The Interactions of Nintedanib and Oral Anticoagulants—Molecular Mechanisms and Clinical Implications
Abstract
:1. Introduction
2. Receptor Tyrosine Kinases (Phosphotransferases)
3. Mode of Action
4. Complications
Nintedanib and Bleeding Risk Based on Registration Trials
5. Concomitant Use of Nintedanib and Antithrombotic Drugs
5.1. New Non-Vitamin K Antagonist Oral Anticoagulants (DOACs−Direct Oral Anticoagulants)
5.2. Inclusion of DOACs in View of Bleeding Risk
5.3. Bleeding Risk Scores
5.4. Antidote
5.5. Treatment Monitoring
5.5.1. Laboratory Monitoring of Dabigatran Treatment
5.5.2. Laboratory Monitoring of Rivaroxaban Treatment
5.5.3. Laboratory Monitoring of Apixaban Treatment
5.6. Clinical Implications
- bleeding during DOAC treatment,
- before surgery or an emergency invasive procedure,
- in patients taking other drugs affecting the pharmacokinetics of DOACs,
- in patients with very low or high body weight,
- in patients taking DOACs with declining renal function,
- perioperative management in patients treated with DOACs,
- reversal of the anticoagulant effect of DOACs,
- suspected overdose of DOACs.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACT | Prolonged activated clotting time |
AF | Atrial fibrillation |
APTT | Activated partial thromboplastin time |
ASA | Acetylsalicylic acid |
ATC Code | Anatomical therapeutic chemical classification system |
ATP | Adenosine triphosphate |
COVID-19 | Coronavirus disease 2019 |
DGF | Amino acid sequence Asp-Phe-Gly |
DOAC | Direct oral anticoagulants |
dTT | Diluted thrombin time |
ECM | Extracellular matrix |
ECT | Ecarin clotting time |
EMA | European Medicines Agency |
ERK | Extracellular signal-regulated kinases |
FDA | Food and Drug Administration |
FGF | Fibroblast growth factor |
FGFR | Fibroblast growth factor feceptor |
Flt-3 | Receptor type tyrosine protein kinase FLT3 |
GP IIb/IIIa | Glycoprotein IIb/IIIa |
HAS-BLED | Bleeding risk in atrial fibrillation score |
HAS-BLED | hypertension, age, stroke, prior major bleeding, labile INR, abnormal liver or kidney function, drugs |
IC50 | Half-maximal inhibitory concentration |
ICD-10-CM | International Classification of Diseases, Tenth Revision, Clinical Modification |
ILD | Interstitial lung diseases |
IPF | Idiopathic pulmonary fibrosis |
LCK | Lymphocyte-specific protein tyrosine kinase |
LMWH | Low-molecular weight heparin |
LYN | Tyrosine-protein kinase Lyn |
MAPK | Mitogen-activated protein kinase |
MEK | Mitogen-activated protein kinase |
NSCLC | Non-small cell lung cancer |
ORBIT | Outcomes Registry for Better Informed Treatment of Atrial Fibrillation |
P2Y12 | Receptor for endogenous nucleotides Type 12 |
PCC | Prothrombin complex factor |
PDB ID | Protein Data Bank identification code |
PDGF | Platelet derived growth factor |
PDGFR | Platelet derived growth factor receptors |
P-gl | P-Glycoprotein |
PI3K | Phosphoinositide 3-Kinase |
PT | Prothrombin time |
Raf | RAF kinases, serine/threonine specific protein kinase |
Ras | Ras protein, guanosine nucleotide binding protein |
RTK | Receptor tyrosine kinases |
Src | Src kinase, nonreceptor tyrosine kinase |
TDM | Therapeutic drug monitoring |
TF | Tissue factor |
TFPI | Tissue factor pathway inhibitor |
TGA | Therapeutic Goods Administration |
TT | Thrombin time |
TxA2 | Thromboxane A2 |
UFH | Unfractionated heparin |
VEDF | Vascular endothelial growth factor |
VEDFR | Vascular endothelial growth factor receptor |
VKA | Vitamin K antagonist |
References
- Roth, G.J.; Binder, R.; Colbatzky, F.; Dallinger, C.; Schlenker-Herceg, R.; Hilberg, F.; Wollin, S.-L.; Kaiser, R. Nintedanib: From Discovery to the Clinic. J. Med. Chem. 2015, 58, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Varone, F.; Sgalla, G.; Iovene, B.; Bruni, T.; Richeldi, L. Nintedanib for the treatment of idiopathic pulmonary fibrosis. Expert Opin. Pharmacother. 2018, 19, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Anatomical Therapeutic Chemical Classification System. Available online: http://www.atccode.com/ (accessed on 23 December 2020).
