MHCII3D—Robust Structure Based Prediction of MHC II Binding Peptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Prediction Performance
2.2. Qualitative versus Quantitative Measurement
2.3. Consensus Prediction
2.4. Effect of Core Peptide Flanking Regions
2.5. Availability
3. Materials and Methods
3.1. Statistical Scoring Functions
3.2. HLA-DR Models
3.3. Binding Score
3.4. Binding Rank
3.5. IC50 Estimation
3.6. Validation Data Sets
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Todd, J.A.; Wicker, L.S. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 2001, 15, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Oksenberg, J.R.; Barcellos, L.F.; Cree, B.A.C.; Baranzini, S.E.; Bugawan, T.L.; Khan, O.; Lincoln, R.R.; Swerdlin, A.; Mignot, E.; Lin, L.; et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 2004, 74, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larché, M. Immunoregulation by targeting T cells in the treatment of allergy and asthma. Curr. Opin. Immunol. 2006, 18, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Thibodeau, J.; Bourgeois-Daigneault, M.C.; Lapointe, R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 2012, 1, 908–916. [Google Scholar] [CrossRef] [Green Version]
- Patronov, A.; Dimitrov, I.; Flower, D.R.; Doytchinova, I. Peptide binding prediction for the human class II MHC allele HLA-DP2: A molecular docking approach. BMC Struct. Biol. 2011, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Rammensee, H.; Bachmann, J.; Emmerich, N.P.; Bachor, O.A.; Stevanović, S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 1999, 50, 213–219. [Google Scholar] [CrossRef]
- Reche, P.A.; Glutting, J.P.; Zhang, H.; Reinherz, E.L. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004, 56, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Parker, K.C.; Bednarek, M.A.; Coligan, J.E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 1994, 152, 163–175. [Google Scholar]
- Gulukota, K.; Sidney, J.; Sette, A.; DeLisi, C. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 1997, 267, 1258–1267. [Google Scholar] [CrossRef]
- Guan, P.; Hattotuwagama, C.K.; Doytchinova, I.A.; Flower, D.R. MHCPred 2.0: An updated quantitative T-cell epitope prediction server. Appl. Bioinform. 2006, 5, 55–61. [Google Scholar] [CrossRef]
- Nielsen, M.; Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform. 2009, 10, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanni, L. Machine learning algorithms for T-cell epitopes prediction. Neurocomputing 2006, 69, 866–868. [Google Scholar] [CrossRef]
- Hansen, L.; Lee, E.A.; Hestir, K.; Williams, L.T.; Farrelly, D. Controlling feature selection in random forests of decision trees using a genetic algorithm: Classification of class I MHC peptides. Comb. Chem. High Throughput Screen. 2009, 12, 514–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturniolo, T.; Bono, E.; Ding, J.; Raddrizzani, L.; Tuereci, O.; Sahin, U.; Braxenthaler, M.; Gallazzi, F.; Protti, M.P.; Sinigaglia, F.; et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 1999, 17, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Y.; Wong, H.S.; Zhou, S.; Mamitsuka, H.; Zhu, S. TEPITOPEpan: Extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS ONE 2012, 7, e30483. [Google Scholar] [CrossRef] [Green Version]
- Andreatta, M.; Karosiene, E.; Rasmussen, M.; Stryhn, A.; Buus, S.; Nielsen, M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 2015, 67, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.N.; Sansom, C.E.; Beazley, C.; Moss, D.S. A novel predictive technique for the MHC class II peptide-binding interaction. Mol. Med. 2003, 9, 220–225. [Google Scholar] [CrossRef]
