The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway
Abstract
:1. Introduction
2. Genomic Organization and Characteristic Structural Features of KLF11
3. KLF11, a Context-Dependent Transcriptional Repressor or Activator
4. KLF11 Contributes to the Regulation of Normal Cell Growth
5. The Relation of KLF11 to Cancers
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AKT | protein kinase B (PKB) |
AhR | aryl hydrocarbon receptor |
BC | Breast Cancer |
cDNA | complementary Deoxyribonucleic Acid |
CHO cells | Chinese hamster ovary cells |
COX1 | cyclooxygenase-1 |
COX2 | cyclooxygenase-2 |
cPLA2α | cytosolic phospholipase A2α |
CPTAC | Clinical Proteomics Tumor Analysis Consortium |
CtBP | C-Terminal Binding Protein |
DNA | Deoxyribonucleic Acid |
DNMT | DNA methyl-transferase |
DNMTis | DNA methyltranferase inhibitors |
EGFR | Epidermal Growth Factor Receptor |
EMT | Epithelial–mesenchymal transition |
EP3 | prostaglandin E2 receptor 3 |
ER | Estrogen receptor |
ERK | extracellular signal–regulated kinases |
FKLF | fetal-beta like globin activating krüppel-like factor |
HDACis | histone deacetylase inhibitors |
KLF11 | Krüppel like factors 11 |
LCRs | locus control regions |
LMU | Ludwig Maximilians University |
MAPK | Mitogen-activated protein kinase |
MEK | Mitogen-activated protein kinase kinase |
miRNA | micro Ribonucleic Acid |
MODY7 | maturity-onset diabetes of the young type 7 |
NAC | neo-adjuvant chemotherapy |
PGE2 | Prostaglandin E2 |
PI3K | phosphatidylinositol 3 kinase |
PPAR | peroxisome proliferator-activated receptor |
SIN3A | SIN3 transcription regulator homologue A |
SID | mSin3 interaction domain |
SMAD | Mothers against decapentaplegic homolog |
TFs | transcriptional factors |
TGF-β | Transforming growth factor-beta |
TIEG | TGF-β inducible early gene |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Kaczynski, J.; Cook, T.; Urrutia, R. Sp1- and Kruppel-like transcription factors. Genome Biol. 2003, 4, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, I.J.; Bieker, J.J. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol. Cell Biol. 1993, 13, 2776–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnell, B.B.; Yang, V.W. Mammalian Kruppel-like factors in health and diseases. Physiol. Rev. 2010, 90, 1337–1381. [Google Scholar] [CrossRef] [PubMed]
- Tetreault, M.P.; Yang, Y.; Katz, J.P. Kruppel-like factors in cancer. Nat. Rev. Cancer 2013, 13, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, G.; Feng, L.; Lu, H.; Wang, X. Kruppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed. Pharmacother. 2019, 123, 109778. [Google Scholar] [CrossRef]
- Black, A.R.; Black, J.D.; Azizkhan-Clifford, J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell Physiol. 2001, 188, 143–160. [Google Scholar] [CrossRef]
- Kadonaga, J.T.; Tjian, R. Affinity purification of sequence-specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 1986, 83, 5889–5893. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Calogero, A.; Ragona, G.; Adamson, E.; Mercola, D. EGR-1, the reluctant suppression factor: EGR-1 is known to function in the regulation of growth, differentiation, and also has significant tumor suppressor activity and a mechanism involving the induction of TGF-beta1 is postulated to account for this suppressor activity. Crit. Rev. Oncog. 1996, 7, 101–125. [Google Scholar]
- Cook, T.; Gebelein, B.; Urrutia, R. Sp1 and its likes: Biochemical and functional predictions for a growing family of zinc finger transcription factors. Ann. N. Y. Acad. Sci. 1999, 880, 94–102. [Google Scholar] [CrossRef]
- Bureau, C.; Calogero, A.; Ragona, G.; Adamson, E.; Mercola, D. Expression and Function of Kruppel Like-Factors (KLF) in Carcinogenesis. Curr. Genom. 2009, 10, 353–360. [Google Scholar] [CrossRef]
