Use of Fourier-Transform Infrared Spectroscopy (FT-IR) for Monitoring Experimental Helicobacter pylori Infection and Related Inflammatory Response in Guinea Pig Model
Abstract
:1. Introduction
2. Results
2.1. H. pylori Status
2.2. Analysis of IR Spectra of Guinea Pig Sera
2.3. Wavenumber Correlating with H. pylori Infection and Mathematical Models Identifying Sera of Infected Individuals
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. H. pylori Infection in Caviae porcellus (Guinea Pigs)
4.3. ELISA for C-Reactive Protein (CRP) and Tumor Necrose Factor (TNF)
4.4. The Measurement of Infrared Spectra and Its Processing
4.5. Mathematical Model Developing for Guinea Pigs Differentiation
- sensitivity as well as true positive rate (TPR): TTR = = = 1 − FNR
- specificity as well as true negative rate (TNR): TNR = = = 1 − FPR
- miss rate as well as false negative rate (FNR): FNR = = = 1 − TPR
- false positive rate (FPR): FPR = = = 1 − TNRwhere FP is a number of false positives, TN is the number of true negatives and N = FP + TN
- precision (PPV): PPV =
- false omission rate (FOR): FOR = = 1 − NPV
- negative predictive value (NPV): NPV = = 1 − FOR
- false discovery rate (FDR): FDR = = 1 − PPV
- positive likelihood ratio (PLR): PLR =
- negative likelihood ratio (NLR): NLR =
- accuracy: accuracy =
4.6. Hierarchical Cluster Analysis (HCA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CagA | Cytotoxin-associated gene A |
CCUG | Culture Collection University of Gothenburg |
CPR | C-reactive protein |
ELISA | Enzyme-linked immunosorbent assay |
GE | Glycine acid extract |
HCA | Hierarchical cluster analysis |
HLO | Helicobacter like organism |
IL | Interleukin |
IR | Infrared spectroscopy |
K-NN | K-nearest neighbors |
LPS | Lipopolysaccharide |
MALT | Mucosa-associated lymphoid tissue |
NIR | near-infrared spectroscopy |
PCR | Polymerase chain reaction |
RUT | rapid urease test |
TNF | Tumor necrosis factor |
W | Wavenumber windows |
VacA | Vacuolating cytotoxin A |
References
- Marshall, B.J.; Warren, J.R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984, 1, 311–1315. [Google Scholar] [CrossRef]
- McColl, K.E. Clinical practice. Helicobacter pylori infection. N. Engl. J. Med. 2010, 362, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Blaser, M.J.; Atherton, J.C. Helicobacter infection persistence: Biology and disease. J. Clin. Investig. 2004, 113, 321–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peek, R.M.; Crabtree, J.M. H. pylori infection and gastric neoplasia. J. Pathol. 2006, 208, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Posselt, G.; Backert, S.; Wessler, S. The functional interplay of H. pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun. Signal 2013, 11, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, N.; Murata-Kamiya, N.; Yanagiya, K.; Suda, W.; Hattori, M.; Kanda, H.; Bingo, A.; Fujii, Y.; Maeda, S.; Koike, K.; et al. Mutual reinforcement of inflammation and carcinogenesis by the H. pylori CagA oncoprotein. Sci. Rep. 2015, 5, 10024. [Google Scholar] [CrossRef] [Green Version]
- Chmiela, M.; Karwowska, Z.; Gonciarz, W.; Allushi, B.; Stączek, P. Host pathogen interactions in Helicobacter pylori related gastric cancer. World J. Gastroenterol. 2017, 23, 1521–1540. [Google Scholar] [CrossRef]
- Chmiela, M.; Michetti, P. Inflammation, immunity, vaccines for Helicobacter pylori infection. Helicobacter 2006, 11, 21–26. [Google Scholar] [CrossRef]
- Michalkiewicz, J.; Helmin-Basa, A.; Grzywa, R.; Czerwionka-Szaflarska, M.; Szaflarska-Poplawska, A.; Mierzwa, G.; Marszalek, A.; Bodnar, M.; Nowak, M.; Dzierzanowska-Fangrat, K. Innate immunity components and cytokines in gastric mucosa in children with Helicobacter pylori infection. Med. Inflamm. 2015, 176–726. [Google Scholar] [CrossRef] [Green Version]
