Re-Setting the Circadian Clock Using Exercise against Sarcopenia
Abstract
:1. Introduction
2. Sarcopenia and Circadian Disruption
3. Potential Mechanisms underlying Circadian Disruption Associated with Sarcopenia
3.1. Molecular Circadian Clock, Central and Peripheral Clocks, and Circadian Rhythm
3.2. Mechanistic Pathways Connecting Circadian Disruption, Mitochondrial Dysfunction, and Sarcopenia
4. Novel Aspects of Exercise as a Zeitgeber for Re-setting the Clock against Sarcopenia
4.1. Exercise, Molecular Circadian Clock Gene, and Circadian Synchronization
4.2. Impacts of the Scheduled Exercise (Exercise Timing) on Mitochondrial Function and Muscle Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Kamel, H.K. Sarcopenia and aging. Nutr. Rev. 2003, 61, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-related loss of muscle mass and function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Sayer, A.A.; Syddall, H.E.; Martin, H.J.; Dennison, E.M.; Roberts, H.C.; Cooper, C. Is grip strength associated with health-related quality of life? Findings from the Hertfordshire Cohort Study. Age Ageing 2006, 35, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Gale, C.R.; Martyn, C.N.; Cooper, C.; Sayer, A.A. Grip strength, body composition, and mortality. Int. J. Epidemiol. 2007, 36, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Landi, F.; Liperoti, R.; Fusco, D.; Mastropaolo, S.; Quattrociocchi, D.; Proia, A.; Tosato, M.; Bernabei, R.; Onder, G. Sarcopenia and mortality among older nursing home residents. J. Am. Med. Dir. Assoc. 2012, 13, 121–126. [Google Scholar] [CrossRef]
- Choi, Y.I.; Park, D.K.; Chung, J.W.; Kim, K.O.; Kwon, K.A.; Kim, Y.J. Circadian rhythm disruption is associated with an increased risk of sarcopenia: A nationwide population-based study in Korea. Sci. Rep. 2019, 9, 12015. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.H.; Yun, C.H.; Ahn, J.H.; Suh, S.; Cho, H.J.; Lee, S.K.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Choi, K.M.; et al. Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J. Clin. Endocrinol. Metab. 2015, 100, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Lucassen, E.A.; de Mutsert, R.; le Cessie, S.; Appelman-Dijkstra, N.M.; Rosendaal, F.R.; van Heemst, D.; den Heijer, M.; Biermasz, N.R.; NEO Study Group. Poor sleep quality and later sleep timing are risk factors for osteopenia and sarcopenia in middle-aged men and women: The NEO study. PLoS ONE 2017, 12, e0176685. [Google Scholar] [CrossRef]
- Alterman, T.; Luckhaupt, S.E.; Dahlhamer, J.M.; Ward, B.W.; Calvert, G.M. Prevalence rates of work organization characteristics among workers in the U.S.: Data from the 2010 National Health Interview Survey. Am. J. Ind. Med. 2013, 56, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Parent-Thirion, A.; Biletta, I.; Cabrita, J.; Llave Vargas, O.; Vermeylen, G.; Wilczynska, A. 6th European Working Conditions Survey: Overview Report; 2017 Update; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Cheng, P.; Drake, C.L. Psychological impact of shift work. Curr. Sleep Med. Rep. 2018, 4, 104–109. [Google Scholar] [CrossRef]
- Landi, F.; Marzetti, E.; Martone, A.M.; Bernabei, R.; Onder, G. Exercise as a remedy for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 25–31. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Tosato, M.; Cesari, M.; Di Bari, M.; Cherubini, A.; Broccatelli, M.; Savera, G.; D’Elia, M.; Pahor, M.; et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 35–42. [Google Scholar] [CrossRef]
- Zambon, A.C.; McDearmon, E.L.; Salomonis, N.; Vranizan, K.M.; Johansen, K.L.; Adey, D.; Takahashi, J.S.; Schambelan, M.; Conklin, B.R. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol. 2003, 4, R61. [Google Scholar] [CrossRef] [Green Version]