- Fernandez-Zapico, M.E.; Lomberk, G.A.; Tsuji, S.; Demars, C.J.; Bardsley, M.R.; Lin, Y.; Almada, L.L.; Han, J.; Mukhopadhyay, D.; Ordog, T.; et al. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem. J. 2011, 435, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamynathan, S.K. Kruppel-like factors: Three fingers in control. Hum. Genom. 2010, 4, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Tau, K.R.; Hefferan, T.E.; Waters, K.M.; Robinson, J.A.; Subramaniam, M.; Riggs, B.L.; Spelsberg, T.C. Estrogen regulation of a transforming growth factor-beta inducible early gene that inhibits deoxyribonucleic acid synthesis in human osteoblasts. Endocrinology 1998, 139, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, I.; Imoto, M.; Adjei, P.N.; Gores, G.J.; Subramaniam, M.; Spelsberg, T.C.; Urrutia, R. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J. Clin. Investig. 1997, 99, 2365–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, T.; Gebelein, B.; Mesa, K.; Mladek, A.; Urrutia, R. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J. Biol. Chem. 1998, 273, 25929–25936. [Google Scholar] [CrossRef] [Green Version]
- Sogawa, K.; Kikuchi, Y.; Imataka, H.; Fujii-Kuriyama, Y. Comparison of DNA-binding properties between BTEB and Sp1. J. Biochem. 1993, 114, 605–609. [Google Scholar] [CrossRef]
- Anderson, K.P.; Kern, C.B.; Crable, S.C.; Lingrel, J.B. Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: Identification of a new multigene family. Mol. Cell. Biol. 1995, 15, 5957–5965. [Google Scholar] [CrossRef] [Green Version]
- Gerber, H.P.; Seipel, K.; Georgiev, O.; Hofferer, M.; Hug, M.; Rusconi, S.; Schaffner, W. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 1994, 263, 808–811. [Google Scholar] [CrossRef]
- Alevizopoulos, A.; Mermod, N. Antagonistic regulation of a proline-rich transcription factor by transforming growth factor beta and tumor necrosis factor alpha. J. Biol. Chem. 1996, 271, 29672–29681. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Kobayashi, A.; Gotoh, O.; Ohkuma, Y.; Fujii-Kuriyama, Y.; Sogawa, K. Transcriptional activation domain of human BTEB2, a GC box-binding factor. J. Biochem. 1997, 121, 389–396. [Google Scholar] [CrossRef]
- Kaczynski, J.; Zhang, J.-S.; Ellenrieder, V.; Conley, A.; Duenes, T.; Kester, H.; Van Der Burg, B.; Urrutia, R. The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J. Biol. Chem. 2001, 276, 36749–36756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczynski, J.A.; Conley, A.A.; Zapico, M.F.; Delgado, S.M.; Zhang, J.-S.; Urrutia, R. Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter. Biochem. J. 2002, 366 Pt 3, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.S.; Moncrieffe, M.C.; Kaczynski, J.; Ellenrieder, V.; Prendergast, F.G.; Urrutia, R. A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol. Cell. Biol. 2001, 21, 5041–5049. [Google Scholar] [CrossRef] [Green Version]
- Ellenrieder, V.; Zhang, J.; Kaczynski, J.; Urrutia, R. Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. EMBO J. 2002, 21, 2451–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttar, N.S.; Demars, C.J.; Lomberk, G.; Rizvi, S.; Bonilla-Velez, J.; Achra, S.; Rashtak, S.; Wang, K.K.; Fernandez-Zapico, M.E.; Urrutia, R. Distinct role of Kruppel-like factor 11 in the regulation of prostaglandin E2 biosynthesis. J. Biol. Chem. 2010, 285, 11433–11444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarugi, V.; Magnelli, L.; Cinelli, M. Complex interplay among apoptosis factors: RB, p53, E2F, TGF-beta, cell cycle inhibitors and the bcl2 gene family. Pharmacol. Res. 1997, 35, 257–261. [Google Scholar] [CrossRef]
- Alevizopoulos, A.; Mermod, N. Transforming growth factor-beta: The breaking open of a black box. Bioessays 1997, 19, 581–591. [Google Scholar] [CrossRef]