- Grebowska, A.; Moran, A.P.; Bielanski, W.; Matusiak, A.; Rechcinski, T.; Rudnicka, K.; Baranowska, A.; Rudnicka, W.; Chmiela, M. Helicobacter pylori lipopolysaccharide activity in human peripheral blood mononuclear leukocyte cultures. J. Physiol. Pharmacol. 2010, 61, 437–442. [Google Scholar]
- Chmiela, M.; Miszczyk, E.; Rudnicka, K. Structural modifications of Helicobacter pylori lipopolysaccharide: An idea for how to live in peace. World J. Gastroenterol. 2014, 20, 9882–9887. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, K.; Miszczyk, E.; Matusiak, A.; Walencka, M.; Moran, A.P.; Rudnicka, W.; Chmiela, M. Helicobacter pylori-driven modulation of NK cell expansion, intracellular cytokine expression and cytotoxic activity. Innate Immun. 2015, 21, 127–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varbanova, M.; Frauensclager, K.; Malfertheiner, P. Chronic gastritis—An update. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- O’ Rourke, J.L.; Lee, A. Animal models of Helicobacter pylori infection and disease. Microbes Infect. 2003, 5, 741–748. [Google Scholar] [CrossRef]
- Peek, R.M. Helicobacter pylori infection and disease: From humans to animal models. Dis. Models Mech. 2008, 1, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Bitter-Suermann, D.; Hoffman, T.; Burger, R.; Hadding, U. Linkage of total deficiency of the second component (C2) of the complement system and of genetic C2 polymorphism to the major histocompatibility complex of the guinea pig. J. Immunol. 1981, 127, 608–612. [Google Scholar]
- D’Erchia, A.M.; Gissi, C.; Pesole, G.; Saccone, C.; Arnason, U. The guinea pig is not a rodent. Nature 1996, 381, 597–600. [Google Scholar]
- Wicher, V.; Scarroza, A.M.; Ramsing, A.L.; Wicher, K. Cytokine gene expression in skin of susceptible guinea pigs infected with Treponema pallidum. Immunology 1998, 95, 242–247. [Google Scholar] [CrossRef]
- Whary, M.T.; Fox, J.G. Natural and experimental Helicobacter infection. Comp. Med. Sci. 2004, 54, 128–158. [Google Scholar]
- Mantsch, H.H.; Chapman, D. Infrared Ssectroscopy of Bbomolecules; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1996; ISBN 978-0-471-02184-1. [Google Scholar]
- Zhou, Y.P.; Xu, L.; Tang, L.J.; Jiang, J.H.; Shen, G.L.; Yu, R.Q.; Ozaki, Y. Gas Chromatography-Inductively Coupled Plasma-Mass Spectrometry for Mercury Speciation in sea food. Anal. Sci. 2007, 23, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Paraskevaidi, M.; Morais, C.L.; Ashton, K.M.; Stringfellow, H.F.; McVey, R.J.; Ryan, N.A.; O’Flynn, H.; Sivalingam, V.N.; Kitson, S.J.; MacKintosh, M.L.; et al. Detecting Endometrial Cancer by Blood Spectroscopy: A Diagnostic Cross-Sectional Study. Cancers 2020, 12, 1256. [Google Scholar] [CrossRef] [PubMed]
- Owens, G.L.; Gajjar, K.; Trevisan, J.; Fogarty, S.W.; Taylor, S.E.; Da Gama-Rose, B.; Martin-Hirsch, P.L.; Martin, F.L.J. Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients. Biophotonics 2014, 7, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Lima, K.M.; Gajjar, K.B.; Martin-Hirsch, P.L.; Martin, F.L. Segregation of ovarian cancer stage exploiting spectral biomarkers derived from blood plasma or serum analysis: ATR-FTIR spectroscopy coupled with variable selection methods. Biotechnol. Prog. 2015, 31, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, K.; Trevisan, J.; Owens, G.; Keating, P.J.; Wood, N.J.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F.L. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: A novel diagnostic approach for ovarian cancer. Analyst 2013, 21, 3917–3926. [Google Scholar] [CrossRef]