- Wolff, G.; Esser, K.A. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med. Sci. Sports Exerc. 2012, 44, 1663–1670. [Google Scholar] [CrossRef] [Green Version]
- Facer-Childs, E.; Brandstaetter, R. The impact of circadian phenotype and time since awakening on diurnal performance in athletes. Curr. Biol. 2015, 25, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Nagano, M.; Adachi, A.; Nakahama, K.; Nakamura, T.; Tamada, M.; Meyer-Bernstein, E.; Sehgal, A.; Shigeyoshi, Y. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J. Neurosci. 2003, 23, 6141–6151. [Google Scholar] [CrossRef]
- Fex, A.; Barbat-Artigas, S.; Dupontgand, S.; Filion, M.E.; Karelis, A.D.; Aubertin-Leheudre, M. Relationship between long sleep duration and functional capacities in postmenopausal women. J. Clin. Sleep Med. 2012, 8, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Chien, M.Y.; Wang, L.Y.; Chen, H.C. The relationship of sleep duration with obesity and sarcopenia in community-dwelling older adults. Gerontology 2015, 61, 399–406. [Google Scholar] [CrossRef]
- Buchmann, N.; Spira, D.; Norman, K.; Demuth, I.; Eckardt, R.; Steinhagen-Thiessen, E. Sleep, muscle mass and muscle function in older people. Dtsch. Arztebl. Int. 2016, 113, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.J.; Jang, S.Y.; Park, E.C.; Cho, A.R.; Shim, J.Y.; Linton, J.A. Long sleep duration is associated with sarcopenia in Korean adults based on data from the 2008–2011 KNHANES. J. Clin. Sleep Med. 2017, 13, 1097–1104. [Google Scholar] [CrossRef]
- Hu, X.Y.; Jiang, J.J.; Wang, H.Z.; Zhang, L.; Dong, B.R.; Yang, M. Association between sleep duration and sarcopenia among community-dwelling older adults A cross-sectional study. Medicine 2017, 96, e6268. [Google Scholar] [CrossRef]
- Matsumoto, T.; Tanizawa, K.; Tachikawa, R.; Murase, K.; Minami, T.; Inouchi, M.; Handa, T.; Oga, T.; Hirai, T.; Chin, K. Associations of obstructive sleep apnea with truncal skeletal muscle mass and density. Sci. Rep. 2018, 8, 6550. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Arias, J.A.; Rodriguez-Fernandez, R.; Andreu, L.; Martinez-Aranda, L.M.; Martinez-Rodriguez, A.; Ramos-Campo, D.J. Effect of sleep quality on the prevalence of sarcopenia in older adults: A systematic review with meta-Analysis. J. Clin. Med. 2019, 8, 2156. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef]
- Takahashi, J.S.; Hong, H.K.; Ko, C.H.; McDearmon, E.L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 2008, 9, 764–775. [Google Scholar] [CrossRef]
- Stokkan, K.A.; Yamazaki, S.; Tei, H.; Sakaki, Y.; Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 2001, 291, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Mohawk, J.A.; Green, C.B.; Takahashi, J.S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 2012, 35, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Preitner, N.; Damiola, F.; Lopez-Molina, L.; Zakany, J.; Duboule, D.; Albrecht, U.; Schibler, U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110, 251–260. [Google Scholar] [CrossRef]
- Sato, T.K.; Panda, S.; Miraglia, L.J.; Reyes, T.M.; Rudic, R.D.; McNamara, P.; Naik, K.A.; Fitzgerald, G.A.; Kay, S.A.; Hogenesch, J.B. A functional genomics strategy reveals rora as a component of the mammalian circadian clock. Neuron 2004, 43, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Bunger, M.K.; Wilsbacher, L.D.; Moran, S.M.; Clendenin, C.; Radcliffe, L.A.; Hogenesch, J.B.; Simon, M.C.; Takahashi, J.S.; Bradfield, C.A. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000, 103, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Kondratov, R.V.; Kondratova, A.A.; Gorbacheva, V.Y.; Vykhovanets, O.V.; Antoch, M.P. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006, 20, 1868–1873. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.L.; Zhang, X.; McCarthy, J.J.; McDearmon, E.L.; Hornberger, T.A.; Russell, B.; Campbell, K.S.; Arbogast, S.; Reid, M.B.; Walker, J.R.; et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl. Acad. Sci. USA 2010, 107, 19090–19095. [Google Scholar] [CrossRef] [Green Version]