- Wang, Z.; Peters, B.; Klussmann, S.; Bender, H.; Herb, A.; Krieglstein, K. Gene structure and evolution of Tieg3, a new member of the Tieg family of proteins. Gene 2004, 325, 25–34. [Google Scholar] [CrossRef]
- Cook, T.; Urrutia, R. TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth. Am. J Physiol. Gastrointest. Liver Physiol. 2000, 278, G513–G521. [Google Scholar] [CrossRef] [Green Version]
- Spittau, B.; Wang, Y.; Boinska, D.; Krieglstein, K. Functional domains of the TGF-beta-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain. J. Cell Biochem. 2007, 101, 712–722. [Google Scholar] [CrossRef]
- Yin, K.J.; Hamblin, M.; Fan, Y.; Zhang, J.; Chen, Y.E. Krupple-like factors in the central nervous system: Novel mediators in stroke. Metab. Brain Dis. 2015, 30, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Yajima, S.; Lammers, C.-H.; Lee, S.-H.; Hara, Y.; Mizuno, K.; Mouradian, M.M. Cloning and characterization of murine glial cell-derived neurotrophic factor inducible transcription factor (MGIF). J. Neurosci. 1997, 17, 8657–8666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noti, J.D.; Johnson, A.K.; Dillon, J.D. The zinc finger transcription factor transforming growth factor beta-inducible early gene-1 confers myeloid-specific activation of the leukocyte integrin CD11d promoter. J. Biol. Chem. 2004, 279, 26948–26958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Zapico, M.E.; van Velkinburgh, J. C.; Gutierrez-Aguilar, R.; Neve, B.; Froguel, P.; Urrutia, R.; Stein, R. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J. Biol. Chem. 2009, 284, 36482–36490. [Google Scholar] [CrossRef] [Green Version]
- Asano, H.; Li, X.S.; Stamatoyannopoulos, G. FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol. Cell Biol. 1999, 19, 3571–3579. [Google Scholar] [CrossRef] [Green Version]
- Chalaux, E.; López-Rovira, T.; Rosa, J.L.; Pons, G.; Boxer, L.M.; Bartrons, R.; Ventura, F. A zinc-finger transcription factor induced by TGF-beta promotes apoptotic cell death in epithelial Mv1Lu cells. FEBS Lett. 1999, 457, 478–482. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Zapico, M.E.; Mladek, A.; Ellenrieder, V.; Folch-Puy, E.; Miller, L.; Urrutia, R. An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J. 2003, 22, 4748–4758. [Google Scholar] [CrossRef] [Green Version]
- Bender, H.; Wang, Z.; Schuster, N.; Krieglstein, K. TIEG1 facilitates transforming growth factor-beta-mediated apoptosis in the oligodendroglial cell line OLI-neu. J. Neurosci. Res. 2004, 75, 344–352. [Google Scholar] [CrossRef]
- Wang, Z.; Spittau, B.; Behrendt, M.; Peters, B.; Krieglstein, K. Human TIEG2/KLF11 induces oligodendroglial cell death by downregulation of Bcl-XL expression. J. Neural. Transm. 2007, 114, 867–875. [Google Scholar] [CrossRef]
- Buck, A.; Buchholz, M.; Wagner, M.; Adler, G.; Gress, T.; Ellenrieder, V. The tumor suppressor KLF11 mediates a novel mechanism in transforming growth factor beta-induced growth inhibition that is inactivated in pancreatic cancer. Mol. Cancer Res. 2006, 4, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Blok, L.J.; Grossmann, M.E.; Perry, J.E.; Tindall, D.J. Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol. Endocrinol. 1995, 9, 1610–1620. [Google Scholar] [PubMed] [Green Version]
- Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 1998, 67, 753–791. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Massague, J.; Wotton, D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000, 19, 1745–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spittau, B.; Krieglstein, K. Klf10 and Klf11 as mediators of TGF-beta superfamily signaling. Cell Tissue Res. 2012, 347, 65–72. [Google Scholar] [CrossRef]
