MTHFR and VDR Polymorphisms Improve the Prognostic Value of MYCN Status on Overall Survival in Neuroblastoma Patients
Abstract
:1. Introduction
2. Results
2.1. Genotyping and Comparison of Observed Variant Frequencies with 1000 Genomes Data
2.2. SNPs Related to the Toxicity Caused by Chemotherapeutic Drugs During Induction Treatment
2.3. SNPs Related to Response to Induction Therapy
2.4. SNPs Related to OS and EFS
3. Discussion
3.1. SNP Variants Differentially Represented
3.2. Toxicity Analysis
3.3. Response to Rapid COJEC Induction Therapy
3.4. Efficacy in Terms of Survival
4. Materials and Methods
4.1. Genotyping and Comparison of Observed Variant Frequencies with 1000 Genomes Data
4.2. SNPs Related to the Toxicity Caused by Chemotherapeutic Drugs During Induction Treatment
4.3. SNPs Related to Response to Induction Therapy
4.4. SNPs Related to OS and EFS
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A1. Genotyping and Comparison of Observed Variant Frequencies with 1000 Genomes Data
Gene | SNP | Genotype | OF | EF | p-Value | Gene | SNP | Genotype | OF | EF | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
ABCC1 | rs45511401 | GG | 0.92 | 0.94 | 0.033 | NOS3 | rs2070744 | CC | 0.11 | 0.24 | 0.042 |
GT | 0.03 | 0.07 | CT | 0.60 | 0.51 | ||||||
TT | 0.05 | 0.00 | TT | 0.30 | 0.39 | ||||||
AKT1 | rs1130214 | CC | 0.06 | 0.47 | <0.001 | NQO1 | rs1800566 | GG | 0.08 | 0.60 | <0.001 |
CA | 0.37 | 0.15 | GA | 0.36 | 0.36 | ||||||
AA | 0.57 | 0.38 | AA | 0.56 | 0.04 | ||||||
BCL2 | rs3211371 | CC | 0.00 | 0.80 | <0.001 | NR1I2 | rs2494752 | AA | 0.05 | 0.00 | 0.041 |
CT | 0.91 | 0.20 | AG | 0.14 | 0.19 | ||||||
TT | 0.09 | 0.00 | GG | 0.81 | 0.81 | ||||||
CBR1 | rs20572 | CC | 0.81 | 0.92 | 0.042 | OPMR1 | rs544093 | GG | 0.01 | 0.81 | <0.001 |
CT | 0.16 | 0.08 | GT | 0.20 | 0.19 | ||||||
TT | 0.03 | 0.00 | TT | 0.80 | 0.00 | ||||||
EIF3A | rs3745274 | GG | 0.00 | 0.65 | <0.001 | SHMT1 | rs1979277 | GG | 0.68 | 0.48 | 0.001 |
GT | 0.61 | 0.28 | GA | 0.33 | 0.44 | ||||||
TT | 0.39 | 0.07 | AA | 0.00 | 0.08 | ||||||
ERCC1 | rs3212986 | CC | 0.04 | 0.60 | <0.001 | SLCO1B1 | rs4149056 | TT | 0.72 | 0.78 | 0.011 |
CA | 0.36 | 0.34 | TC | 0.18 | 0.22 | ||||||
AA | 0.00 | 0.07 | CC | 0.11 | 0.01 | ||||||
FCGR2A | rs1801274 | AA | 0.00 | 0.27 | 0.001 | SLIT1 | rs2784917 | AA | 0.15 | 0.05 | <0.001 |
AG | 0.30 | 0.51 | AG | 0.21 | 0.27 | ||||||
GG | 0.70 | 0.22 | GG | 0.64 | 0.68 | ||||||
GSTA1 | rs3957357 | AA | 0.00 | 0.21 | <0.001 | TP53 | rs1042522 | GG | 0.02 | 0.08 | <0.001 |
AG | 0.72 | 0.43 | GC | 0.86 | 0.45 | ||||||
GG | 0.28 | 0.36 | CC | 0.12 | 0.45 | ||||||
MTHFR | rs1801133 | GG | 0.19 | 0.28 | 0.008 | XRCC1 | rs25487 | TT | 0.47 | 0.18 | <0.001 |
GA | 0.45 | 0.55 | TC | 0.42 | 0.49 | ||||||
AA | 0.36 | 0.17 | CC | 0.11 | 0.34 |
Appendix A2. Overall Survival of the Whole Cohort, According to MYCN Status
References