- Tong, J.C.; Zhang, G.L.; Tan, T.W.; August, J.T.; Brusic, V.; Ranganathan, S. Prediction of HLA-DQ3.2β ligands: Evidence of multiple registers in class II binding peptides. Bioinformatics 2006, 22, 1232–1238. [Google Scholar] [CrossRef] [Green Version]
- Bordner, A.J. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS ONE 2010, 5, e14383. [Google Scholar] [CrossRef] [Green Version]
- Atanasova, M.; Patronov, A.; Dimitrov, I.; Flower, D.R.; Doytchinova, I. EpiDOCK: A molecular docking-based tool for MHC class II binding prediction. Protein Eng. Des. Sel. 2013, 26, 631–634. [Google Scholar] [CrossRef] [Green Version]
- Swain, M.T.; Brooks, A.J.; Kemp, G.J.L. Predicting Peptide Interactions With Model Class II Mhc Structures. Int. J. Artif. Intell. Tools 2005, 14, 561–576. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Papangelopoulos, N.; Xu, Y.; Sette, A.; Bourne, P.E.; Lund, O.; Ponomarenko, J.; Nielsen, M.; Peters, B. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS ONE 2010, 5, e9272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doytchinova, I.; Petkov, P.; Dimitrov, I.; Atanasova, M.; Flower, D.R. HLA-DP2 binding prediction by molecular dynamics simulations. Protein Sci. 2011, 20, 1918–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sippl, M.J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 1990, 213, 859–883. [Google Scholar] [CrossRef]
- Simons, K.T.; Kooperberg, C.; Huang, E.; Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 1997, 268, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Hamelryck, T.; Borg, M.; Paluszewski, M.; Paulsen, J.; Frellsen, J.; Andreetta, C.; Boomsma, W.; Bottaro, S.; Ferkinghoff-Borg, J. Potentials of mean force for protein structure prediction vindicated, formalized and generalized. PLoS ONE 2010, 5, e13714. [Google Scholar] [CrossRef] [Green Version]
- Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins 1993, 17, 355–362. [Google Scholar] [CrossRef]
- Laimer, J.; Hofer, H.; Fritz, M.; Wegenkittl, S.; Lackner, P. MAESTRO–multi agent stability prediction upon point mutations. BMC Bioinform. 2015, 16, 116. [Google Scholar] [CrossRef] [Green Version]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [Green Version]
- Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J. Proteome Res. 2020, 19, 2304–2315. [Google Scholar] [CrossRef]
- Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 2018, 154, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sidney, J.; Dow, C.; Mothé, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 2008, 4, e1000048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidney, J.; Assarsson, E.; Moore, C.; Ngo, S.; Pinilla, C.; Sette, A.; Peters, B. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.; Lundegaard, C.; Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform. 2007, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Vergara, I.A.; Norambuena, T.; Ferrada, E.; Slater, A.W.; Melo, F. StAR: A simple tool for the statistical comparison of ROC curves. BMC Bioinform. 2008, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.V.; Ascher, D.B.; Blundell, T.L. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014, 30, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Chicz, R.M.; Urban, R.G.; Lane, W.S.; Gorga, J.C.; Stern, L.J.; Vignali, D.A.; Strominger, J.L. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 1992, 358, 764–768. [Google Scholar] [CrossRef]
- Holland, C.J.; Cole, D.K.; Godkin, A. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough. Front. Immunol. 2013, 4, 172. [Google Scholar] [CrossRef] [Green Version]
