Construction of a Lectin–Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis
Abstract
:1. Introduction
2. Results
2.1. Identification of Proteins That Interact with Host Mucin Using Transcriptomic and Proteomic Analysis
2.2. Prediction of Lectin Candidate Proteins and Protein Functional Analysis
2.3. Analysis of the Protein–Protein Interaction (PPI) of Lectin Candidate Proteins
2.4. Homology Modeling of the 3D Structure and Epitope Prediction of Lectin Candidate Proteins
2.5. Selection of Lectin Candidates by Comparison with Data of Transcriptome Expression by Mucin Recognition in EHEC
3. Discussion
4. Materials and Methods
4.1. Strains and Culture
4.2. Transcriptomic Analysis
4.3. Proteomic Analysis
4.4. Genome-Wide Prediction of Lectin Candidate Proteins
4.5. Comparison of Genome-Wide Predicted Candidates with Transcriptomic Data and Mucin Recognition Sites in EHEC
4.6. Analysis of the Function of Lectin Candidate Proteins
4.7. Analysis of the PPIs of Lectin Candidate Proteins
4.8. Homology Modeling of the 3D Structure and Epitope Prediction of Lectin Candidate Proteins
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EHEC | Enterohemorrhagic Escherichia coli |
GO | Gene Ontology |
IEF | isoelectric focusing |
JGI | Joint Genome Institute |
LB | Luria-Bertani |
LEE | locus of enterocyte effacement |
LGI | lectin–glycan interaction |
LOWESS | locally weighted scatterplot smoothing |
NCCP | National Culture Collection for Pathogens |
PIA | polysaccharide intercellular adhesin |
PPI | Protein–Protein Interaction |
SEPPA | Spatial Epitope Prediction of Protein Antigens |
STEC | Shiga-toxin-producing Escherichia coli |
Str. | Strain |
References
- Reitsma, S.; Slaaf, D.W.; Vink, H.; van Zandvoort, M.A.; oude Egbrink, M.G. The endothelial glycocalyx: Composition, functions, and visualization. Pflugers Arch. 2007, 454, 345–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strugala, V.; Allen, A.; Dettmar, P.W.; Pearson, J.P. Colonic mucin: Methods of measuring mucus thickness. Proc. Nutr. Soc. 2003, 62, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am. J. Physiol. Gastrointest Liver Physiol. 2001, 280, G922–G929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagnoff, M.F.; Eckmann, L. Epithelial cells as sensors for microbial infection. J. Clin. Investig. 1997, 100, 6–10. [Google Scholar] [CrossRef]
- Van Passel, M.W.; Kant, R.; Zoetendal, E.G.; Plugge, C.M.; Derrien, M.; Malfatti, S.A.; Chain, P.S.; Woyke, T.; Palva, A.; de Vos, W.M.; et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 2011, 6, e16876. [Google Scholar] [CrossRef] [Green Version]
- Sassone-Corsi, M.; Raffatellu, M. No vacancy: How beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 2015, 194, 4081–4087. [Google Scholar] [CrossRef] [Green Version]
- Ielasi, F.S.; Alioscha-Perez, M.; Donohue, D.; Claes, S.; Sahli, H.; Schols, D.; Willaert, R.G. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins. MBio 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Carlin, A.F.; Uchiyama, S.; Chang, Y.C.; Lewis, A.L.; Nizet, V.; Varki, A. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 2009, 113, 3333–3336. [Google Scholar] [CrossRef]
- Secundino, I.; Lizcano, A.; Roupe, K.M.; Wang, X.; Cole, J.N.; Olson, J.; Ali, S.R.; Dahesh, S.; Amayreh, L.K.; Henningham, A.; et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J. Mol. Med. (Berl) 2016, 94, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Poole, J.; Day, C.J.; von Itzstein, M.; Paton, J.C.; Jennings, M.P. Glycointeractions in bacterial pathogenesis. Nat. Rev. Microbiol. 2018, 16, 440–452. [Google Scholar] [CrossRef]
- Longman, R.J.; Douth, J.; Sylvester, P.A.; Poulsom, R.; Corfield, A.P.; Thomas, M.G.; Wright, N.A. Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 2000, 47, 792–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.E.; Jakobsson, H.E.; Holmén-Larsson, J.; Schütte, A.; Ermund, A.; Rodríguez-Piñeiro, A.M.; Arike, L.; Wising, C.; Svensson, F.; Bäckhed, F.; et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 2015, 18, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Mathivanan, N.; Goyal, A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed. Pharmacother. 2017, 93, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Darvish Alipour Astaneh, S.; Rasooli, I.; Mousavi Gargari, S.L. The role of filamentous hemagglutinin adhesin in adherence and biofilm formation in Acinetobacter baumannii ATCC19606(T). Microb. Pathog. 2014, 74, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, O.; Vejborg, R.M.; Klemm, P. The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun. 2005, 73, 1954–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronander, E.; Brant, M.; Eriksson, E.; Mörgelin, M.; Hallgren, O.; Westergren-Thorsson, G.; Forsgren, A.; Riesbeck, K. Nontypeable Haemophilus influenzae adhesin protein E: Characterization and biological activity. J. Infect Dis. 2009, 199, 522–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, M.C.; Christodoulides, M. The biology of Neisseria adhesins. Biology (Basel) 2013, 2, 1054–1109. [Google Scholar] [CrossRef] [Green Version]