- Tolbert, V.P.; Coggins, G.E.; Maris, J.M. Genetic susceptibility to neuroblastoma. Curr. Opin. Genet. Dev. 2017, 42, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hero, B.; Simon, T.; Spitz, R.; Ernestus, K.; Gnekow, A.K.; Scheel-Walter, H.G.; Schwabe, D.; Schilling, F.H.; Benz-Bohm, G.; Berthold, F. Localized infant neuroblastomas often show spontaneous regression: Results of the prospective trials NB95-S and NB97. J. Clin. Oncol. 2008, 26, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Lee, J.; Guo, F.; Shin, J.; Perez-atayde, A.R.; Kutok, J.L.; Rodig, S.J.; Neuberg, D.S.; Helman, D.; Feng, H.; et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell 2013, 21, 362–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohn, S.L.; Pearson, A.D.J.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; et al. The International Neuroblastoma Risk Group (INRG) classification system: An INRG task force report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Yaniv, I.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C.; et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1617–1629. [Google Scholar] [CrossRef]
- Sokol, E.; Desai, A. The Evolution of Risk Classification for Neuroblastoma. Children 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladenstein, R.; Valteau-Couanet, D.; Brock, P.; Yaniv, I.; Castel, V.; Laureys, G.; Malis, J.; Papadakis, V.; Lacerda, A.; Ruud, E.; et al. Randomized trial of prophylactic granulocyte colony-stimulating factor during rapid COJEC induction in pediatric patients with high-risk neuroblastoma: The European HR-NBL1/SIOPEN study. J. Clin. Oncol. 2010, 28, 3516–3524. [Google Scholar] [CrossRef]
- Peinemann, F.; Van Dalen, E.C.; Berthold, F. Rapid COJEC Induction Therapy for High-risk Neuroblastoma Patients - Cochrane Review. Klin. Padiatr. 2016, 228, 130–134. [Google Scholar] [CrossRef]
- Peinemann, F.; Da, K.; Ec, V.D.; Berthold, F. Rapid COJEC versus standard induction therapies for high-risk neuroblastoma. Cochrane Database Syst. Rev. 2015, 5. [Google Scholar] [CrossRef]
- Conyers, R.; Devaraja, S.; Elliott, D. Systematic review of pharmacogenomics and adverse drug reactions in paediatric oncology patients. Pediatr. Blood Cancer 2018, 65, e26937. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.J.D.; Visscher, H.; Rod Rassekh, S.; Castro-Pastrana, L.I.; Shereck, E.; Carleton, B.; Hayden, M.R. Pharmacogenomics of serious adverse drug reactions in pediatric oncology. J. Popul. Ther. Clin. Pharmacol. 2011, 18, 134–151. [Google Scholar]
- Mlakar, V.; Curtis, P.H.D.; Uppugunduri, C.R.S.; Krajinovic, M.; Ansari, M. Pharmacogenomics in pediatric oncology: Review of gene—Drug associations for clinical use. Int. J. Mol. Sci. 2016, 17, 1502. [Google Scholar] [CrossRef] [PubMed]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1417. [Google Scholar] [CrossRef] [Green Version]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Olivera, G.; Sendra, L.; Herrero, M.J.; Berlanga, P.; Gargallo, P.; Yáñez, Y.; Urtasun, A.; Font de Mora, J.; Castel, V.; Cañete, A.; et al. Pharmacogenetics implementation in the clinics: Information and guidelines for germline variants. Cancer Drug Resist. 2019, 2, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Ensembl Homo Sapiens—Ensembl Genome Browser 94. Available online: https://www.ensembl.org/Homo_sapiens/Info/Index?db=core (accessed on 23 January 2019).