- Dyar, K.A.; Ciciliot, S.; Wright, L.E.; Bienso, R.S.; Tagliazucchi, G.M.; Patel, V.R.; Forcato, M.; Paz, M.I.; Gudiksen, A.; Solagna, F.; et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol. Metab. 2014, 3, 29–41. [Google Scholar] [CrossRef]
- Nakao, R.; Shimba, S.; Oishi, K. Muscle Bmal1 is dispensable for the progress of neurogenic muscle atrophy in mice. J. Circadian Rhythm. 2016, 14, 1–7. [Google Scholar] [CrossRef]
- Leong, I. Muscle circadian clock regulates lipid storage. Nat. Rev. Endocrinol. 2018, 14, 563. [Google Scholar] [CrossRef]
- Dyar, K.A.; Hubert, M.J.; Mir, A.A.; Ciciliot, S.; Lutter, D.; Greulich, F.; Quagliarini, F.; Kleinert, M.; Fischer, K.; Eichmann, T.O.; et al. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol. 2018, 16, e2005886. [Google Scholar] [CrossRef] [Green Version]
- Calvani, R.; Joseph, A.M.; Adhihetty, P.J.; Miccheli, A.; Bossola, M.; Leeuwenburgh, C.; Bernabei, R.; Marzetti, E. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol. Chem. 2013, 394, 393–414. [Google Scholar] [CrossRef] [Green Version]
- Broskey, N.T.; Greggio, C.; Boss, A.; Boutant, M.; Dwyer, A.; Schlueter, L.; Hans, D.; Gremion, G.; Kreis, R.; Boesch, C.; et al. Skeletal muscle mitochondria in the elderly: Effects of physical fitness and exercise training. J. Clin. Endocrinol. Metab. 2014, 99, 1852–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Campo, A. Mitophagy as a new therapeutic target for sarcopenia. Acta Physiol. 2019, 225, e13219. [Google Scholar] [CrossRef]
- Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenen-Schimke, J.; Raghavakaimal, S.; Nair, K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. USA 2005, 102, 5618–5623. [Google Scholar] [CrossRef] [Green Version]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Biol. 2013, 45, 2288–2301. [Google Scholar] [CrossRef] [Green Version]
- Van Moorsel, D.; Hansen, J.; Havekes, B.; Scheer, F.; Jorgensen, J.A.; Hoeks, J.; Schrauwen-Hinderling, V.B.; Duez, H.; Lefebvre, P.; Schaper, N.C.; et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol. Metab. 2016, 5, 635–645. [Google Scholar] [CrossRef]
- De Goede, P.; Wefers, J.; Brombacher, E.C.; Schrauwen, P.; Kalsbeek, A. Circadian rhythms in mitochondrial respiration. J. Mol. Endocrinol. 2018, 60, R115–R130. [Google Scholar] [CrossRef]
- Pastore, S.; Hood, D.A. Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice. J. Appl. Physiol. (1985) 2013, 114, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, S.; Liu, T.; Borjigin, J.; Lin, J.D. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007, 447, 477–481. [Google Scholar] [CrossRef]
- Saracino, P.G.; Rossetti, M.L.; Steiner, J.L.; Gordon, B.S. Hormonal regulation of core clock gene expression in skeletal muscle following acute aerobic exercise. Biochem. Biophys. Res. Commun. 2019, 508, 871–876. [Google Scholar] [CrossRef]
- Reebs, S.G.; Mrosovsky, N. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: Entrainment and phase response curve. J. Biol. Rhythm. 1989, 4, 39–48. [Google Scholar] [CrossRef]
- Edgar, D.M.; Dement, W.C. Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am. J. Physiol. 1991, 261, R928–R933. [Google Scholar] [CrossRef]
- Marchant, E.G.; Mistlberger, R.E. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol. Behav. 1996, 60, 657–663. [Google Scholar] [CrossRef]