- Johnsen, S.A.; Subramaniam, M.; Janknecht, R.; Spelsberg, T.C. TGFbeta inducible early gene enhances TGFbeta/Smad-dependent transcriptional responses. Oncogene 2002, 21, 5783–5790. [Google Scholar] [CrossRef] [Green Version]
- Ellenrieder, V.; Buck, A.; Harth, A.; Jungert, K.; Buchholz, M.; Adler, G.; Urrutia, R.; Gress, T.M. KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Gastroenterology 2004, 127, 607–620. [Google Scholar] [CrossRef]
- Song, C.Z.; Gavriilidis, G.; Asano, H.; Stamatoyannopoulos, G. Functional study of transcription factor KLF11 by targeted gene inactivation. Blood Cells Mol. Dis. 2005, 34, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Oltvai, Z.N.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74, 609–619. [Google Scholar] [CrossRef]
- Grillot, D.A.; González-García, M.; Ekhterae, D.; Duan, L.; Inohara, N.; Ohta, S.; Seldin, M.F.; Nuñez, G. Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene. J. Immunol. 1997, 158, 4750–4757. [Google Scholar]
- Yin, P.; Lin, Z.; Reierstad, S.; Wu, J.; Ishikawa, H.; Marsh, E.E.; Innes, J.; Cheng, Y.; Pearson, K.; Coon, J.S.; et al. Transcription factor KLF11 integrates progesterone receptor signaling and proliferation in uterine leiomyoma cells. Cancer Res. 2010, 70, 1722–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tang, X.; Ma, F.; Fan, Y.; Sun, P.; Zhu, T.; Zhang, J.; Hamblin, M.H.; Chen, Y.E.; Yin, K.-J. Endothelium-targeted overexpression of kruppel-like factor 11 protects blood-brain barrier function after ischemic brain injury. Brain Pathol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Tan, Z.; Gan, M.; Li, Q.; Chen, L.; Niu, L.; Jiang, D.; Jiang, J.; Wang, J.; Li, X.; et al. tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis. Biomolecules 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shi, X.; Li, J.; Zhang, M.; Yu, B. Knockdown of KLF11 attenuates hypoxia/reoxygenation injury via JAK2/STAT3 signaling in H9c2. Apoptosis 2017, 22, 510–518. [Google Scholar] [CrossRef]
- Zheng, Y.; Khan, Z.; Zanfagnin, V.; Correa, L.F.; Delaney, A.A.; Daftary, G.S. Epigenetic Modulation of Collagen 1A1: Therapeutic Implications in Fibrosis and Endometriosis. Biol. Reprod. 2016, 94, 87. [Google Scholar] [CrossRef] [PubMed]
- Loft, A.; Forss, I.; Siersbaek, M.S.; Schmidt, S.F.; Larsen, A.S.; Madsen, J.G.; Pisani, D.F.; Nielsen, R.; Aagaard, M.M.; Matgison, A.; et al. Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers. Genes Dev. 2015, 29, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, Q.; Jiao, T.; Cui, A.; Sun, X.; Fang, W.; Xie, L.; Liu, Y.; Fang, F.; Chang, Y. Involvement of KLF11 in hepatic glucose metabolism in mice via suppressing of PEPCK-C expression. PLoS ONE 2014, 9, e89552. [Google Scholar] [CrossRef]
- Mathison, A.; Grzenda, A.; Lomberk, G.; Velez, G.; Buttar, N.; Tietz, P.; Hendrickson, H.; Liebl, A.; Xiong, Y.Y.; Gores, G.; et al. Role for Kruppel-like transcription factor 11 in mesenchymal cell function and fibrosis. PLoS ONE 2013, 8, e75311. [Google Scholar] [CrossRef]
- Fan, Y.; Konermann, C.; Aulmann, S.; Bermejo, J.L.; Brugger, M.; Diederichs, S.; Rom, J.; Weichenhan, D.; Claus, R.; Rehli, M.; et al. Kruppel-like factor-11, a transcription factor involved in diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-kappaB signaling pathway. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2981–2988. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, M.; Johnson, S.; Lu, D.; Wang, Z.; Lomberk, G.; Albert, P.R.; Stockmeier, C.A.; Meyer, J.H.; Urrutia, R.; Miczek, K.A.; et al. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J. Biol. Chem. 2012, 287, 24195–24206. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Sakaguchi, M.; Medina, R.J.; Niida, A.; Sakaguchi, Y.; Miyazaki, M.; Kataoka, K.; Huh, N.