- Arnold, P.Y.; La Gruta, N.L.; Miller, T.; Vignali, K.M.; Adams, P.S.; Woodland, D.L.; Vignali, D.A.A. The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues. J. Immunol. 2002, 169, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Dunbrack, R.L. PISCES: A protein sequence culling server. Bioinformatics 2003, 19, 1589–1591. [Google Scholar] [CrossRef] [Green Version]
- Sali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. A Publ. Protein Soc. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Bradley, P.; Greisen, P.; Liu, Y.; Mulligan, V.K.; Kim, D.E.; Baker, D.; DiMaio, F. Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. J. Chem. Theory Comput. 2016, 12, 6201–6212. [Google Scholar] [CrossRef] [PubMed]
- Andreatta, M.; Trolle, T.; Yan, Z.; Greenbaum, J.A.; Peters, B.; Nielsen, M. An automated benchmarking platform for MHC class II binding prediction methods. Bioinformatics 2018, 34, 1522–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemøller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. A Publ. Protein Soc. 2003, 12, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Racle, J.; Michaux, J.; Rockinger, G.A.; Arnaud, M.; Bobisse, S.; Chong, C.; Guillaume, P.; Coukos, G.; Harari, A.; Jandus, C.; et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 2019, 37, 1283–1286. [Google Scholar] [CrossRef]
Dataset & IEDB- Reference/ Allele | #Peptides | #Binder | NetMHCII- Pan-3.1 a | NN-Align a | SMM-Align a | Comblib Matrices a | Tepitope a | Consensus IEDB a | MHCII3D- IC50 |
---|---|---|---|---|---|---|---|---|---|
2016-12-31—1028243 | |||||||||
DRB1*04:04 | 861 | 468 | − | ||||||
2016-12-31—1028242 | |||||||||
DRB1*03:01 | 863 | 492 | − | ||||||
2016-12-31—1028241 | |||||||||
DRB1*01:01 | 885 | 642 | |||||||
2016-12-31—1028057 | |||||||||
DRB1*01:01 | 29 | 22 | |||||||
DRB1*04:01 | 29 | 25 | − | ||||||
DRB1*07:01 | 29 | 27 | |||||||
DRB1*15:01 | 29 | 26 | − | ||||||
2016-12-31—1027578 | |||||||||
DRB1*03:01 | 14 | 10 | − | ||||||
DRB1*07:01 | 19 | 12 | |||||||
DRB3*01:01 | 20 | 7 | − | ||||||
DRB4*01:01 | 14 | 4 | − | ||||||
2017-11-24—1032311 | |||||||||
DRB1*01:01 | 16 | 14 | |||||||
2018-11-23—1029531 | |||||||||
DRB1*01:01 | 11 | 4 | |||||||
2019-03-22—1034502 | |||||||||
DRB1*03:01 | 21 | 3 | − | ||||||
DRB1*08:02 | 21 | 5 | − | ||||||
DRB1*11:01 | 21 | 5 | − | ||||||
DRB1*15:01 | 21 | 4 | − |
Classifier | AUC | ACC | OT | fp | tp | N | P |
---|---|---|---|---|---|---|---|
NetMHCIIpan.3.1 | 306 | 772 | |||||
NN-align | 306 | 772 | |||||
SMM-align | 306 | 772 | |||||
Comblib matrices | 25,138.90 | 306 | 772 | ||||
Tepitope * | 306 | 772 | |||||
Consensus IEDB | 306 | 772 | |||||
MHCII3D-IC50 | 306 | 772 |
NetMHCII- Pan-3.1 | NN-Align | SMM-Align | Comblib Matrices | Tepitope | Consensus IEDB | MHCII3D- IC50 | |
---|---|---|---|---|---|---|---|
NetMHCII | − | ||||||
NN-align | − | ||||||
SMM-align | − | ||||||
Comblib | − | ||||||
Tepitope | − | ||||||
Cons. IEDB | − | ||||||
MHCII3D | − |
Exp. IC50 | NetMHCII- pan-3.1 | NN-Align | SMM-Align | Comblib Matrices | Tepitope (Sturniolo) | Consensus IEDB | MHCII3D- IC50 | |
---|---|---|---|---|---|---|---|---|
Exp. IC50 | − | |||||||
NetMHCII | − | |||||||
NN-align | − | |||||||
SMM-align | − | |||||||
Comblib | − | |||||||
Tepitope | − | |||||||
Cons. IEDB | − | |||||||
MHCII3D | − |
NetMHCIIpan-3.2 | MHCII3D- | MHCII3D- | MHCII3D-IC50 | |||||
---|---|---|---|---|---|---|---|---|
Molecule | #Peptides | #Binders | 5-Fold a | LOMO a | Score | Rank | 5-Fold | LOMO |
DRB1*01:01 | 6376 | |||||||
DRB1*01:03 | 42 | 4 | ||||||
DRB1*03:01 | 5352 | 1457 | ||||||