- Backhaus, J.; Mueller, R.; Formanski, N.; Szlama, N.; Meerpohl, H.-G.; Eidt, M.; Bugert, P. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vib. Spectrosc. 2010, 52, 173–177. [Google Scholar] [CrossRef]
- Erukhimovitch, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. FTIR spectroscopy examination of leukemia patients plasma. Vib. Spectros. 2006, 40, 40–46. [Google Scholar] [CrossRef]
- Guang, P.; Huang, W.; Guo, L.; Yang, X.; Huang, F.; Yang, M.; Wen, W.; Li, L. Blood-based FTIR-ATR spectroscopy coupled with extreme gradient boosting for the diagnosis of type 2 diabetes: A STARD compliant diagnosis research. Medicine 2020, 99, e19657. [Google Scholar] [CrossRef]
- Lechowicz, L.; Chrapek, M.; Gaweda, J.; Urbaniak, M.; Konieczna, I. Use of Fourier-transform infrared spectroscopy in the diagnosis of rheumatoid arthritis: A pilot study. Mol. Biol. Rep. 2016, 43, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Depciuch, J.; Sowa-Kucma, M.; Nowak, G.; Papp, M.; Gruca, P.; Misztak, P.; Parlinska-Wojtan, M. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 176, 30–37. [Google Scholar]
- Depciuch, J.; Parlinska-Wojtan, M. Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods. J. Pharm. Biomed. Anal. 2018, 150, 80–86. [Google Scholar] [CrossRef]
- Schipper, H.M.; Kwok, C.S.; Rosendahl, S.M.; Bandilla, D.; Maes, O.; Melmed, C.; Rabinovitch, D.; Burns, D.H. Spectroscopy of human plasma for diagnosis of idiopathic Parkinson’s disease. Biomark. Med. 2008, 2, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Hampel, H.; Buerger, K. Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. Cns Neurosci. Ther. 2009, 15, 358–374. [Google Scholar] [CrossRef] [PubMed]
- Peuchant, E.; Richard-Harston, S.; Bourdel-Marchasson, I.; Dartigues, J.-F.; Letenneur, L.; Barberger-Gateau, P.; ArnaudDabernat, S.; Daniel, J.-Y. Infrared spectroscopy: A reagent-free method to distinguish Alzheimer’s disease patients from normal-aging subjects. Transl. Res. 2008, 152, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonciarz, W.; Lechowicz, Ł.; Urbaniak, M.; Kaca, W.; Chmiela, M. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (FTIR) and Artificial Neural Networks Applied to Investigate Quantitative Changes of Selected Soluble Biomarkers, Correlated with H. pylori Infection in Children and Presumable Consequent Delayed Growth. J. Clin. Med. 2020, 9, 3852. [Google Scholar]
- Guleken, Z.; Ünübol, B.; Bilici, R.; Sarıbal, D.; Toraman, S.; Gündüz, O.; Kuruca, S.E. Investigation of the discrimination and characterization of blood serum structure in patients with opioid use disorder using IR spectroscopy and PCA-LDA analysis. J. Pharm. Biomed. Anal. 2020, 190, 113553. [Google Scholar] [CrossRef] [PubMed]
- Le Corvec, M.; Jezequel, C.; Monbet, V.; Fatih, N.; Charpentier, F.; Tariel, H.; Boussard-Plédel, C.; Bureau, B.; Loréal, O.; Sire, O.; et al. Mid-infrared spectroscopy of serum, a promising non-invasive method to assess prognosis in patients with ascites and cirrhosis. PLoS ONE 2017, 12, e0185997. [Google Scholar] [CrossRef]
- Depciuch, J.; Parlinska-Wojtan, M. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in olfactory bulbectomy animal depression model. J. Pharm. Biomed. Anal. 2018, 148, 24–31. [Google Scholar] [CrossRef]
- Tian, W.; Wang, D.; Fan, H.; Yang, L.; Ma, G. A Plasma Biochemical Analysis of Acute Lead Poisoning in a Rat Model by Chemometrics-Based Fourier Transform Infrared Spectroscopy: An Exploratory Study. Front. Chem. 2008, 6, 261. [Google Scholar] [CrossRef]