- Kisiela, D.I.; Chattopadhyay, S.; Libby, S.J.; Karlinsey, J.E.; Fang, F.C.; Tchesnokova, V.; Kramer, J.J.; Beskhlebnaya, V.; Samadpour, M.; Grzymajlo, K.; et al. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog. 2012, 8, e1002733. [Google Scholar] [CrossRef] [Green Version]
- Vuong, C.; Voyich, J.M.; Fischer, E.R.; Braughton, K.R.; Whitney, A.R.; DeLeo, F.R.; Otto, M. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 2004, 6, 269–275. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, J.J., Jr.; Boineau, F.G. Hemolytic-uremic syndrome. Pediatr. Rev. 2001, 22, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, J.; Gomez, T.; Doyle, M.P.; Wells, J.G.; Zhao, T.; Tauxe, R.V.; Griffin, P.M. Lessons from a large outbreak of Escherichia coli O157:H7 infections: Insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol. Infect 1999, 122, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.; Youngster, I.; McAdam, A.J. Shiga Toxin Producing Escherichia coli. Clin. Lab. Med. 2015, 35, 247–272. [Google Scholar] [CrossRef] [PubMed]
- Plunkett, G., 3rd; Rose, D.J.; Durfee, T.J.; Blattner, F.R. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 1999, 181, 1767–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, N.T.; Plunkett, G., 3rd; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayhew, G.F.; Evans, P.S.; Gregor, J.; Kirkpatrick, H.A.; et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001, 409, 529–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshima, K.; Toh, H.; Ogura, Y.; Sasamoto, H.; Morita, H.; Park, S.H.; Ooka, T.; Iyoda, S.; Taylor, T.D.; Hayashi, T.; et al. Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Res. 2008, 15, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Palomino, C.; Marin, E.; Fernandez, L.A. The fimbrial usher FimD follows the SurA-BamB pathway for its assembly in the outer membrane of Escherichia coli. J. Bacteriol. 2011, 193, 5222–5230. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.D.; Deisenhofer, J. TonB-dependent receptors-structural perspectives. Biochim. Biophys. Acta 2002, 1565, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Confer, A.W.; Ayalew, S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Vet. Microbiol. 2013, 163, 207–222. [Google Scholar] [CrossRef]
- Hejair, H.M.A.; Zhu, Y.; Ma, J.; Zhang, Y.; Pan, Z.; Zhang, W.; Yao, H. Functional role of ompF and ompC in pathogenesis of avian pathogenic Escherichia coli. Microb. Pathog. 2017, 107, 29–37. [Google Scholar] [CrossRef]
- Knowles, T.J.; Scott-Tucker, A.; Overduin, M.; Henderson, I.R. Membrane protein architects: The role of the BAM conplex in outer membrane protein assembly. Nat. Rev. Microbiol. 2009, 7, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Garrido, J.; Casadesus, J. The DamX protein of Escherichia coli and Salmonella enterica. Gut Microbes 2010, 1, 285–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eguchi, Y.; Utsumi, R. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. J. Bacteriol. 2014, 196, 3140–3149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, H.; Fsihi, H.; Kottwitz, B.; Mycind, B.; Bremer, E. Identification of a segment of the Escherichia coli Tsx protein that functions as a bacteriophage receptor area. J. Bacteriol. 1993, 175, 2809–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Tran, A.X.; Trent, M.S.; Whitfield, C. The LtpA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J. Biol. Chem. 2008, 283, 20342–20349. [Google Scholar] [CrossRef] [Green Version]
- Ferrières, L.; Aslam, S.N.; Cooper, R.M.; Clarke, D.J. The yjbEFGH locus in Escherichia coli K-12 is an operon encoding proteins involved in exopolysaccharide production. Microbiology 2007, 153, 1070–1080. [Google Scholar] [CrossRef] [Green Version]
- Katani, R.; Cote, R.; Kudva, I.T.; DebRoy, C.; Arthur, T.M.; Kapur, V. Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7. PLoS ONE 2017, 12, e0182940. [Google Scholar] [CrossRef] [Green Version]
- Weiner, J.H.; Li, L. Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. Biochim. Biophys. Acta 2008, 1778, 1698–1713. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Yoon, J.W.; Kim, C.-H.; Park, M.-S.; Cho, S.-H. Repression of flagella motility in enterohemorrhagic Escherichia coli O157:H7 by mucin components. Biochem. Biophys. Res. Commun. 2012, 423, 789–792. [Google Scholar] [CrossRef]