- Delloye-Bourgeois, C.; Bertin, L.; Thoinet, K.; Jarrosson, L.; Kindbeiter, K.; Buffet, T.; Tauszig-Delamasure, S.; Bozon, M.; Marabelle, A.; Combaret, V.; et al. Microenvironment-Driven Shift of Cohesion/Detachment Balance within Tumors Induces a Switch toward Metastasis in Neuroblastoma. Cancer Cell 2017, 32, 427–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, D.; Cresti, N.; Bray, J.; Sludden, J.; Griffin, M.J.; Hawsawi, N.M.; Famie, E.; Mould, E.V.A.; Verrill, M.W.; May, F.E.B.; et al. Two minor NQO1 and NQO2 alleles predict poor response of breast cancer patients to adjuvant doxorubicin and cyclophosphamide therapy. Pharmacogenet. Genom. 2011, 21, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, P.; Fontana, A.; Fioravanti, A.; Di Desidero, T.; Galli, L.; Derosa, L.; Canu, B.; Marconcini, R.; Biasco, E.; Solini, A.; et al. VEGF-A polymorphisms predict progression-free survival among advanced castration-resistant prostate cancer patients treated with metronomic cyclophosphamide. Br. J. Cancer 2013, 109, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Caronia, D.; Patiño-Garcia, A.; Peréz-Martínez, A.; Pita, G.; Moreno, L.T.; Zalacain-Díez, M.; Molina, B.; Colmenero, I.; Sierrasesúmaga, L.; Benítez, J.; et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: A pharmacogenetic study. PLoS ONE 2011, 6, e26091. [Google Scholar] [CrossRef] [Green Version]
- Reimer, T.; Kempert, S.; Gerber, B.; Thiesen, H.J.; Hartmann, S.; Koczan, D. SLCO1B1*5 polymorphism (rs4149056) is associated with chemotherapy-induced amenorrhea in premenopausal women with breast cancer: A prospective cohort study. BMC Cancer 2016, 16, 337. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Goh, B.C.; Wong, C.I.; Sukri, N.; Lim, S.E.; Tan, S.H.; Guo, J.Y.; Lim, R.; Yap, H.L.; Khoo, Y.M.; et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. Pharmacogenet. Genom. 2008, 18, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Bidadi, B.; Liu, D.; Kalari, K.R.; Rubner, M.; Hein, A.; Beckmann, M.W.; Rack, B.; Janni, W.; Fasching, P.A.; Weinshilboum, R.M.; et al. Pathway-based analysis of genome-wide association data identified SNPs in HMMR as biomarker for chemotherapy- induced neutropenia in breast cancer patients. Front. Pharmacol. 2018, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, H.; Miyamoto, K.I.; Li, B.; Taketani, Y.; Kitano, M.; Inoue, Y.; Morita, K.; Pike, J.W.; Takeda, E. The caudal-related homeodomain protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine. J. Bone Miner. Res. 1999, 14, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Drocourt, L.; Ourlin, J.C.; Pascussi, J.M.; Maurel, P.; Vilarem, M.J. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J. Biol. Chem. 2002, 277, 25125–25132. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.S.; Duan, S.; Bleibel, W.K.; Kistner, E.O.; Zhang, W.; Clark, T.A.; Chen, T.X.; Schweitzer, A.C.; Blume, J.E.; Cox, N.J.; et al. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc. Natl. Acad. Sci. USA 2007, 104, 9758–9763. [Google Scholar] [CrossRef] [Green Version]