-H. Transcriptional regulation of a brown adipocyte-specific gene, UCP1, by KLF11 and KLF15. Biochem. Biophys. Res. Commun. 2010, 400, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Perakakis, N.; Laubner, K.; Limbert, C.; Stahl, T.; Brendel, M.D.; Bretzel, R.G.; Seufert, J.; Päth, G. Human Kruppel-like factor 11 inhibits human proinsulin promoter activity in pancreatic beta cells. Diabetologia 2007, 50, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Neve, B.; Fernandez-Zapico, M.E.; Ashkenazi-Katalan, V.; Dina, C.; Hamid, Y.H.; Joly, E.; Vaillant, E.; Benmezroua, Y.; Durand, E.; Bakaher, N.; et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc. Natl. Acad. Sci. USA 2005, 102, 4807–4812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhurst, R.J.; Derynck, R. TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol. 2001, 11, S44–S51. [Google Scholar] [PubMed]
- Jakowlew, S.B. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006, 25, 435–457. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.H.; Miyazono, K.; Dijke, P.T. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Abdollah, S.; Qiu, Y.; Cai, J.; Xu, Y.Y.; Grinnell, B.W.; A Richardson, M.; Topper, J.N.; A Gimbrone, M.; Wrana, J.L.; et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997, 89, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
- Nakao, A.; Afrakhte, M.; Morn, A.; Nakayama, T.; Christian, J.L.; Heuchel, R.; Ltoh, S.; Kawabata, M.; Heldin, N.-E.; Heldin, C.-H.; et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997, 389, 631–635. [Google Scholar] [CrossRef]
- de Caestecker, M.P.; Piek, E.; Roberts, A.B. Role of transforming growth factor-beta signaling in cancer. J. Natl. Cancer Inst. 2000, 92, 1388–1402. [Google Scholar] [CrossRef] [Green Version]
- Dumont, N.; Arteaga, C.L. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003, 3, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, N.A.; Ghiassi, M.; Bakin, A.; Aakre, M.; Lundquist, C.A.; Engel, M.E.; Arteaga, C.L.; Moses, H.L. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 2001, 12, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Bakin, A.V.; Tomlinson, A.K.; Bhowmick, N.A.; Moses, H.L.; Arteaga, C.L. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 2000, 275, 36803–36810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Hebert, M.C.; Zhang, Y.E. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 2002, 21, 3749–3759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, W.; Fowlis, D.J.; Bryson, S.; Duffie, E.; Ireland, H.; Balmain, A.; Akhurst, R.J. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996, 86, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Ellenrieder, V.; Hendler, S.F.; Boeck, W.; Seufferlein, T.; Menke, A.; Ruhland, C.; Adler, G.; Gress, T.M. Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001, 61, 4222–4228. [Google Scholar] [PubMed]
- Jung, C.J.; Liengar, S.; lyengar, S.; Blahbik, K.R.; Jiang, J.X.; Tahimic, C.; Torok, N.J.; de vere White, R. W.; Farnham, P.J.; Zern, M. Human ESC self-renewal promoting microRNAs induce epithelial-mesenchymal transition in hepatocytes by controlling the PTEN and TGFbeta tumor suppressor signaling pathways. Mol. Cancer Res. 2012, 10, 979–991. [Google Scholar] [CrossRef] [Green Version]
- Hujie, G.; Zhou, S.H.; Zhang, H.; Qu, J.; Xiong, X.W.; Hujie, O.; Liao, C.G.; Yang, S.E. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/KLF11/Smads in hepatocellular carcinoma. Cancer Cell Int. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Li, Y.; Zhao, Q.; Fan, L.Q.; Tan, B.B.; Zhang, Z.D.; Zhao, X.F.; Liu, Y.; Wang, D.; Jia, N. KLF11 promotes gastric cancer invasion and migration by increasing Twist1 expression. Neoplasma 2019, 66, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Potapova, A.; Hasemeier, B.; Römermann, D.; Metzig, K.; Göhring, G.; Schlegelberger, B.; Länger, F.; Kreipe, H.; Lehmann, U. Epigenetic inactivation of tumour suppressor gene KLF11 in myelodysplastic syndromes*. Eur. J. Haematol. 2010, 84, 298–303. [Google Scholar] [CrossRef]