- Sankari, G.; Krishnamoorthy, E.; Jayakumaran, S.; Gunasekaran, G.; Priya, V.V.; Subramaniam, S.; Subramaniam, S.; Mohan, S.K. Analysis of serum immunoglobulins using Fourier transform infrared spectral measurements. Res. Art. Biol. Med. 2010, 3, 42–48. [Google Scholar]
- Spalding, K.; Bonnier, F.; Bruno, C.; Blasco, H.; Board, R.; Benz-de Bretagne, H.I.; Byrnef, H.; Butlera, J.; Chourpab, I.; Radhakrishnan, R.; et al. Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. Vib. Spectrosc. 2008, 99, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Byrne, H.J.; Bonnier, F.; Casey, A.; Maher, M.; McIntyre, J.; Efeoglu, E.; Farhane, Z. Advancing Raman microspectroscopy for cellular and subcellular analysis: Towards in vitro high-content spectralomic analysis. Appl. Opt. 2008, 57, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efeoglu, E.; Maher, M.A.; Casey, A.; Hugh, J.; Byrne, H.J. Toxicological assessment of nanomaterials: The role of in vitro Raman microspectroscopic analysis. Anal. Bioanal. Chem. 2018, 410, 1631–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgini, E.; Sabbatini, S.; Rocchetti, R.; Notarstefano, V.; Rubini, C.; Conti, C.; Orilisi, G.; Mitri, E.; Bedolla, D.E.; Vaccari, L. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: A new spectroscopic approach for studying the drug–cell interaction. Analyst 2018, 143, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- Notarstefano, V.; Sabbatini, S.; Pro, C.; Belloni, A.; Orilisi, G.; Rubini, C.; Byrne, H.J.; Vaccari, L.; Giorgini, E. Exploiting fourier transform infrared and Raman microspectroscopies on cancer stem cells from oral squamous cells carcinoma: New evidence of acquired cisplatin chemoresistance. Analyst 2020. [Google Scholar] [CrossRef]
- Notarstefano, V.; Gioacchini, G.; Byrne, H.J.; Zacà, C.; Sereni, E.; Vaccari, L.; Borini, C.; Carnevali, O.; Giorgini, E. Vibrational characterization of granulosa cells from patients affected by unilateral ovarian endometriosis: New insights from infrared and raman microspectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 206–214. [Google Scholar] [CrossRef]
- Gioacchini, G.; Notarstefano, V.; Sereni, E.; Zacà, C.; Coticchio, G.; Giorgini, E.; Vaccari, L.; Carnevali, O.; Borini, A. Does the molecular and metabolic profile of human granulosa cells correlate with oocyte fate? New insights by Fourier transform infrared microspectroscopy analysis. Mol. Hum. Reprod. 2018, 24, 521–532. [Google Scholar] [CrossRef] [Green Version]
- Verdonck, M.; Wald, N.; Janssis, J.; Yan, P.; Meyer, C.; Legat, A.; Speiser, D.E.; Desmedt, C.; Larsimont, D.; Sotoriou, C.; et al. Breast cancer and melanoma cell line identification by FTIR imaging after formalin-fixation and paraffin-embedding. Analyst 2013, 138, 4083–4091. [Google Scholar] [CrossRef] [Green Version]
- Notarstefano, V.; Sabbatini, S.; Conti, C.; Pisani, M.; Astolfi, P.; Pro, C.; Rubini, C.; Vaccari, L.; Giorgini, E. Investigation of human pancreatic cancer tissues by Fourier Transform Infrared Hyperspectral Imaging. J. Biophotonics 2020, 13, e201960071. [Google Scholar] [CrossRef]
- Depciuch, J.; Stanek-Widera, A.; Lange, D.; Biskup-Frużyńska, M.; Stanek-Tarkowska, J.; Czarny, W.; Cebulski, J. Spectroscopic analysis of normal and neoplastic (WI-FTC) thyroid tissue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 18–24. [Google Scholar] [CrossRef]
- Hughes, C.; Iqbal-Wahid, J.; Brown, M.; Shanks, J.H.; Eustace, A.; Denley, H.; Hoskin, P.J.; West, C.; Noel, W.; Gardner, P. FTIR microspectroscopy of selected rare diverse sub-variants of carcinoma of the urinary bladder. J. Biophotonics 2013, 6, 73–87. [Google Scholar] [CrossRef]