- Glynn, S.A.; Boersma, B.J.; Howe, T.M.; Edvardsen, H.; Geisler, S.B.; Goodman, J.E.; Ridnour, L.A.; Lønning, P.E.; Børresen-Dale, A.L.; Naume, B.; et al. A mitochondrial target sequence polymorphism in manganese superoxide dismutase predicts inferior survival in breast cancer patients treated with cyclophosphamide. Clin. Cancer Res. 2009, 15, 4165–4173. [Google Scholar] [CrossRef] [Green Version]
- Patiño-García, A.; Zalacaín, M.; Marrodán, L.; San-Julián, M.; Sierrasesúmaga, L. Methotrexate in Pediatric Osteosarcoma: Response and Toxicity in Relation to Genetic Polymorphisms and Dihydrofolate Reductase and Reduced Folate Carrier 1 Expression. J. Pediatr. 2009, 154, 688–693. [Google Scholar] [CrossRef]
- Vagace, J.M.; Caceres-Marzal, C.; Jimenez, M.; Casado, M.S.; De Murillo, S.G.; Gervasini, G. Methotrexate-induced subacute neurotoxicity in a child with acute lymphoblastic leukemia carrying genetic polymorphisms related to folate homeostasis. Am. J. Hematol. 2011, 86, 98–101. [Google Scholar] [CrossRef]
- Spyridopoulou, K.P.; Dimou, N.L.; Hamodrakas, S.J.; Bagos, P.G. Methylene tetrahydrofolate reductase gene polymorphisms and their association with methotrexate toxicity: A meta-analysis. Pharmacogenet. Genom. 2012, 22, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.S.; Wong, P.W.K.; Susmano, A.; Sora, J.; Norusis, M.; Ruggie, N. Thermolabile methylenetetrahydrofolate reductase: An inherited risk factor for coronary artery disease. Am. J. Hum. Genet. 1991, 48, 536–545. [Google Scholar]
- Hsu, C.L.; Chang, H.Y.; Chang, J.Y.; Hsu, W.M.; Huang, H.C.; Juan, H.F. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 2016, 7, 36293–36310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svergun, N.; Klymnyuk, G.; Khranovska, N.; Skachkova, O.; Ionkina, N.; Inomistova, M.; Pavlyk, S.; Shaida, E. Association of the MTHFR C677T gene polymorphism with childhood neuroblastoma susceptibility and progression. In Proceedings of the ANR 2014 Congress Advanced in Neuroblastoma Research, Cologne, Germany, 13–16 May 2014; Available online: https://www.researchgate.net/publication/299388427_Association_of_the_MTHFR_C677T_gene_polymorphism_with_childhood_neuroblastoma_susceptibility_and_progression (accessed on 10 February 2020).
- Pinto, N.; Naranjo, A.; Hibbitts, E.; Kreissman, S.G.; Granger, M.M.; Irwin, M.S.; Bagatell, R.; London, W.B.; Greengard, E.G.; Park, J.R.; et al. Predictors of differential response to induction therapy in high-risk neuroblastoma: A report from the Children’s Oncology Group (COG). Eur. J. Cancer 2019, 112, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Monclair, T.; Brodeur, G.M.; Ambros, P.F.; Brisse, H.J.; Cecchetto, G.; Holmes, K.; Kaneko, M.; London, W.B.; Matthay, K.K.; Nuchtern, J.G.; et al. The International Neuroblastoma Risk Group (INRG) staging system: An INRG Task Force report. J. Clin. Oncol. 