- J84.112—Idiopathic Pulmonary Fibrosis. Available online: https://www.unboundmedicine.com/icd/view/ICD-10-CM/881192/all/J84_112___Idiopathic_pulmonary_fibrosis (accessed on 23 December 2020).
- Terzyan, S.; Shen, T.; Liu, X.; Huang, Q.; Teng, P.; Zhou, M.; Wu, J. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J. Biol. Chem. 2019, 294, 10428–10437. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef]
- Therapeutic Goods Administration (Australia). Extract from the Clinical Evaluation Report for Nintedanib Esilate. April 2015. Available online: https://www.tga.gov.au/sites/default/files/auspar-nintedanib-esilate-60208-cer.pdf (accessed on 23 December 2020).
- FDA Center for Drug Evaluation and Research. Nintedanib Clinical Pharmacology NDA Review. February 2014. Available online: http://www.accessdata.fda.gov/drugsatfdadocs/nda/2014/205832Orig1s000ClinPharmR.pdf (accessed on 23 December 2020).
- European Medicines Agency. Ofev. Summary of Product Characteristics. 26 November 2018. Available online: https://www.ema.europa.eu/documents/product-information/ofev-epar-product-information_en.pdf (accessed on 23 December 2020).
- McCormack, P.L. Nintedanib: First global approval. Drugs 2015, 75, 129–139. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Assessment Report for Ofev (Nintedanib). 20 November 2014. Available online: https://www.ema.europa.eu/en/documents/assessment-report/ofev-epar-public-assessment-report_en.pdf (accessed on 23 December 2020).
- FDA Approves First Treatment for Group of Progressive Interstitial Lung Diseases U.S. Food and Drug Administration (FDA). Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-group-progressive-interstitial-lung-diseases (accessed on 23 December 2020).
- Sun, C.; Bernards, R. Feedback and redundancy in receptor tyrosine kinase signaling: Relevance to cancer therapies. Trends Biochem. Sci. 2014, 39, 465–474. [Google Scholar] [CrossRef]
- Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015, 36, 422–439. [Google Scholar] [CrossRef] [Green Version]
- Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2000, 103, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
- Hunter, T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: Its role in cell growth and disease. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998, 353, 583–605. [Google Scholar] [CrossRef] [Green Version]
- Rask-Andersen, M.; Zhang, J.; Fabbro, D.; Schiöth, H.B. Advances in kinase targeting: Current clinical use and clinical trials. Trends Pharmacol. Sci. 2014, 35, 604–620. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 2016, 103, 26–48. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. The role of small molecule Kit protein-tyrosine kinase inhibitors in the treatment of neoplastic disorders. Pharmacol. Res. 2018, 133, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J. BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollin, L.; Wex, E.; Pautsch, A.; Schnapp, G.; Hostettler, K.E.; Stowasser, S.; Kolb, M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 2015, 45, 1434–1445. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Grütter, C.; Rauh, D. Strategies for the selective regulation of kinases with allosteric modulators: Exploiting exclusive structural features. ACS Chem. Biol. 2013, 8, 58–70. [Google Scholar] [CrossRef]
- Asao, T.; Takahashi, F.; Takahashi, K. Resistance to molecularly targeted therapy in non-small-cell lung cancer. Respir. Investig. 2019, 57, 20–26. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, S.; Zhao, W.; Qin, S.; Chu, Q.; Wu, K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer 2018, 17, 53. [Google Scholar] [CrossRef] [Green Version]
- Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 2005, 353, 172–187. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.; Seeliger, M.A. Targeting conformational plasticity of protein kinases. ACS Chem. Biol. 2015, 10, 190–200. [Google Scholar] [CrossRef]
- Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol. 2019, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.W.; Adjei, A.A. Novel agents on the horizon for cancer therapy. CA Cancer J. Clin. 2009, 59, 111–137. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Shen, A.; Ding, J.; Geng, M. Molecularly targeted cancer therapy: Some lessons from the past decade. Trends Pharmacol. Sci. 2014, 35, 41–50. [Google Scholar] [CrossRef]
- Barnes, P.J. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat. Rev. Drug Discov. 2013, 12, 543–559. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.D.; Flanagan, M.E.; Telliez, J.-B. Discovery and development of Janus Kinase (JAK) inhibitors for inflammatory diseases: Miniperspective. J. Med. Chem. 2014, 57, 5023–5038. [Google Scholar] [CrossRef] [PubMed]
- Banks, A.S.; McAllister, F.E.; Camporez, J.P.G.; Zushin, P.-J.H.; Jurczak, M.J.; Laznik-Bogoslavski, D.; Shulman, G.I.; Gygi, S.P.; Spiegelman, B.M. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature 2015, 517, 391–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majewski, S.; Piotrowski, W.J. Nintedanib—nowa opcja terapeutyczna dla chorych na samoistne włóknienie płuc. Adv. Respir. Med. 2016, 84, 114–122. [Google Scholar]
- Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.-Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef]
- Awasthi, N.; Schwarz, R.E. Profile of nintedanib in the treatment of solid tumors: The evidence to date. Oncotargets Ther. 2015, 8, 3691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, W.-T.; Shiau, C.-W.; Li, Y.-S.; Chang, C.-W.; Huang, J.-W.; Hsueh, T.-T.; Yu, H.-C.; Chen, K.-F. Nintedanib (BIBF-1120) inhibits hepatocellular carcinoma growth independent of angiokinase activity. J. Hepatol. 2014, 61, 89–97. [Google Scholar] [CrossRef]
- Shan, Y.; Kim, E.T.; Eastwood, M.P.; Dror, R.O.; Seeliger, M.A.; Shaw, D.E. How does a drug molecule find its target binding site? J. Am. Chem. Soc. 2011, 133, 9181–9183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wind, S.; Schmid, U.; Freiwald, M.; Marzin, K.; Lotz, R.; Ebner, T.; Stopfer, P.; Dallinger, C. Clinical pharmacokinetics and pharmacodynamics of nintedanib. Clin. Pharmacokinet. 2019, 58, 1131–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B.K.; Hubbard, S.R.; Schlessinger, J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 1997, 276, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Yan, X.-E.; Yin, Y.; Yun, C.-H. Structural and biochemical studies of the PDGFRA kinase domain. Biochem. Biophys. Res. Commun. 2016, 477, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.-S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Stopfer, P.; Rathgen, K.; Bischoff, D.; Lüdtke, S.; Marzin, K.; Kaiser, R.; Wagner, K.; Ebner, T. Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers. Xenobiotica 2011, 41, 297–311. [Google Scholar] [CrossRef]
- Boehringer Ingelheim. OFEV® (Nintedanib) Capsules, for Oral Use [package Insert]. Ridgefield: Boehringer Ingelheim Pharmaceuticals. 2018. Available online: http://docs.boehringer-ingelheim.com/Prescribing.Information/PIs/Ofev/ofev.pdf (accessed on 23 December 2020).
- Nintedanib ChPL Aneks. Available online: https://ec.europa.eu/health/documents/community-register/2015/20150115130436/anx_130436_pl.pdf (accessed on 23 December 2020).
