; Materia, M.; Curcio, A.; Guardia, P.; Niculaes, D.; Marotta, R.; Falqui, A.; Pellegrino, T. Functionalization of strongly interacting magnetic nanocubes with (Thermo)Responsive coating and their application in hyperthermia and heat-triggered drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 10132–10145. [Google Scholar] [CrossRef] [Green Version]
- Niculaes, D.; Lak, A.; Anyfantis, G.; Marras, S.; Laslett, O.; Avugadda, S.; Cassani, M.; Serantes, D.; Hovorka, O.; Chantrell, R.; et al. Asymmetric assembling of iron oxide nanocubes for improving magnetic hyperthermia performance. ACS Nano 2017, 11, 12121–12133. [Google Scholar] [CrossRef]
- Geng, S.; Yang, H.; Ren, X.; Liu, Y.; He, S.; Zhou, J.; Su, N.; Li, Y.; Xu, C.; Zhang, X.; et al. Anisotropic magnetite nanorods for enhanced magnetic hyperthermia. Chem. Asian J. 2016, 11, 2996–3000. [Google Scholar] [CrossRef]
- Das, R.; Alonso, J.; Nemati Porshokouh, Z.; Kalappattil, V.; Torres, D.; Phan, M.; Garaio, E.; García, J.; Sanchez Llamazares, J.; Srikanth, H. Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J. Phys. Chem. C 2016, 120, 10086–10093. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Lv, Y.; Herng, T.; Xu, X.; Xia, W.; Zhang, T.; Fang, J.; Xiao, W.; Ding, J. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Adv. Funct. Mater. 2014, 25, 812–820. [Google Scholar] [CrossRef]
- Das, R.; Rinaldi-Montes, N.; Alonso, J.; Amghouz, Z.; Garaio, E.; García, J.; Gorria, P.; Blanco, J.; Phan, M.; Srikanth, H. Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Appl. Mater. Interfaces 2016, 8, 25162–25169. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Cardarelli, J.; Phan, M.; Srikanth, H. Magnetically tunable iron oxide nanotubes for multifunctional biomedical applications. J. Alloy. Compd. 2019, 789, 323–329. [Google Scholar] [CrossRef]
- Revia, R.; Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater. Today 2016, 19, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Devi, K.; Dutta, S.; Maiti, T.; Pramanik, P.; Dhara, D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J. Colloid Interface Sci. 2014, 431, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Yadollahpour, A.; Asl, H.; Rashidi, S. Applications of nanoparticles in magnetic resonance imaging: A comprehensive review. Asian J. Pharm. 2017, 11, 1–7. [Google Scholar]
- Vuong, Q.; Gillis, P.; Roch, A.; Gossuin, Y. Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: A theoretical review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, 1–22. [Google Scholar] [CrossRef]
- Bao, Y.; Sherwood, J.; Sun, Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J. Mater. Chem. C 2018, 6, 1280–1290. [Google Scholar] [CrossRef]
- Tromsdorf, U.; Bruns, O.; Salmen, S.; Beisiegel, U.; Weller, H. A Highly Effective, nontoxic T1 MR Contrast agent based on Ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009, 9, 4434–4440. [Google Scholar] [CrossRef]
- Taboada, E.; Rodríguez, E.; Roig, A.; Oró, J.; Roch, A.; Muller, R. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 2007, 23, 4583–4588. [Google Scholar] [CrossRef]
- Huang, G.; Li, H.; Chen, J.; Zhao, Z.; Yang, L.; Chi, X.; Chen, Z.; Wang, X.; Gao, J. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale 2014, 6, 10404–10412. [Google Scholar] [CrossRef]
- Park, J.; von Maltzahn, G.; Zhang, L.; Schwartz, M.; Ruoslahti, E.; Bhatia, S.; Sailor, M. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 2008, 20, 1630–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Lee, N.; Choi, S.; An, K.; Yu, S.; Kim, J.; Kwon, S.; Kim, D.; Kim, H.; Baek, S.; et al. Large-Scale synthesis of Ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents. Chem. Mater. 2011, 23, 3318–3324. [Google Scholar] [CrossRef]