2009, 27, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Ambros, I.M.; Benard, J.; Boavida, M.; Bown, N.; Caron, H.; Combaret, V.; Couturier, J.; Darnfors, C.; Delattre, O.; Freeman-Edward, J.; et al. Quality assessment of genetic markers used for therapy stratification. J. Clin. Oncol. 2003, 21, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Xu, S.; Cai, X. Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 2015, 114, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.R.; Bagatell, R.; Cohn, S.L.; Pearson, A.D.; Villablanca, J.G.; Berthold, F.; Burchill, S.; Boubaker, A.; McHugh, K.; Nuchtern, J.G.; et al. Revisions to the international neuroblastoma response criteria: A consensus statement from the National Cancer Institute clinical trials planning meeting. J. Clin. Oncol. 2017, 35, 2580–2587. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Statist. Soc. 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 2011, 39, 1–13. [Google Scholar] [CrossRef]
Variable | n = 95 | Variable | n = 95 |
---|---|---|---|
Mean (SD)/n (%) | Mean (SD)/n (%) | ||
Median (1st, 3rd Q.) | Median (1st, 3rd Q.) | ||
Overall survival (months) | State at last follow-up | ||
59.72 (57.78) | Alive | 52 (54.74%) | |
42.97 (17.77, 77.65) | Exitus | 43 (45.26%) | |
Progression-free survival (months) | Metastasis | ||
41.57 (50.58) | None | 30 (31.58%) | |
22.97 (15.03, 48.97) | Yes | 65 (68.42%) | |
Age at initial diagnosis (months) | MYCN status | ||
39.55 (37.14) | Amplified | 29 (30.53%) | |
32.3 (14.6, 49) | Normal | 66 (69.47%) | |
Relapse | INRG Stage | ||
No | 32 (33.68%) | L2 | 30 (31.58%) |
Yes | 63 (66.32%) | M | 61 (64.21%) |
Ms | 4 (4.21%) |
Gene | SNP | Results | Involved Candidate Drug * | ||
---|---|---|---|---|---|
Genotype | OR | Association | |||
mCR vs non mCR | |||||
ABCC2 | rs3740066 | GG | 1.79 | ↑ efficacy | Platinum-compounds |
MAP3K1 | rs726501 | AG | 2.87 | ↑ efficacy | |
NQO2 | rs1143684 | TT | 1.14 | ↑ efficacy | Cyclophosphamide |
VEGFA | rs2010963 | GG | 1.23 | ↑ efficacy | |
ABCB1 | rs10276036 | TT | 0.67 | ↓ efficacy | |
SLCO1B1 | rs4149056 | TC | 0.64 | ↓ efficacy | |
CBR3 | rs8133052 | GG | 0.53 | ↓ efficacy | |
VDR | rs1544410 | GA | 0.68 | ↓ efficacy | Etoposide |
Gene | SNP | Results | Involved Candidate Drug * | ||
---|---|---|---|---|---|
Genotype | HR | Association | |||
OS | |||||
MTHFR | rs1801133 | TC | 0.65 | ↑ OS | Platinum-compounds Cyclophosphamide |
Unidentified | rs7186128 | GG | 0.89 | ↑ OS | |
VDR | rs1544410 | GA | 1.39 | ↓ OS | Etoposide |
EFS | |||||
ABCB1 | rs2032582 | GA | 0.48 | ↑ EFS | Cyclophosphamide |
SOD2 | rs4880 | TC | 0.72 | ↑ EFS | |
NR1I2 | rs3814058 | TT | 0.62 | ↑ EFS | Etoposide |
ABCC1 | rs45511401 | GT | 1.79 | ↓ EFS | |
VDR | rs1544410 | GA | 1.75 | ↓ EFS | |
Unidentified | rs6539870 | GG | 1.61 | ↓ EFS |
Genes | SNPs | Genes | SNPs |
---|---|---|---|
ABCB1 | rs1045642 | FCGR3A | rs396991 |
rs1128503 | GSTA1 | rs3957357 | |
rs2032582 | GSTP1 | rs1695 | |
rs4148737 | MAD1L1 | rs1801368 | |
rs10276036 | MAP3K1 | rs726501 | |
ABCC1 | rs45511401 | MTHFR | rs1801131 |
ABCC2 | rs2273697 | rs1801133 | |