- Luedtke, D.; Marzin, K.; Jungnik, A.; von Wangenheim, U.; Dallinger, C. Effects of ketoconazole and rifampicin on the pharmacokinetics of nintedanib in healthy subjects. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Bendstrup, E.; Wuyts, W.; Alfaro, T.; Chaudhuri, N.; Cornelissen, R.; Kreuter, M.; Nielsen, K.M.; Münster, A.-M.B.; Myllärniemi, M.; Ravaglia, C. Nintedanib in idiopathic pulmonary fibrosis: Practical management recommendations for potential adverse events. Respiration 2019, 97, 173–184. [Google Scholar] [CrossRef]
- Hughes, G.; Toellner, H.; Morris, H.; Leonard, C.; Chaudhuri, N. Real world experiences: Pirfenidone and nintedanib are effective and well tolerated treatments for idiopathic pulmonary fibrosis. J. Clin. Med. 2016, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Richeldi, L.; Du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [Green Version]
- Corte, T.; Bonella, F.; Crestani, B.; Demedts, M.G.; Richeldi, L.; Coeck, C.; Pelling, K.; Quaresma, M.; Lasky, J.A. Safety, tolerability and appropriate use of nintedanib in idiopathic pulmonary fibrosis. Respir. Res. 2015, 16, 116. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, L. Nintedanib in advanced NSCLC: Management of adverse events. Lung Cancer Manag. 2016, 5, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Mellemgaard, A.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Cheng, Y.; Zarogoulidis, K.; Luft, A.; Bennouna, J.; Barrueco, J. Anti-angiogenic-specific adverse events in patients with non-small cell lung cancer treated with nintedanib and docetaxel. Lung Cancer 2015, 90, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Crestani, B.; Huggins, J.T.; Kaye, M.; Costabel, U.; Glaspole, I.; Ogura, T.; Song, J.W.; Stansen, W.; Quaresma, M.; Stowasser, S. Long-term safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis: Results from the open-label extension study, INPULSIS-ON. Lancet Respir. Med. 2019, 7, 60–68. [Google Scholar] [CrossRef]
- Lancaster, L.; Crestani, B.; Hernandez, P.; Inoue, Y.; Wachtlin, D.; Loaiza, L.; Quaresma, M.; Stowasser, S.; Richeldi, L. Safety and survival data in patients with idiopathic pulmonary fibrosis treated with nintedanib: Pooled data from six clinical trials. BMJ Open Respir. Res. 2019, 6, e000397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Portal, J.A. Efficacy and safety of nintedanib for the treatment of idiopathic pulmonary fibrosis: An update. Drugs 2018, 18, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, A.H.; Johnson, P. Clinical use of nintedanib in patients with idiopathic pulmonary fibrosis. BMJ Open Respir. Res. 2017, 4. [Google Scholar] [CrossRef]
- Brunnemer, E.; Wälscher, J.; Tenenbaum, S.; Hausmanns, J.; Schulze, K.; Seiter, M.; Heussel, C.P.; Warth, A.; Herth, F.J.; Kreuter, M. Real-world experience with nintedanib in patients with idiopathic pulmonary fibrosis. Respiration 2018, 95, 301–309. [Google Scholar] [CrossRef]
- Hart, R.G.; Pearce, L.A.; Aguilar, M.I. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann. Intern. Med. 2007, 146, 857–867. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Verhamme, P.; Alings, M.; Antz, M.; Hacke, W.; Oldgren, J.; Sinnaeve, P.; Camm, A.J.; Kirchhof, P. EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: Executive summary. Eur. Heart J. 2013, 34, 2094–2106. [Google Scholar] [CrossRef] [Green Version]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Casadei, B.; Castella, M.; Diener, H.; Heidbuchel, H.; Hendriks, J.; Hindricks, G. Wytyczne ESC dotyczące leczenia migotania przedsionków w 2016 roku, opracowane we współpracy z EACTS. Kardiol. Pol. 2016, 74, 1359–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowski, M.; Witkowska, M.; Smolewski, P. The latest recommendations on the use of new oral anticoagulants in routine practice. Adv. Hyg. Exp. Med. 2016, 70, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Ruff, C.T.; Giugliano, R.P.; Antman, E.M.; Crugnale, S.E.; Bocanegra, T.; Mercuri, M.; Hanyok, J.; Patel, I.; Shi, M.; Salazar, D. Evaluation of the novel factor Xa inhibitor edoxaban compared with warfarin in patients with atrial fibrillation: Design and rationale for the Effective aNticoaGulation with factor xA next GEneration in Atrial Fibrillation–Thrombolysis In Myocardial Infarction study 48 (ENGAGE AF–TIMI 48). Am. Heart J. 2010, 160, 635–641.e2. [Google Scholar] [PubMed]
- Karaś-Głodek, M.; Styczeń, A.; Wysokiński, A.; Zapolski, T. Atrial fibrillation—The most common arrhythmia in older age. Differences of anticoagulation treatment. Gerontol. Pol. 2018, 26, 201–208. [Google Scholar]
- Cohen, A.; Hamilton, M.; Mitchell, S.; Phatak, H.; Liu, X.; Bird, A.; Tushabe, D.; Batson, S. Comparison of the novel oral anticoagulants apixaban, dabigatran, edoxaban, and rivaroxaban in the initial and long-term treatment and prevention of venous thromboembolism: Systematic review and network meta-analysis. PLoS ONE 2015, 10, e0144856. [Google Scholar] [CrossRef]
- Venker, B.T.; Ganti, B.R.; Lin, H.; Lee, E.D.; Nunley, R.M.; Gage, B.F. Safety and efficacy of new anticoagulants for the prevention of venous thromboembolism after hip and knee arthroplasty: A meta-analysis. J. Arthroplast. 2017, 32, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef]
- Czuprynska, J.; Patel, J.P.; Arya, R. Current challenges and future prospects in oral anticoagulant therapy. Br. J. Haematol. 2017, 178, 838–851. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, A.R.; Zhou, L.; Gellad, W.F.; Lee, J.K.; Slack, M.K.; Martin, J.R.; Lo-Ciganic, W.-H. Effectiveness and safety of non–vitamin k antagonist oral anticoagulants for atrial fibrillation and venous thromboembolism: A systematic review and meta-analyses. Clin. Ther. 2017, 39, 1456–1478.e36. [Google Scholar] [CrossRef]
- Łukasik, M.; Zawilska, K.; Undas, A. Intracranial bleedings in patients on long-term anticoagulant treatment: Benefits from oral thrombin and factor Xa inhibitors in clinical practice. Neurol. Neurochir. Pol. 2015, 49, 171–179. [Google Scholar] [CrossRef]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Špinar, J. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Cairns, J.A.; Mitchell, L.B.; Macle, L.; Stiell, I.G.; Gladstone, D.; McMurtry, M.S.; Connolly, S.; Cox, J.L.; Dorian, P. 2014 focused update of the Canadian Cardiovascular Society Guidelines for the management of atrial fibrillation. Can. J. Cardiol. 2014, 30, 1114–1130. [Google Scholar] [CrossRef] [PubMed]
- Apostolakis, S.; Lane, D.A.; Buller, H.; Lip, G.Y. Comparison of the CHADS2, CHA2DS2-VASc and HAS-BLED scores for the prediction of clinically relevant bleeding in anticoagulated patients with atrial fibrillation: The AMADEUS trial. Thromb. Haemost. 2013, 110, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.C.; Simon, D.N.; Thomas, L.E.; Hylek, E.M.; Gersh, B.J.; Ansell, J.E.; Kowey, P.R.; Mahaffey, K.W.; Chang, P.; Fonarow, G.C. The ORBIT bleeding score: A simple bedside score to assess bleeding risk in atrial fibrillation. Eur. Heart J. 2015, 36, 3258–3264. [Google Scholar] [CrossRef] [Green Version]