- Wermann, H.; Stoop, H.; Gillis, A.J.; Honecker, F.; Van Gurp, R.J.; Ammerpohl, O.; Richter, J.; Oosterhuis, J.W.; Bokemeyer, C.; Looijenga, L.H.J. Global DNA methylation in fetal human germ cells and germ cell tumours: Association with differentiation and cisplatin resistance. J. Pathol. 2010, 221, 433–442. [Google Scholar] [CrossRef]
- Gebhard, C.; Schwarzfischer, L.; Pham, T.-H.; Schilling, E.; Klug, M.; Andreesen, R.; Rehli, M. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 2006, 66, 6118–6128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belbin, T.J.; Singh, B.; Barber, l.; Socci, N.; Wenig, B.; Smith, R.; Prystowsky, M.B.; Childs, G. Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays. Cancer Res. 2002, 62, 1184–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Li, X.; Tian, W.; Wang, Y.; Wu, D.; Sun, Z.; Zhao, E. Promoter DNA methylation is associated with KLF11 expression in epithelial ovarian cancer. Genes Chromosomes Cancer 2015, 54, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Faryna, M.; Konermann, C.; Aulmann, S.; Bermejo, J.L.; Brugger, M.; Diederichs, S.; Rom, J.; Weichenhan, D.; Claus, R.; Rehli, M.; et al. Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J. 2012, 26, 4937–4950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, A.; Yin, P.; Monsivais, D.; Lin, S.M.; Du, P.; Wei, J.-J.; E Bulun, S. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS ONE 2012, 7, e33284. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Wang, Y.; Guo, G.; Li, L.; Dou, D.; Ge, X.; Lv, P.; Wang, F.; Gu, Y. microRNA-30d mediated breast cancer invasion, migration, and EMT by targeting KLF11 and activating STAT3 pathway. J. Cell Biochem. 2018, 119, 8138–8145. [Google Scholar] [CrossRef]
Official Sambo | KLF11 |
Official Full Name | Krüppel-like factor 11 |
Gene Type | protein coding |
Organism | Homo sapiens |
Lineage | Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;Catarrhini; Hominidae; Homo |
Aliases | FKLF; FKLF1; MODY7; TIEG2; Tieg3 |
Genomic Localization | Chromosome 2 (2p25.1) |
Transcriptional Activity (and Functional Domains) | Activator/Repressor (SID, R2, R3) |
Site of Expression | Ubiquitous |
Interacting Coactivator and /or Corepressor | mSin3A |
Biological Role | Demonstrated Functional Effects | Cell/Tissue | Date | Ref. |
---|---|---|---|---|
KLF11 preserves the structural and functional integrity of the blood-brain barrier | KLF11 activates the promotor of the tight junction proteins occludin and ZO-1 | Endothelial cells | 2020 | [52] |
KLF11 induces apoptosis in oligodendroglial cells | KLF11 induces apoptosis by decreasing the levels of the anti-apoptotic protein Bcl-X(L) and inhibiting the transcription of the protein driven by the Bcl-X(L) promoter. | Murine oligodendroglia cells | 2007 | [39] |
KLF11 is a TGF-β-inducible transcription factor with specific domains. | The amino-terminus is essential for the repressive transcriptional effects of KLF11. When the mSin3A domain is lost, the repressive effects are disrupted. The zinc finger containing the DNA-binding domain is essential for the nuclear localization of KLF11 and is able to activate the transcription of reporter genes. | Murine oligodendroglial cells | 2007 | [30] |
KLF11 is required for the browning of human adipocytes caused by PPARγ agonists like rosiglitazone. | KLF11 is induced by PPARγ and increases the mitochondrial oxidative capacity | Human adipocytes | 2015 | [53] |