- Lomize, A.L.; Lomize, M.A.; Krolicki, S.R.; Pogozheva, I.D. Membranome: A database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res. 2017, 45, D250–D255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.L.; Kohler, B.; Oswald, E.; Beutin, L.; Karch, H.; Morabito, S.; Caprioli, A.; Suerbaum, S.; Schmidt, H. Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains. J. Clin. Microbiol. 2002, 40, 4486–4492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesta, B.; Spraggon, G.; Alteri, C.; Moriel, D.G.; Rosini, R.; Veggi, D.; Smith, S.; Bertoldi, I.; Pastorello, I.; Ferlenghi, I.; et al. FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. MBio 2012, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClelland, M.; Sanderson, K.E.; Spieth, J.; Clifton, S.W.; Latreille, P.; Courtney, L.; Porwollik, S.; Ali, J.; Dante, M.; Du, F.; et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413, 852–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latif, H.; Li, H.J.; Charusanti, P.; Palsson, B.O.; Aziz, R.K. A Gapless, Unambiguous Genome Sequence of the Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.; Kim, J.B.; Bak, Y.S.; Yu, Y.B.; Kwon, K.S.; Kim, W.; Cho, S.H. Draft genome sequence of non-shiga toxin-producing Escherichia coli O157 NCCP15738. Gut Pathog. 2016, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Zhao, F.; Igori, D.; Oh, K.H.; Kim, S.Y.; Kang, S.G.; Kim, B.K.; Kwon, S.K.; Lee, C.H.; Song, J.Y.; et al. Genome sequence of the hemolytic-uremic syndrome-causing strain Escherichia coli NCCP15647. J. Bacteriol. 2012, 194, 3747–3748. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Yoo, R.H.; Jang, S.Y.; Seong, W.K.; Kim, S.Y.; Jeong, H.; Kang, S.G.; Kim, B.K.; Kwon, S.K.; Lee, C.H.; et al. Genome sequence of enterohemorrhagic Escherichia coli NCCP15658. J. Bacteriol. 2012, 194, 3749–3750. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.; Kim, W.; Cho, S.H. Comparative genomic analysis of Shiga toxin-producing and non-Shiga toxin-producing Escherichia coli O157 isolated from outbreaks in Korea. Gut Pathog. 2017, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.J.; Kwon, S.K.; Cho, S.H.; Kim, J.F. Genome sequences of the Shiga-like toxin-producing Escherichia coli NCCP15655 and NCCP15656. Gut Pathog. 2015, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.; Bak, Y.S.; Jung, Y.H.; Yu, Y.B.; Choi, J.T.; Kim, C.H.; Kim, J.B.; Kim, W.; Cho, S.H. Whole-genome sequencing and comparative genomic analysis of Escherichia coli O91 strains isolated from symptomatic and asymptomatic human carriers. Gut Pathog. 2016, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, H.; Engelbrecht, J.; von Heijne, G.; Brunak, S. Defining a similarity threshold for a functional protein sequence pattern: The signal peptide cleavage site. Proteins 1996, 24, 165–177. [Google Scholar] [CrossRef]
- Juncker, A.S.; Willenbrock, H.; Von Heijne, G.; Brunak, S.; Nielsen, H.; Krogh, A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003, 12, 1652–1662. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Qi, T.; Qiu, T.; Zhang, Q.; Tang, K.; Fan, Y.; Qiu, J.; Wu, D.; Zhang, W.; Chen, Y.; Gao, J.; et al. SEPPA 2.0--more refined server to predict spatial epitope considering species of immune host and subcellular localization of protein antigen. Nucleic Acids Res. 2014, 42, W59–W63. [Google Scholar] [CrossRef]
Isolation Country | Count |
---|---|
Argentina | 6 |
Brazil | 1 |
Canada | 1 |
Denmark | 2 |
France | 1 |
Germany | 8 |
Japan | 3 |
Netherlands | 128 |
Norway | 4 |
South Korea | 8 |
Sweden | 2 |
United Kingdom | 10 |
USA | 141 |
Not identified | 2 |
Reference (EDL933) | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-H.; Lee, K.M.; Kim, C.-H.; Kim, S.S. Construction of a Lectin–Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis. Int. J. Mol. Sci. 2020, 21, 2681. https://doi.org/10.3390/ijms21082681
Cho S-H, Lee KM, Kim C-H, Kim SS. Construction of a Lectin–Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis. International Journal of Molecular Sciences. 2020; 21(8):2681. https://doi.org/10.3390/ijms21082681
Chicago/Turabian StyleCho, Seung-Hak, Kang Mo Lee, Cheorl-Ho Kim, and Sung Soon Kim. 2020. "Construction of a Lectin–Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis" International Journal of Molecular Sciences 21, no. 8: 2681. https://doi.org/10.3390/ijms21082681
APA StyleCho, S. -H., Lee, K. M., Kim, C. -H., & Kim, S. S. (2020). Construction of a Lectin–Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis. International Journal of Molecular Sciences, 21(8), 2681. https://doi.org/10.3390/ijms21082681