DRB1*04:01 | 6317 | 3022 | ||||||
DRB1*04:02 | 53 | 19 | ||||||
DRB1*04:03 | 59 | 14 | ||||||
DRB1*04:04 | 3657 | 1852 | ||||||
DRB1*04:05 | 3962 | 1654 | ||||||
DRB1*07:01 | 6325 | 3456 | ||||||
DRB1*08:01 | 937 | 390 | ||||||
DRB1*08:02 | 4465 | 2036 | ||||||
DRB1*09:01 | 4318 | 2164 | ||||||
DRB1*10:01 | 2066 | 1521 | ||||||
DRB1*11:01 | 6045 | 2667 | ||||||
DRB1*12:01 | 2384 | 759 | ||||||
DRB1*13:01 | 1034 | 520 | ||||||
DRB1*13:02 | 4477 | 2249 | ||||||
DRB1*15:01 | 4850 | 2107 | ||||||
DRB1*16:02 | 1699 | 989 | ||||||
DRB3*01:01 | 4633 | 1415 | ||||||
DRB3*02:02 | 3334 | 1055 | ||||||
DRB3*03:01 | 884 | 510 | ||||||
DRB4*01:01 | 3961 | 1540 | ||||||
DRB4*01:03 | 846 | 525 | ||||||
DRB5*01:01 | 5125 | 2430 | ||||||
Average | ||||||||
Median |
IC50 = 500 a | IC50 = 1000 b | IEDB Qual. c | Non-Contradicting d | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Molecule | #Pep. | #Bind. | AUC | #Bind. | AUC | #Bind. | AUC | #Pep. | #Bind. | AUC |
DRB1*01:01 | 7493 | 4553 | 5201 | 6783 | 5270 | 4553 | ||||
DRB1*01:03 | 40 | 3 | 4 | 40 | − | 3 | 3 | − | ||
DRB1*03:01 | 2246 | 589 | 786 | 1503 | 1323 | 583 | ||||
Molecule | #Pep. | #Bind. | AUC | #Bind. | AUC | #Bind. | AUC | #Pep. | #Bind. | AUC |
DRB1*04:01 | 2652 | 1186 | 1488 | 2346 | 1494 | 1184 | ||||
DRB1*04:02 | 38 | 19 | 22 | 35 | 22 | 19 | ||||
DRB1*04:03 | 59 | 14 | 23 | 53 | 20 | 14 | ||||
DRB1*04:04 | 1185 | 584 | 703 | 1038 | 729 | 583 | ||||
DRB1*04:05 | 1790 | 759 | 959 | 1542 | 1009 | 759 | ||||
DRB1*07:01 | 2298 | 1116 | 1334 | 1962 | 1454 | 1116 | ||||
DRB1*08:01 | 35 | 4 | 4 | 27 | 12 | 4 | ||||
DRB1*08:02 | 1849 | 691 | 865 | 1445 | 1097 | 691 | ||||
DRB1*09:01 | 1703 | 723 | 906 | 1468 | 961 | 723 | ||||
DRB1*10:01 | 187 | 149 | 162 | 171 | 165 | 149 | ||||
DRB1*11:01 | 2157 | 919 | 1116 | 1773 | 1306 | 919 | ||||
DRB1*12:01 | 897 | 166 | 265 | 589 | 476 | 166 | ||||
DRB1*13:01 | 144 | 40 | 44 | 76 | 108 | 40 | ||||
DRB1*13:02 | 1940 | 749 | 925 | 1528 | 1162 | 749 | ||||
DRB1*15:01 | 2361 | 980 | 1233 | 1934 | 1405 | 978 | ||||
DRB1*16:02 | 129 | 74 | 97 | 127 | 76 | 74 | ||||
DRB3*01:01 | 1641 | 276 | 422 | 1090 | 827 | 276 | ||||
DRB3*02:02 | 858 | 119 | 168 | 438 | 539 | 119 | ||||
DRB3*03:01 | 15 | 0 | − | 0 | − | 12 | 3 | 0 | − | |
DRB4*01:01 | 1826 | 670 | 885 | 1465 | 1031 | 669 | ||||
DRB4*01:03 | 3 | 3 | − | 3 | − | 3 | − | 3 | 3 | − |
DRB5*01:01 | 1983 | 907 | 1102 | 1662 | 1229 | 907 | ||||
Sum | 35,529 | 15,293 | 18,717 | 29,110 | 21,724 | 15,281 | ||||
Average | ||||||||||
Median |
Classification (AUC) | PCC | SRCC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Allele | Entries | Binder | IEDB | Top3 | Top2 + M | IEDB | Top3 | Top2 + M | IEDB | Top3 | Top2 + M |
DRB1*01:01 | 941 | 682 | |||||||||
DRB1*07:01 | 137 | 90 | |||||||||
all | 1078 | 772 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laimer, J.; Lackner, P. MHCII3D—Robust Structure Based Prediction of MHC II Binding Peptides. Int. J. Mol. Sci. 2021, 22, 12. https://doi.org/10.3390/ijms22010012
Laimer J, Lackner P. MHCII3D—Robust Structure Based Prediction of MHC II Binding Peptides. International Journal of Molecular Sciences. 2021; 22(1):12. https://doi.org/10.3390/ijms22010012
Chicago/Turabian StyleLaimer, Josef, and Peter Lackner. 2021. "MHCII3D—Robust Structure Based Prediction of MHC II Binding Peptides" International Journal of Molecular Sciences 22, no. 1: 12. https://doi.org/10.3390/ijms22010012
APA StyleLaimer, J., & Lackner, P. (2021). MHCII3D—Robust Structure Based Prediction of MHC II Binding Peptides. International Journal of Molecular Sciences, 22(1), 12. https://doi.org/10.3390/ijms22010012