- Naumann, D.; Helm, D.; Labischinski, H.; Giesbrecht, P. The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR) In Modern Techniques for Rapid Microbiological Analysis; Nelson, W., Ed.; VCH: New York, NY, USA, 1991; pp. 43–96. [Google Scholar]
- Cooper, E.A.; Knutson, K. Fourier transform infrared spectroscopy investigations of protein structure. Pharm. Biotechnol. 1995, 7, 101–143. [Google Scholar] [CrossRef] [PubMed]
- Naumann, D. Infrared Spectroscopy in Microbiology. In Encyclopedia of Analytical Chemistry; Meyers, R., Ed.; Wiley: Chichester, UK, 2000; pp. 102–131. [Google Scholar]
- Banyay, M.; Sarkar, M.; Graslund, A. A library of IR bands of nucleic acids in solution. Biophys. Chem. 2003, 104, 477–488. [Google Scholar] [CrossRef]
- Gonciarz, W.; Krupa, A.; Hinc, K.; Obuchowski, M.; Moran, A.P.; Gajewski, A.; Chmiela, M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS ONE 2019, 14, e0220636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonciarz, W.; Krupa, A.; Chmiela, M. Proregenerative Activity of IL-33 in Gastric Tissue Cells Undergoing Helicobacter Pylori-Induced Apoptosis. Int. J. Mol. Sci. 2020, 21, 1801. [Google Scholar] [CrossRef] [Green Version]
- Deleris, G.; Petibois, C. Applications of FT-IR spectrometry to plasma contents analysis and monitoring. Vib. Spectrosc. 2003, 32, 129. [Google Scholar] [CrossRef]
- Petibois, C.; Cazorla, G.; Cassaigne, A.; Déléris, G. Plasma protein contents determined by Fourier-transform infrared spectrometry. Clin. Chem. 2001, 47, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Anderson, O.; Viberg, P.; Forsberg, P.; Nikolajeff, F.; Osterlund, L.; Klarsson, M. Nanocrystalline diamond sensor targeted for selective CRP detection: An ATR-FTIR spectroscopy study. Anal. Bioanal. Chem. 2006, 408, 3675–3680. [Google Scholar] [CrossRef]
- Reiter, G.; Hassler, N.; Weber, V.; Falkenhagen, D.; Fringeli, U.P. In situ FTIR ATR spectroscopic study of the interaction of immobilized human tumor necrosis factor-α with a monoclonal antibody in aqueous environment. Biochim. Biophys. Acta Proteins Proteom. 2004, 1699, 253–261. [Google Scholar]
- Bielanski, W.; Konturek, S.J. New approach to 13C urea breath test capsule-based modification with low dose of 13C urea in the diagnosis of Helicobacter pylori infection. J. Physil. Pharmacol. 1996, 47, 545–553. [Google Scholar]
- Wisniewska, M.; Nilsson, H.O.; Bak-Romaniszyn, L.; Rechcinski, T.; Bielanski, W.; Planeta-Malecka, I.; Plonka, M.; Konturek, S.; Wadstrom, T.; Rudnicka, W.; et al. Detection of specific Helicobacter pylori DNA and antigens in stool samples in dyspeptic patients and health subjects. Microbiol. Immunol. 2001, 46, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Atherton, J.; Axon, A.T.R.; Bazzoli, F.; Gensini, G.F.; Gisbert, J.P.; Graham, D.Y.; Rokkas, T.; et al. The European Helicobacter Study Group (EHSG). Management of Helicobacter pylori infection-the Maastricht IV/Florence Consensus Report. Gut 2012, 61, 646–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisholm, S.A.; Owen, R.J.; Teaure, E.L.; Saverymuttu, S. PCR-based diagnosis of Helicobacter pylori infection and real-time determinantion of claritromycin resistance directly from human gastric biopsy samples. J. Clin. Microbiol. 2001, 39, 1217–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Bonaventura, G.; Piccolomini, R.; Pompilio, A.; Zappacosta, R.; Picolomini, M.; Neri, M. Serum and mucosal cytokine profiles in patients with active Helicobacter pylori and in ischemic heart disease: Is there a relationship? Int. J. Immunopathol. Pharmacol. 2007, 20, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Bravo, D.; Hoare, A.; Soto, C.; Valenzuela, M.A.; Quest, A.F.G. Helicobacter pylori in human health and diseases: Mechanisms for local gastric and systemic effects. World J. Gastroenterol. 