- Van Reeth, O.; Sturis, J.; Byrne, M.M.; Blackman, J.D.; L’Hermite-Baleriaux, M.; Leproult, R.; Oliner, C.; Refetoff, S.; Turek, F.W.; Van Cauter, E. Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. Am. J. Physiol. 1994, 266, E964–E974. [Google Scholar] [CrossRef]
- Eastman, C.I.; Hoese, E.K.; Youngstedt, S.D.; Liu, L. Phase-shifting human circadian rhythms with exercise during the night shift. Physiol. Behav. 1995, 58, 1287–1291. [Google Scholar] [CrossRef]
- Buxton, O.M.; Frank, S.A.; L’Hermite-Baleriaux, M.; Leproult, R.; Turek, F.W.; Van Cauter, E. Roles of intensity and duration of nocturnal exercise in causing phase delays of human circadian rhythms. Am. J. Physiol. 1997, 273, E536–E542. [Google Scholar] [CrossRef]
- Miyazaki, T.; Hashimoto, S.; Masubuchi, S.; Honma, S.; Honma, K.I. Phase-advance shifts of human circadian pacemaker are accelerated by daytime physical exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R197–R205. [Google Scholar] [CrossRef]
- Baehr, E.K.; Eastman, C.I.; Revelle, W.; Olson, S.H.; Wolfe, L.F.; Zee, P.C. Circadian phase-shifting effects of nocturnal exercise in older compared with young adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R1542–R1550. [Google Scholar] [CrossRef]
- Buxton, O.M.; Lee, C.W.; L’Hermite-Baleriaux, M.; Turek, F.W.; Van Cauter, E. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R714–R724. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, Y.; Hashimoto, S.; Takasu, N.N.; Tanahashi, Y.; Nishide, S.Y.; Honma, S.; Honma, K. Morning and evening physical exercise differentially regulate the autonomic nervous system during nocturnal sleep in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1112–R1121. [Google Scholar] [CrossRef] [Green Version]
- Youngstedt, S.D.; Kline, C.E.; Elliott, J.A.; Zielinski, M.R.; Devlin, T.M.; Moore, T.A. Circadian phase-shifting effects of bright light, exercise, and bright light + exercise. J. Circadian Rhythm. 2016, 14, 2. [Google Scholar] [CrossRef]
- Thomas, J.M.; Kern, P.A.; Bush, H.M.; McQuerry, K.J.; Black, W.S.; Clasey, J.L.; Pendergast, J.S. Circadian rhythm phase shifts caused by timed exercise vary with chronotype. JCI Insight 2020, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, G.; Reilly, T. Circadian variation in sports performance. Sports Med. 1996, 21, 292–312. [Google Scholar] [CrossRef] [PubMed]
- Conroy, R.T.; O’Brien, M. Proceedings: Diurnal variation in athletic performance. J. Physiol. 1974, 236, 51P. [Google Scholar] [PubMed]
- Reilly, T.; Baxter, C. Influence of time of day on reactions to cycling at a fixed high intensity. Br. J. Sports Med. 1983, 17, 128–130. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.W.; Borden, D.O.; Darnaby, K.M.; Hendricks, D.N.; Hill, C.M. Effect of time of day on aerobic and anaerobic responses to high-intensity exercise. Can. J. Sport Sci. 1992, 17, 316–319. [Google Scholar]
- Lundby, C.; Jacobs, R.A. Adaptations of skeletal muscle mitochondria to exercise training. Exp. Physiol. 2016, 101, 17–22. [Google Scholar] [CrossRef]
- Yoo, S.Z.; No, M.H.; Heo, J.W.; Park, D.H.; Kang, J.H.; Kim, J.H.; Seo, D.Y.; Han, J.; Jung, S.J.; Kwak, H.B. Effects of acute exercise on mitochondrial function, dynamics, and mitophagy in rat cardiac and skeletal muscles. Int. Neurourol. J. 2019, 23, S22–S31. [Google Scholar] [CrossRef]
- Sedliak, M.; Finni, T.; Peltonen, J.; Hakkinen, K. Effect of time-of-day-specific strength training on maximum strength and EMG activity of the leg extensors in men. J. Sports Sci. 2008, 26, 1005–1014. [Google Scholar] [CrossRef]
- Sedliak, M.; Finni, T.; Cheng, S.; Lind, M.; Hakkinen, K. Effect of time-of-day-specific strength training on muscular hypertrophy in men. J. Strength Cond. Res. 2009, 23, 2451–2457. [Google Scholar] [CrossRef]