- Ezekowitz, M.D.; Connolly, S.; Parekh, A.; Reilly, P.A.; Varrone, J.; Wang, S.; Oldgren, J.; Themeles, E.; Wallentin, L.; Yusuf, S. Rationale and design of RE-LY: Randomized evaluation of long-term anticoagulant therapy, warfarin, compared with dabigatran. Am. Heart J. 2009, 157, 805–810.e2. [Google Scholar] [CrossRef]
- Pisters, R.; Lane, D.A.; Nieuwlaat, R.; De Vos, C.B.; Crijns, H.J.; Lip, G.Y. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest 2010, 138, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Jędrusik, P.; Gaciong, Z. Postępowanie w Przypadku Krwawienia Podczas Leczenia Przeciwzakrzepowego. Swoiste Czynniki Odwracające Działanie Leków z Grupy NOAC; PZWL: Warszawa, Poland, 2017. [Google Scholar]
- Pollack, C.V., Jr.; Reilly, P.A.; Eikelboom, J.; Glund, S.; Verhamme, P.; Bernstein, R.A.; Dubiel, R.; Huisman, M.V.; Hylek, E.M.; Kamphuisen, P.W. Idarucizumab for dabigatran reversal. N. Engl. J. Med. 2015, 373, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Pollack, C.V., Jr.; Reilly, P.A.; Van Ryn, J.; Eikelboom, J.W.; Glund, S.; Bernstein, R.A.; Dubiel, R.; Huisman, M.V.; Hylek, E.M.; Kam, C.-W. Idarucizumab for dabigatran reversal—Full cohort analysis. N. Engl. J. Med. 2017, 377, 431–441. [Google Scholar] [CrossRef]
- Korzeniewska-Rybicka, I.; Karpińska, A. Andeksanet alfa—Wyczekiwane swoiste antidotum w krwawieniach spowodowanych przez ksabany. Med. Trib. 2018, 10, 1–15. [Google Scholar]
- Milling, T.J., Jr.; Kaatz, S. Preclinical and clinical data for factor Xa and “universal” reversal agents. Am. J. Med. 2016, 129, S80–S88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansell, J.; Laulicht, B.; Bakhru, S.; Hoffman, M.; Steiner, S.; Costin, J.C. Ciraparantag safely and completely reverses the anticoagulant effects of low molecular weight heparin. Thromb. Res. 2016, 146, 113–118. [Google Scholar] [CrossRef]
- Ansell, J.E.; Bakhru, S.H.; Laulicht, B.E.; Steiner, S.S.; Grosso, M.; Brown, K.; Dishy, V.; Noveck, R.J.; Costin, J.C. Use of PER977 to reverse the anticoagulant effect of edoxaban. N. Engl. J. Med. 2014, 371, 2141–2142. [Google Scholar] [CrossRef] [PubMed]
- Mekaj, Y.H.; Mekaj, A.Y.; Duci, S.B.; Miftari, E.I. New oral anticoagulants: Their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events. Ther. Clin. Risk Manag. 2015, 11, 967. [Google Scholar] [CrossRef] [Green Version]
- Zawilska, K. Monitorowanie leczenia nowymi doustnymi antykoagulantami—kiedy, dlaczego i jakimi metodami? J. Transfus. Med. 2014, 7, 93–96. [Google Scholar]
- Ozierański, K.; Balsam, P.; Opolski, G. 12 najczęstszych sytuacji klinicznych związanych ze stosowaniem NOAC u pacjentów z AF po uwzględnieniu wytycznych ESC z 2016 r. Kardiol. Dyplomie 2017, 6, 1–15. [Google Scholar]
- Grześk, G.; Janiszewska, E.; Malinowski, B.; Kubica, A.; Wiciński, M. Adherence in patients with atrial fibrillation treated with dabigatran. Kardiol. Pol. 2018, 76, 1562–1563. [Google Scholar] [CrossRef] [Green Version]
- Kitchen, S.; Gray, E.; Mackie, I.; Baglin, T.; Makris, M. Measurement of non-coumarin anticoagulants and their effects on tests of Haemostasis: Guidance from the British Committee for Standards in Haematology. Br. J. Haematol. 2014, 166, 830–841. [Google Scholar] [CrossRef]