KLF11 is involved in brown adipocyte differentiation and is highly expressed in brown adipose tissue. | KLF11 induces the expression of the brown adipocyte-specific gene UCP1 by interacting with the UCP1 promotor via GC- and GT-boxes. | Murine mesenchymal stem cells | 2010 | [54] |
KLF11 regulates the estrogen-metabolizing enzyme CYP3A4 in the endometrial epithelium. | KLF11 expression was reduced in the secretory phase endometrium and CYP3A4 was increased. Furthermore, KLF11 colocalized with the corepressor SIN3A/histone deacetylase and repressed the CYP3A4 promoter by deacetylation. This repression was reversed by a KLF11-mutation. | Uterine endometrium | 2014 | [55] |
KLF11 inhibits gluconeogenesis and improves glucose tolerance. | KLF11 inhibits the expression of the gluconeogenic genes phosphoenolpyruvate carboxykinase (cytosolic isoform, PEPCK-C) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). KLF11-overexpressing mice have less hyperglycemia; KLF11-knockout mice show impaired glucose tolerance. | Mouse hepatocytes, diabetic KLF11-overexpressing and -knockout mice | 2014 | [56] |
KLF11 is involved in regulating the insulin-production of pancreatic beta cells. | KLF11 uses its zinc finger domain and interacts with the coactivator p300 to activate Pdx-1, which is an important mediator of pancreatic beta-cell activity. Maturity onset diabetes of the young (MODY7) variants of KLF11 impair Pdx-1 activation ability. | Human pancreas islet beta cells | 2009 | [34] |
KLF11 inhibits the human proinsulin gene expression. | KLF11 inhibits the proinsulin promotor by binding a GC and a CACCC box | Human pancreatic beta cells | 2007 | [57] |
KLF11 regulates the insulin production in pancreatic beta cells | KLF11 binds to the insulin gene promoter and regulate its activity. Two variants occur in families with early-onset diabetes type 2; in these variants, the transcriptional activity is impaired. | Human pancreatic beta cells | 2005 | [58] |
KLF11 mediates growth inhibition induced by TGF-β cells in pancreatic epithelial cells. | Nuclear KLF11 and Smads3 bind to the core region of the TGF-β inhibitory element of the c-myc promotor and thereby inhibit transcription and cell growth. KLF11 knockdown impairs the growth inhibition. | Human pancreatic epithelial cells | 2006 | [40] |
KLF11 mediates the TGF-β induced growth inhibition by potentiating the Smad-signaling activity. | KLF11 terminates the inhibitory Smad7-loop and therefore potentiates the Smad-signaling. It recruits mSin3a via GC-rich sites to repress the transcription from the Smad7 promoter. | Human pancreatic epithelial cells | 2004 | [46] |
Role in Cancer | Demonstrated Functional Effects | Cancers/Cancer Cell Type | Date | Ref. |
---|---|---|---|---|
KLF11 could be induced in non-small cell lung cancer by radiohyperthermia and might mediate the effects of radiohyperthermia. | KLF11 induced apoptosis and inhibited cell proliferation by elevating intracellular reactive oxygen species. KLF11 knockdown reduced the effects of radiohyperthermia. | Human non-small-cell lung cancer | 2019 | [84] |
KLF11 mediates the tumor-promoting effects of miRNA-30d in breast cancer. | MiRNA-30d increases breast cancer cell survival, inhibits apoptosis, promotes migration and invasion, and mediates the epithelial–mesenchymal transition (EMT) phenotype. MiRNA-30d exerts these effects by targeting KLF11 and activating the STAT3 pathway. | Breast cancer | 2018 | [81] |
KLF11-methylation might be a biomarker for breast cancer diagnosis and prognosis. | The median methylation levels of KLF11 were ≥30% higher than in normal samples. KLF11 methylation might also be associated with a higher risk of metastasis. | Breast cancer | 2012 | [79] |