- Chtourou, H.; Souissi, N. The effect of training at a specific time of day: A review. J. Strength Cond. Res. 2012, 26, 1984–2005. [Google Scholar] [CrossRef]
- Kuusmaa, M.; Schumann, M.; Sedliak, M.; Kraemer, W.J.; Newton, R.U.; Malinen, J.P.; Nyman, K.; Hakkinen, A.; Hakkinen, K. Effects of morning versus evening combined strength and endurance training on physical performance, muscle hypertrophy, and serum hormone concentrations. Appl. Physiol. Nutr. Metab. 2016, 41, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.Y.; Yoon, C.S.; Dizon, L.A.; Lee, S.R.; Youm, J.B.; Yang, W.S.; Kwak, H.B.; Ko, T.H.; Kim, H.K.; Han, J.; et al. Circadian modulation of the cardiac proteome underpins differential adaptation to morning and evening exercise training: An LC-MS/MS analysis. Pflug. Arch. 2020, 472, 259–269. [Google Scholar] [CrossRef] [PubMed]
Design | Participant | Main Findings | Reference |
---|---|---|---|
Laboratory-based study | 48 postmenopausal women (61 ± 6 y) | Sleep duration was correlated with muscle strength (r = −0.43, p = 0.002) and skeletal muscle mass (r = −0.39, p = 0.007). In addition, long sleepers (>9 h) had significantly lower values for skeletal muscle mass (p = 0.03) and muscle strength (p = 0.01). | [21] |
Population-based study | 488 older adults (76.8 ± 6.9 y) | Compared with the normal sleep duration (6‒8 h), short sleepers (<6 h) had a nearly 3-fold increased risk of sarcopenia (OR: 2.76; 95% CI: 1.28–5.96), while long sleepers (>8 h) had a nearly 2-fold increased risk of sarcopenia (OR: 1.89; 95% CI: 1.01–3.54). | [22] |
Population-based study | 1620 adults (40‒69 y) | Evening type, when compared with morning type, was significantly associated with sarcopenia (OR: 3.16; 95% CI: 1.36–7.33) after adjusting for confounding factors. | [10] |
Population-based study | 1196 adults (68 ± 4 y) | The adjusted OR for low muscle mass was 2.8 for men with poor sleep quality (95% CI: 1.1–6.7) and 4.3 for men with poor sleep efficiency (95% CI: 1.2–15.1). In woman, poor sleep quality was found to be associated with reduced grip strength and low appendicular lean mass. | [23] |
Population-based study | 607 older adults (60‒90 y) | Compared with the normal sleep duration (6‒8 h), short sleepers (<6 h) had an over 4-fold increased risk of sarcopenia (adjusted OR: 4.24; 95% CI: 1.75–10.30), whereas long sleepers (>8 h) had an over 3-fold increased risk of sarcopenia (adjusted OR: 3.50; 95% CI: 1.39–8.80). | [25] |
Population-based study | 16148 adults (44.1 ± 0.2 y) | Compared with the 7 h of sleep duration, the OR (95% CI) for sarcopenia of the long sleepers (≥9 h) was 1.589 (1.100–2.295) after adjusting for confounding factors. | [24] |
Population-based study | 915 middle-aged adults (45‒65 y) | PSQI score was associated with sarcopenia (OR: 1.10; 95% CI: 1.02–1.19); ORs of sleep latency and later mid-sleep time with sarcopenia were 1.14 (0.99–1.31) and 1.54 (0.91–2.61), respectively. | [11] |
Hospital-based study | 334 patients with sleep problem (61.9 ± 10.4 y) | AHI, an index of the severity of sleep apnea, was correlated positively with the skeletal muscle mass index and negatively with skeletal muscle density in both men and women. | [26] |
Population-based study | 9105 workers | Compared with the group that had never experienced shift work, the OR (95% CI) for sarcopenia of the shift work group was 1.7 (1.5–1.9); the association remained even after adjusting for confounding factors. | [9] |
Participant | Protocol | Main Findings | Reference |
---|---|---|---|
17 young men (20‒30 y) | (1) Control session without exercise (2) Night exercise with moderate intensity of 3-h duration (40‒60% VO2peak) | A single nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion. | [54] |