- Samuelson, B.; Cuker, A. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 2017, 31, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Góralczyk, T.; Undas, A. Oznaczanie aktywności antykoagulacyjnej bezpośrednich doustnych antykoagulantów–aktualny stan wiedzy i doświadczenia własne laboratorium. Diagn. Lab. 2017, 53, 161–168. [Google Scholar]
- Hillarp, A.; Strandberg, K.; Baghaei, F.; Fagerberg Blixter, I.; Gustafsson, K.M.; Lindahl, T.L. Effects of the oral, direct factor Xa inhibitor edoxaban on routine coagulation assays, lupus anticoagulant and anti-Xa assays. Scand. J. Clin. Lab. Investig. 2018, 78, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripodi, A. The laboratory and the new oral anticoagulants. Clin. Chem. 2013, 59, 353–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzak, J.D.; Dąbrowski, R.; Barylski, M.; Mamcarz, A.; Wełnicki, M.; Filipiak, K.; Lodziński, P.; Kozłowski, D.; Wożakowska-Kapłon, B. Doustne antykoagulanty nowej generacji—Aspekty praktyczne. Stanowisko Sekcji Farmakoterapii Sercowo-Naczyniowej Polskiego Towarzystwa Kardiologicznego. Folia Cardiol. 2016, 11, 377–393. [Google Scholar] [CrossRef]
- Lippi, G.; Favaloro, E.J. Recent guidelines and recommendations for laboratory assessment of the direct oral anticoagulants (DOACs): Is there consensus? Clin. Chem. Lab. Med. 2015, 53, 185–197. [Google Scholar] [CrossRef]
- Raszeja-Specht, A.; Michno, A. Doustne antykoagulanty o działaniu bezpośrednim–nowe wyzwanie dla diagnostyki laboratoryjnej. Diagn. Lab. 2015, 51, 221–228. [Google Scholar]
- Noth, I.; Anstrom, K.; Calvert, S.; de Andrade, J.; Flaherty, K.; Glazer, C.; Kaner, R.J.; Olman, M.A. Idiopathic Pulmonary Fibrosis Clinical Research Network (IPFnet). A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 88–95. [Google Scholar] [CrossRef]
- Bogatkevich, G.; Ludwicka-Bradley, A.; Silver, R. Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts. Arthritis Rheum. 2009, 60, 3455–3464. [Google Scholar] [CrossRef] [Green Version]
Compound | Protein | Receptor | IC50 [nmol/L] [27] |
---|---|---|---|
PDGF (platelet-derived growth factor) | A, B, C, D | PDGFR α and β | 59 and 65 |
FGF (fibroblast growth factor) | 1, 2 | FGFR -1, -2, -3, -4 | 69, 37, 108, 610 |
VEGF (vascular endothelial growth factor) | A, B, C, D, E | 1, 2, 3 | 34, 21, 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grześk, G.; Woźniak-Wiśniewska, A.; Błażejewski, J.; Górny, B.; Wołowiec, Ł.; Rogowicz, D.; Nowaczyk, A. The Interactions of Nintedanib and Oral Anticoagulants—Molecular Mechanisms and Clinical Implications. Int. J. Mol. Sci. 2021, 22, 282. https://doi.org/10.3390/ijms22010282
Grześk G, Woźniak-Wiśniewska A, Błażejewski J, Górny B, Wołowiec Ł, Rogowicz D, Nowaczyk A. The Interactions of Nintedanib and Oral Anticoagulants—Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences. 2021; 22(1):282. https://doi.org/10.3390/ijms22010282
Chicago/Turabian StyleGrześk, Grzegorz, Anita Woźniak-Wiśniewska, Jan Błażejewski, Bartosz Górny, Łukasz Wołowiec, Daniel Rogowicz, and Alicja Nowaczyk. 2021. "The Interactions of Nintedanib and Oral Anticoagulants—Molecular Mechanisms and Clinical Implications" International Journal of Molecular Sciences 22, no. 1: 282. https://doi.org/10.3390/ijms22010282
APA StyleGrześk, G., Woźniak-Wiśniewska, A., Błażejewski, J., Górny, B., Wołowiec, Ł., Rogowicz, D., & Nowaczyk, A. (2021). The Interactions of Nintedanib and Oral Anticoagulants—Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 22(1), 282. https://doi.org/10.3390/ijms22010282