2018, 24, 3071–3089. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, H.; Venkataramani, M.; Bian, Z.; Liu, Y.; Perera, A.U. ATR-FTIR spectral discrimination between normal and tumorous mouse models of lymphoma and melanoma from serum samples. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemes, L.C.; Caetano Júnior, P.C.; Strixino, J.F.; Aguiar, J.; Raniero, L. Analysis of serum cortisol levels by Fourier Transform Infrared Spectroscopy for diagnosis of stress in athletes. Res. Biomed. Eng. 2016, 32, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, Z.; Sun, S.; Liu, M.; Zhang, H. A rapid method for detecting conformational changes during differentiation and apoptosis of HL60 cells by Fourier transform infrared spectroscopy. Biotechnol. Appl. Biochem. 2001, 33, 127–132. [Google Scholar] [CrossRef]
- Shen, Y.C.; Davies, A.G.; Linfield, E.H.; Elsey, T.S.; Taday, P.F.; Arnone, D.D. The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood. Phys. Med. Biol. 2003, 48, 2023–2032. [Google Scholar] [CrossRef]
- Miszczyk, E.; Walencka, M.; Chmiela, M. Modele zwierzęce w badaniach nad przebiegiem zakażeń Helicobacter pylori. Post. Hig. Med. Dośw. 2011, 68, 603–615. [Google Scholar] [CrossRef]
- Miszczyk, E.; Walencka, M.; Rudnicka, K.; Matusiak, A.; Rudnicka, W.; Chmiela, M. Antigen-specific lymphocyte as a marker of immune response in guinea pigs with sustained Helicobacter pylori infection. Acta Biochim. Pol. 2014, 61, 295–303. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Hassanshahi, G.H.; Nemati, M. Serum levels of high-sensitivity C-reactive protein (hs-CRP) in Helicobacter pylori-infected peptic ulcer patients and its association with bacterial CagA virulence factor. Dig. Dis. Sci. 2009, 54, 2612. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Suzuki, K.; Taki, K.; Niwa, T.; Kurotsuchi, S.; Ando, H.; Hamajima, N. Significant association between Helicobacter pylori infection and serum C-reactive protein. Int. J. Med. Sci. 2008, 5, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leontiadis, G.I.; Sharma, V.K.; Howden, C.W. Non–Gastrointestinal Tract Associations of Helicobacter pylori Infection: What Is the Evidence? Arch. Intern. Med. 1999, 15, 925–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, J.; Goto, H.; Arisawa, T.; Niwa, Y.; Hayakawa, T.; Nakayama, A.; Mori, N. Regulation of tumor necrosis factor (TNF) induced apoptosis by soluble TNF receptor in Helicobacter pylori infection. Gut 1999, 45, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.T.; Chan, F.K.; Chan, W.B.; Sung, J.J.; Tsoi, C.L.; To, K.F.; Lai, C.W.; Cockram, C.S. Helicobacter pylori infection in Chinese subjects with type 2 diabetes. Endocr. Res. 2001, 27, 171–177. [Google Scholar] [CrossRef]
- Peach, H.G.; Barnett, N.E. Helicobacter pylori infection and fasting plasma glucose concentration. J. Clin. Pathol. 2001, 54, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Devrajani, B.R.; Shah, S.Z.; Soomro, A.A.; Devrajani, T. Type 2 diabetes mellitus: A risk factor for Helicobacter pylori infection: A hospital based case-control study. Int. J. Diabetes. Dev. Ctries 2010, 30, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, V.M.; Mulla, Z.D.; Ortiz, M.; Graham, D.Y. Iron deficiency and Helicobacter pylori infection in the United States. Am. J. Epidem. 2006, 167, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.H.; Huang, X.L.; Xiong, P.; Zhu, C.Y.; Huang, Y.L.; Lu, L.G.; Lin, H. Does Helicobacter pylori infection play a role in iron deficiency anemia? A meta-analysis. World J. Gastroenterol. 2010, 16, 886. [Google Scholar]