- Lee, N.; Choi, Y.; Lee, Y.; Park, M.; Moon, W.; Choi, S.; Hyeon, T. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett. 2012, 12, 3127–3131. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Cervadoro, A.; Ramirez, M.; Stigliano, C.; Brazdeikis, A.; Colvin, V.; Civera, P.; Key, J.; Decuzzi, P. Assembly of Iron Oxide Nanocubes for Enhanced Cancer Hyperthermia and Magnetic Resonance Imaging. Nanomaterials 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Zhao, Z.; Zhang, H.; Wang, Z.; Chen, X.; Wang, R.; Chen, Z.; Gao, J. Interplay between longitudinal and transverse contrasts in Fe3O4 Nanoplates with (111) exposed surfaces. ACS Nano 2014, 8, 7976–7985. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Baek, M.; Choi, E.; Woo, S.; Kim, J.; Kim, T.; Jung, J.; Chae, K.; Chang, Y.; Lee, G. Paramagnetic Ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for Large longitudinal relaxivity, optimal particle diameter, and in Vivo T1 MR Images. ACS Nano 2009, 3, 3663–3669. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, X.; Wu, D.; Chen, Q.; Huang, D.; Sun, C.; Xin, J.; Ni, K.; Gao, J. Anisotropic shaped iron oxide nanostructures: Controlled synthesis and proton relaxation shortening effects. Chem. Mater. 2015, 27, 3505–3515. [Google Scholar] [CrossRef]
- Beg, M.; Mohapatra, J.; Pradhan, L.; Patkar, D.; Bahadur, D. Porous Fe3O4-SiO2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. J. Magn. Magn. Mater. 2017, 428, 340–347. [Google Scholar] [CrossRef]
- Dehvari, K.; Chen, Y.; Tsai, Y.; Tseng, S.; Lin, K. Superparamagnetic iron oxide nanorod carriers for paclitaxel delivery in the treatment and imaging of colon cancer in mice. J. Biomed. Nanotechnol. 2016, 12, 1734–1745. [Google Scholar] [CrossRef]
- Wang, Y.X.J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40. [Google Scholar]
- Wang, Y.X.J. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 2015, 21, 13400–13402. [Google Scholar] [CrossRef] [PubMed]
- Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607. [Google Scholar] [CrossRef] [PubMed]
- Vakili-Ghartavol, R.; Momtazi-Borojeni, A.; Vakili-Ghartavol, Z.; Aiyelabegan, H.; Jaafari, M.; Rezayat, S.; Arbabi Bidgoli, S. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cells Nanomed. Biotechnol. 2020, 48, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Hofmann, H.; Rothen-Rutishauser, B.; Petri-Fink, A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem. Rev. 2011, 112, 2323–2338. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Huang, S.; Yu, K.; Clyne, A. Dextran and Polymer Polyethylene Glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D Cell culture. Int. J. Mol. Sci. 2012, 13, 5554–5570. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liu, Y.; Huang, J.; Chen, K.; Huang, J.; Xiao, K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018, 8, 2082–2095. [Google Scholar] [CrossRef]
- Ying, E.; Hwang, H. In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci. Total Environ. 2010, 408, 4475–4481. [Google Scholar] [CrossRef]
- Jarockyte, G.; Daugelaite, E.; Stasys, M.; Statkute, U.; Poderys, V.; Tseng, T.; Hsu, S.; Karabanovas, V.; Rotomskis, R. Accumulation and toxicity of superparamagnetic iron oxide nanoparticles in cells and experimental animals. Int. J. Mol. Sci. 2016, 17, 1193. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, R.; Wu, N.; Porter, D.; Buford, M.; Wolfarth, M.; Holian, A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part. Fibre Toxicol. 2009, 6, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Stoehr, L.; Gonzalez, E.; Stampfl, A.; Casals, E.; Duschl, A.; Puntes, V.; Oostingh, G. Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol. 2011, 8, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ju, J.; Kim, B.; Pak, P.; Choi, E.; Lee, H.; Chung, N. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ. Toxicol. Chem. 2014, 33, 2759–2766. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zeng, M.; Chen, J.; Zhang, Z.; Zhang, X.; Fan, Z.; Zhang, X. External magnetic field-induced targeted delivery of highly sensitive iron oxide nanocubes for MRI of myocardial infarction. Small 2016, 12, 4707–4712. [Google Scholar] [CrossRef] [PubMed]
- Szalay, B.; Tátrai, E.; Nyírő, G.; Vezér, T.; Dura, G. Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J. Appl. Toxicol. 2011, 32, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jiang, L.; Zeng, Y.; Liu, G. 2013. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine. Chin. Phys. B 2013, 22, 127503–127514. [Google Scholar] [CrossRef]