rs3740066 | MTR | rs1805087 | |
rs8187710 | NCF4 | rs1883112 | |
rs17222723 | NOS3 | rs1799983 | |
ABCC3 | rs4148416 | rs2070744 | |
ABCC4 | rs9561778 | NQO1 | rs1800566 |
rs16950650 | NQO2 | rs1143684 | |
ABCG2 | rs2231137 | NR1L2 | rs2276707 |
rs2231142 | rs3814058 | ||
AKT1 | rs1130214 | OPMR1 | rs544093 |
rs2494752 | RAC2 | rs13058338 | |
ALDH1A1 | rs6151031 | SEMA3C | rs7779029 |
BAIAP3 | rs9597 | SHMT1 | rs1979277 |
BCL2 | rs2849380 | SLCO1B1 | rs2306283 |
C8orf34 | rs1517114 | rs4149015 | |
CBR1 | rs9024 | rs4149056 | |
rs20572 | SLC19A1 | rs12659 | |
CBR3 | rs1056892 | rs1051266 | |
rs8133052 | rs7851395 | ||
COMT | rs9332377 | SLC22A16 | rs6907567 |
CYBA | rs4673 | rs714368 | |
CYP2B6 | rs2279343 | rs723685 | |
rs3211371 | rs12210538 | ||
rs3745274 | SLC31A1 | rs7851395 | |
rs8192709 | SLIT1 | rs2784917 | |
rs12721655 | SOD2 | rs4880 | |
CYP2C19 | rs4244285 | SOX10 | rs139887 |
CYP2E1 | rs2070676 | TOP1 | rs6072262 |
rs6413432 | TP53 | rs1042522 | |
CYP3A4 | rs2740574 | TPMT | rs12201199 |
CYP3A5 | rs776746 | UGT1A1 | rs4124874 |
rs10264272 | rs4148323 | ||
rs41303343 | UGT1A9 | rs3832043 | |
DCBLD1 | rs17574269 | VDR | rs731236 |
DSCAM | rs9981861 | rs7975232 | |
DYNC2H1 | rs716274 | rs1544410 | |
EGFR | rs121434568 | VEGFA | rs2010963 |
EIF3A | rs3740556 | XPC | rs2228001 |
ERCC1 | rs11615 | XRCC1 | rs25487 |
rs3212986 | Unidentified | rs879207 | |
ERCC2 | rs13181 | rs6539870 | |
rs1799793 | rs7186128 | ||
FCGR2A | rs1801274 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivera, G.G.; Yáñez, Y.; Gargallo, P.; Sendra, L.; Aliño, S.F.; Segura, V.; Sanz, M.Á.; Cañete, A.; Castel, V.; Font De Mora, J.; et al. MTHFR and VDR Polymorphisms Improve the Prognostic Value of MYCN Status on Overall Survival in Neuroblastoma Patients. Int. J. Mol. Sci. 2020, 21, 2714. https://doi.org/10.3390/ijms21082714
Olivera GG, Yáñez Y, Gargallo P, Sendra L, Aliño SF, Segura V, Sanz MÁ, Cañete A, Castel V, Font De Mora J, et al. MTHFR and VDR Polymorphisms Improve the Prognostic Value of MYCN Status on Overall Survival in Neuroblastoma Patients. International Journal of Molecular Sciences. 2020; 21(8):2714. https://doi.org/10.3390/ijms21082714
Chicago/Turabian StyleOlivera, Gladys G., Yania Yáñez, Pablo Gargallo, Luis Sendra, Salvador F. Aliño, Vanessa Segura, Miguel Ángel Sanz, Adela Cañete, Victoria Castel, Jaime Font De Mora, and et al. 2020. "MTHFR and VDR Polymorphisms Improve the Prognostic Value of MYCN Status on Overall Survival in Neuroblastoma Patients" International Journal of Molecular Sciences 21, no. 8: 2714. https://doi.org/10.3390/ijms21082714
APA StyleOlivera, G. G., Yáñez, Y., Gargallo, P., Sendra, L., Aliño, S. F., Segura, V., Sanz, M. Á., Cañete, A., Castel, V., Font De Mora, J., Hervás, D., Berlanga, P., & Herrero, M. J. (2020). MTHFR and VDR Polymorphisms Improve the Prognostic Value of MYCN Status on Overall Survival in Neuroblastoma Patients. International Journal of Molecular Sciences, 21(8), 2714. https://doi.org/10.3390/ijms21082714