- Chmiela, M.; Ławnik, M.; Czkwianianc, E.; Rechciński, T.; Płaneta-Małecka, I.; Rudnicka, W. Systemic humoral response to Helicobacter pylori in children and adults. Arch. Immunol. Ther. Exp. 1998, 46, 161–167. [Google Scholar]
- Rechcinski, T.; Chmiela, M.; Małecka-Panas, E.; Płaneta-Małecka, I.; Rudnicka, W. Serological indicators of Helicobacter pylori infection in adult dyspeptic patients and health blood donors. Microbiol. Immunol. 1997, 41, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mitchell, T.M. Machine Learning; The McGraw-Hill Companies Press: New York, NY, USA, 1997. [Google Scholar]
- Norusis, M.J. Chapter 16: Cluster Analysis. PASW Statistics 18 Statistical Procedures Companion; Prentice Hall: Upper Saddle River, NJ, USA, 2010; pp. 361–391. [Google Scholar]
- Rencher, A.C. Methods of Multivariate Analysis, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
Lp | Aim of Research | Application | Organisms | Tested Biological Sample | References |
---|---|---|---|---|---|
1 | Detection of endometrial cancer | endometrial cancer | Human | serum | [22] |
2 | Diagnosis of ovarian cancer | ovarian cancer | Human | serum | [23,24,25] |
3 | Diagnosis of breast cancer | breast cancer | Human | serum | [26] |
4 | Examination of leukemia patients | leukemia | Human | serum | [27] |
5 | Diagnosis of type 2 diabetes | type 2 diabetes | Human | serum | [28] |
6 | Differentiation of rheumatoid arthritis (RA) patients from healthy individuals | rheumatoid arthritis | Human | serum | [29] |
7 | Diagnosis and monitoring therapy of depression; Differences between dried and liquid blood serum samples | depression | Rat Human | serum | [30] [31] |
8 | Diagnosis of idiopathic Parkinson’s disease | idiopathic Parkinson’s disease | Human | serum | [32] |
9 | Detected biological marker Alzheimer’s disease | Alzheimer’s disease | Human | serum | [33,34] |
10 | Investigation of quantitative changes of selected soluble biomarkers, correlated with H. pylori infection in children and presumable consequent delayed growth | delayed growth | Human | serum | [35] |
11 | Differentiation of serum samples of opioid users from healthy individuals | opioid-driven disorders | Human | serum | [36] |
12 | Prognosis in patients with ascites and cirrhosis | ascites, cirrhosis | Human | serum | [37] |
13 | Qualitative and quantitative changes in phospholipids and proteins in olfactory bulbectomy | olfactory bulbectomy | Rat | serum | [38] |
14 | Biochemical analysis of acute lead poisoning | acute lead poisoning | Rat | serum | [39] |
15 | Analysis of serum immunoglobulins | analysis of immunoglobulins | Human | serum | [40] |
16 | Quantification of protein concentration | protein concentration | Human | serum | [41] |
17 | Differentiation of lung carcinoma (A549) cell line; Analysis of primary (Oral Squamous Carcinoma Cells, grade 3) OSCC_G3 cell line | in vitro drug activity | Human | cell line | [42,43] [44,45] |
18 | Differentiation of granulosa cells | ovarian endometriosis; oocytes | Human | cell line | [46] [47] |
19 | Identification of breast cancer and melanoma | breast cancer; melanoma | Human | cell line | [48] |
20 | Diagnostic of human pancreatic cancer | pancreatic cancer | Human | tissue | [49] |
21 | Diagnostic of neoplastic thyroid tissue | thyroid tissue | Human | tissue | [50] |
22 | Differentiation of urinary bladder cancer | urinary bladder cancer | Human | tissue | [51] |
Study Groups | n | H. pylori Negative | H. pylori Positive | * p-Value |
---|---|---|---|---|
anti-H. pylori IgM | 60 | 20 (OD = 0.254 ± 0.061) | 40 (OD = 0.610 ± 0.055) | 0.0001 |
anti-H. pylori IgG | 60 | 20 (OD = 0.462 ± 0.053) | 40 (OD = 1.241 ± 0.051) | 0.0001 |