- Prodan, A.; Iconaru, S.; Ciobanu, C.; Chifiriuc, M.; Stoicea, M.; Predoi, D. Iron oxide magnetic nanoparticles: Characterization and toxicity evaluation byin vitroandin vivoassays. J. Nanomater. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Patil, U.; Adireddy, S.; Jaiswal, A.; Mandava, S.; Lee, B.; Chrisey, D. In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int. J. Mol. Sci. 2015, 16, 24417–24450. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | Ref. | Examples |
---|---|---|---|---|
Laser Ablation Synthesis in Solution (LASiS) | Green synthesis Different structures and composition | Difficult control of particle size and clustering | [27,28] | [29,30] |
Chemical vapor deposition (laser and spray pyrolysis) | Easy to prepare Production of small particle size | Expensive equipment Gaseous interferences | [26,31,32,33] | [34,35,36,37] |
Co-precipitation | Green Low-cost Scalable Facile Efficient | Difficult to control size Polydispersity Lack of precise stoichiometric phase control | [26,28,31,32,38] | [39,40,41] |
Thermal decomposition | Small size particles Control of size and shape Monodisperse | Requires multiple steps Toxic solvents Toxic and expensive precursors Laborious purification Requires surface treatment after synthesis | [31,33] | [42,43] |
Hydrothermal (solvothermal) | Green Versatile Control of morphology | Need of autoclave Control of dispersity Slow reaction kinetics | [28,33] | [44,45] |
Sol-gel synthesis | Homogeneous Control of shape and length Low-cost High phase purity | Requires post treatment By-products Safety Low efficiency | [28,33] | [46,47] |
Sonochemical decomposition | Mild experimental conditions Good crystallinity Versatile | Mechanism not still understood | [26,32,43] | [48,49] |
Microemulsion | Monodispersity Simple equipment High control of size and shape Room conditions Small sizes | Removal of surfactants High solvent consumption Low-yield Difficult scale-up | [26,28,31,33] | [50] |
Electrochemical synthesis | Control of particle size Simple and fast | Lack of reproducibility | [32] | [51,52] |
Biosynthesis | High yield Reproducibility Scalability Low cost Room temperature | Time-consuming Laborious | [31,32] | [53,54] |
Shape | Structure | Method | Size (d × l, nm) | Ms (emu/g) | Ref. |
---|---|---|---|---|---|
Nanorods | Fe3O4 | Hydrothermal + shaping ligand (EDA) | 40–50 × 500–800 | 72.94 | [70] |
25 × 200 | 71.3 | [71] | |||
Co-precipitation + shaping ligand (PVP) | 18.2 × 310.6 | 28 | [72] | ||
Hydrothermal + sacrificial template (goethite) | ~70 × ~500 | 90 | [73] | ||
Solvothermal + template-assisted (Fe3O4 microspheres) | 7–20 × 120–400 | 92.3 | [74] | ||
MnFe2O4 | Hydrothermal + sacrificial template (MnO) | 25–40 × 300–400 | 72.45 | [75] | |
CoFe2O4 | Hydrothermal | 19 × 400 | 73.36 | [76] | |
Solvothermal (EG) | 100–200 l | 54.93 | [77] | ||
Hydrothermal + shaping ligand (CTAB) | 25 × 120 | 66 | [78] | ||
Co0.5Ni0.5Fe2O4 | Microemulsion | 30–200 l | 51.1 | [79] | |
CuFe2O4 | Co-precipitation | 120–400 l | - | [80] | |
Nanowires | Fe3O4 | Sol-gel + shaping ligand (EG and P123) | 10 d; >500 aspect ratio | 34.5 | [81] |
MnFe2O4 | Hydrothermal | 100–300 d | 45.9 | [82] | |
CoFe2O4 | Sol-gel + template-assisted | 40 d | - | [83] | |
Template-assisted | 8–10 d | 51.81 | [84] | ||
Nanotubes | Fe3O4 | Template-assisted | 30 d; 7 nm wall thickness | - | [85] |
CoFe2O4 | Co-precipitation + Template-assisted | 217 d | 65 | [86] | |
Sol-gel + template-assisted | 50 d × 1000 l; 5 nm wall thickness | - | [87] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, R.G.D.; Veloso, S.R.S.; Castanheira, E.M.S. Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. Int. J. Mol. Sci. 2020, 21, 2455. https://doi.org/10.3390/ijms21072455
Andrade RGD, Veloso SRS, Castanheira EMS. Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. International Journal of Molecular Sciences. 2020; 21(7):2455. https://doi.org/10.3390/ijms21072455
Chicago/Turabian StyleAndrade, Raquel G. D., Sérgio R. S. Veloso, and Elisabete M. S. Castanheira. 2020. "Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications" International Journal of Molecular Sciences 21, no. 7: 2455. https://doi.org/10.3390/ijms21072455
APA StyleAndrade, R. G. D., Veloso, S. R. S., & Castanheira, E. M. S. (2020). Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. International Journal of Molecular Sciences, 21(7), 2455. https://doi.org/10.3390/ijms21072455