8 young men(20‒30 y) | (1) Control session without exercise (2) Night exercise with a 3-h bout of moderate intensity (40‒60% VO2peak) or a 1-h bout of high intensity (75% VO2peak) | Nocturnal high-intensity exercise as well as moderate-intensity exercise phase delays circadian rhythms of melatonin and thyrotropin secretion. | [56] |
16 adults (19‒41 y) | (1) Control group without exercise (2) Exercise group: 15 min every hour (50‒60% HRmax) during the first three of eight consecutive night shifts (with daytime sleep) | Exercise during night shifts facilitates circadian rhythm of core temperature phase delays. | [55] |
46 young adults (20‒28 y) | (1) Control session without exercise (2) Exercise sessions: morning, afternoon, or night exercise with moderate intensity of 2-h duration (HR of 140 beats/min) | Afternoon and night exercise elicits phase delays of the circadian rhythm of plasma melatonin. | [57] |
8 young (20‒32 y) and 10 older (55‒73 y) adults | (1) Control session without exercise (2) Night exercise with low intensity of 3-h duration (40‒60% VO2peak) | Nocturnal exercise accelerates phase delays, whereas early evening exercise accelerates phase advances in older and young adults. | [58] |
38 young men (20‒30 y) | (1) Control group without exercise (2) Exercise groups: morning, afternoon, evening, or night exercise with high intensity of 1-h duration (75% VO2peak) | Morning exercise elicits phase delays and evening exercise elicits phase advances. | [59] |
22 young men (22.0 ± 1.8 y) | (1) Control group without exercise (2) Exercise groups: morning or evening exercise of 2-h duration (interval exercise at 65‒75% HRmax) | Both morning and evening exercise elicits a similar extent of phase-delay shifts. But the falling phase shifted by 1.0 h only after evening exercise. | [60] |
6 young adults (18‒30 y) | (1) Late night bright light alone (2) Late night treadmill exercise alone (interval exercise at 65‒75%HRR) (3) Late night bright light followed by early morning exercise | Late night bright light followed by early morning exercise has additive phase-delaying effect on the circadian rhythm of melatonin compared with exercise alone. | [61] |
52 young adults (18‒45 y) | Five days of morning or evening exercise with high intensity for 30 min (75% VO2peak) | Morning (compared with evening) exercise advances the phase of the circadian rhythm. In particular, in people with a late chronotype, both morning and evening exercise induces phase advances. | [62] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Cho, J.; No, M.-H.; Heo, J.-W.; Cho, E.-J.; Chang, E.; Park, D.-H.; Kang, J.-H.; Kwak, H.-B. Re-Setting the Circadian Clock Using Exercise against Sarcopenia. Int. J. Mol. Sci. 2020, 21, 3106. https://doi.org/10.3390/ijms21093106
Choi Y, Cho J, No M-H, Heo J-W, Cho E-J, Chang E, Park D-H, Kang J-H, Kwak H-B. Re-Setting the Circadian Clock Using Exercise against Sarcopenia. International Journal of Molecular Sciences. 2020; 21(9):3106. https://doi.org/10.3390/ijms21093106
Chicago/Turabian StyleChoi, Youngju, Jinkyung Cho, Mi-Hyun No, Jun-Won Heo, Eun-Jeong Cho, Eunwook Chang, Dong-Ho Park, Ju-Hee Kang, and Hyo-Bum Kwak. 2020. "Re-Setting the Circadian Clock Using Exercise against Sarcopenia" International Journal of Molecular Sciences 21, no. 9: 3106. https://doi.org/10.3390/ijms21093106
APA StyleChoi, Y., Cho, J., No, M. -H., Heo, J. -W., Cho, E. -J., Chang, E., Park, D. -H., Kang, J. -H., & Kwak, H. -B. (2020). Re-Setting the Circadian Clock Using Exercise against Sarcopenia. International Journal of Molecular Sciences, 21(9), 3106. https://doi.org/10.3390/ijms21093106