KLF11 expression is reduced in ovarian cancer. | KLF11 promoter DNA methylation results in downregulated KLF11 expression accompanied by reduced Smad2, Smad3, and Smad7 expression | Human ovarian cancer | 2015 | [78] |
KLF11 is upregulated in gastric cancer an increases gastric cancer cell migration and invasion. | KLF11 increases the Twist-1 expression in gastric cancer cells. The Twist-1 increase is inhibited when KLF11 is silenced. | Human gastric cancer | 2019 | [73] |
KLF11 inhibits prostaglandin E2 (PGE2) synthesis. | KLF11 represses the promotor of the PGE2-synthesizing enzyme cytosolic phospholipase A2∝ by binding and by recruiting the Sin3-histone deacetylase chromatin remodeling complex to the promotor. | Esophageal cancer (Barretts’ esophageal cells) | 2010 | [25] |
KLF11 mediates the-promoting effects of miRNA-10b on EMT development in hepatocellular carcinoma. | MiRNA-10b binds to the 3’UTR and downregulates KLF4, which is an inhibitory transcriptional factor of KLF11. Thereby, KLF11 is upregulated and reduces the expression ofSmad7. This upregulates Smad3, which promotes EMT development. | Human hepatocellular carcinoma | 2018 | [72] |
KLF11 increases the monoamine oxidase (MAO) B expression. | KLF11 increases MAO B at the promotor activity, mRNA, protein, and catalytic activity levels. | Neuroblastoma and liver carcinoma cells | 2004 | [85] |
KLF11 uses the epigenetic regulator heterochromatin protein 1 (HP1) to mediate tumor suppression. | KLF11 recruits HP1 and its histone methyltransferase to promotors of cancer genes to limit the KLF11-mediated gene activation. The impairment of this recruitment impairs tumor suppression. | Pancreatic cancer cells | 2012 | [86] |
KLF11 mediates growth inhibition; the mechanism is disrupted in pancreatic cancer. | In pancreatic cancer cells, the KLF11–Smad3 complex formation is disrupted and the KLF11–Smad3 binding to the TGF-β-inhibitory element of the c-myc-promotor is inhibited. Thereby, the growth inhibitory effect of c-myc-silencing is impaired. | Pancreatic cancer cells | 2006 | [40] |
The KLF11-induced potentiating of the TGF-β-signaling by the termination of the inhibitory Smad7-loop is inhibited in pancreatic cancer. | In pancreatic cancer cells, an Erk/mitogen-activated protein kinase phosphorylates KLF11, which leads to a disruption of the KLF11–mSin3a interaction. The KLF11–mSin3a repression of the Smad7 promotor is reduced, and therefore, Smad7 expression is elevated and Smad7 exerts its negative feedback loop. | Pancreatic cancer cells | 2004 | [46] |
KLF11 is a tumor-suppressor gene inactivated in myelodysplastic syndromes (MDS). | KLF11 is hypermethylated in 15 % of MDS cases, which is associated with a high International Prognostic Scoring System score. | Human myelogenous leukemia cells | 2010 | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Mahner, S.; Jeschke, U.; Hester, A. The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway. Int. J. Mol. Sci. 2020, 21, 2928. https://doi.org/10.3390/ijms21082928
Lin L, Mahner S, Jeschke U, Hester A. The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway. International Journal of Molecular Sciences. 2020; 21(8):2928. https://doi.org/10.3390/ijms21082928
Chicago/Turabian StyleLin, Lili, Sven Mahner, Udo Jeschke, and Anna Hester. 2020. "The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway" International Journal of Molecular Sciences 21, no. 8: 2928. https://doi.org/10.3390/ijms21082928
APA StyleLin, L., Mahner, S., Jeschke, U., & Hester, A. (2020). The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway. International Journal of Molecular Sciences, 21(8), 2928. https://doi.org/10.3390/ijms21082928