Molecule | Selected Absorption Band [cm−1] | ID | Possible Chemical Bond | One of Possible Chemical Bond | Reference |
---|---|---|---|---|---|
Glucose | 1062–997 | [B1] | C-O symmetric stretching of glucose region C–O stretching | Carboxylic acids | [58] |
A2 globulins | 1060–1116 | [B2] | C–C–C bending C–O stretching C–N stretching | Amino acid | [58] |
IgM | 1428–1360 | [B3] | N–O symmetric stretching O–H bending methyl symmetric deformation | Carboxylic acid Amino acid | [59] |
IgG1 | 1419–1361 | [B4] | C–H rocking, C–C stretching methyl symmetric deformations | Hydrocarbons Amino acid | [59] |
Transferrin | 1428–1363 | [B5] | CH2 wagging O–H bending | Carboxylic acid | [59] |
IgG4 | 1538–1505 | [B6] | CO2 asymmetric stretching C–N stretching, NH bending | Amide II | [59] |
CRP | 1541–1600 | [B7] | C–C stretching NH bending N–H in plane bending vibration coupled to C–N stretching vibration protein | Amide II | [60] |
TNF | 1690–1636 | [B8] | C=O symmetric stretching C=C stretching NH2 scissoring | Amide I | [61] |
Window | Absorpcion Band [cm−1] | χ2-Square Test Value | p-Value (× 10−5) | One of Possible Chemical Bond |
---|---|---|---|---|
W4 | 1061 | 7.21 | 21.4 | N–H bending |
1105 | 4.08 | 33.5 | C–O stretching | |
W3 | 1394 | 15.22 | 21.1 | asymmetric C–H, scissoring of –CH3 |
1395 | 17.97 | 31.1 | asymmetric C–H, scissoring of –CH3 | |
1400 | 18.51 | 20.9 | O–H bending | |
1412 | 15.21 | 17.7 | CO2 asymmetric stretching | |
1420 | 13.36 | 21.1 | CO2 asymmetric stretching | |
W2 | 1522 | 16.30 | 14.4 | C=C bending |
1541 | 18.31 | 23.2 | C=C bending | |
1630 | 14.3 | 25.5 | NH2 scissoring |
Model Details | |
---|---|
Number of nearest neighbors | 1 |
Distance | Manhattan |
Standardization | No |
Averaging | Homogeneous |
Quality of the k-NN Model | |
Total number of spectra validation group | 60 |
True positive (TP) | 40 |
False Positive (FP) | 0 |
False Negative (FN) | 1 |
True negative (TN) | 20 |
Sensivity | 0.97 |
Miss rate | 0.08 |
Specificity | 1.00 |
Fall out | 0.00 |
Precision | 1.00 |
False discovery rate | 0.00 |
False omission rate | 0.05 |
Negative predictive value | 0.92 |
Positive likelihood ratio | ND |
Negative likelihood ratio | 0.11 |
Diagnostic odds ratio | ND |
Accuracy | 0.98 |
Prevalence | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonciarz, W.; Lechowicz, Ł.; Urbaniak, M.; Kaca, W.; Chmiela, M. Use of Fourier-Transform Infrared Spectroscopy (FT-IR) for Monitoring Experimental Helicobacter pylori Infection and Related Inflammatory Response in Guinea Pig Model. Int. J. Mol. Sci. 2021, 22, 281. https://doi.org/10.3390/ijms22010281
Gonciarz W, Lechowicz Ł, Urbaniak M, Kaca W, Chmiela M. Use of Fourier-Transform Infrared Spectroscopy (FT-IR) for Monitoring Experimental Helicobacter pylori Infection and Related Inflammatory Response in Guinea Pig Model. International Journal of Molecular Sciences. 2021; 22(1):281. https://doi.org/10.3390/ijms22010281
Chicago/Turabian StyleGonciarz, Weronika, Łukasz Lechowicz, Mariusz Urbaniak, Wiesław Kaca, and Magdalena Chmiela. 2021. "Use of Fourier-Transform Infrared Spectroscopy (FT-IR) for Monitoring Experimental Helicobacter pylori Infection and Related Inflammatory Response in Guinea Pig Model" International Journal of Molecular Sciences 22, no. 1: 281. https://doi.org/10.3390/ijms22010281
APA StyleGonciarz, W., Lechowicz, Ł., Urbaniak, M., Kaca, W., & Chmiela, M. (2021). Use of Fourier-Transform Infrared Spectroscopy (FT-IR) for Monitoring Experimental Helicobacter pylori Infection and Related Inflammatory Response in Guinea Pig Model. International Journal of Molecular Sciences, 22(1), 281. https://doi.org/10.3390/ijms22010281