Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species
Abstract
:1. Introduction
2. Results
2.1. Assessment of 15 Assembled Transcriptomes
2.2. Known and Potential Allergens Identified within the Shrimp Transcriptomes
2.3. Identification of Known Crustacean Allergens
2.4. Abundance of Known Crustacean Allergen Transcripts Varies Between Shrimp Species
2.5. Evolutionary Relationship of Shellfish Allergens TM, AK, MLC and SCP
2.6. Discovery of Unreported Allergens in Shrimp
3. Discussion
4. Materials and Methods
4.1. Sample Selection
4.2. Illumina Library Preparation and RNA Sequencing
4.3. De Novo Transcriptome Assembly and Quality Control
4.4. Removal of the Inconclusive Dataset
4.5. Allergen Reference Database Construction
4.6. BLAST Search for Allergens
4.7. Analysing the BLAST Search Results
4.8. Measuring the Abundance of Allergen Sequences
4.9. Molecular Phylogenetic Tree Building of TM, AK, MLC and SCP
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, R.; Warren, C.M.; Smith, B.M.; Jiang, J.; Blumenstock, J.A.; Davis, M.M.; Schleimer, R.P.; Nadeau, K.C. Prevalence and Severity of Food Allergies Among US Adults. JAMA Netw. Open 2019, 2, e185630. [Google Scholar] [CrossRef]
- Tang, M.L.K.; Mullins, R.J. Food allergy: Is prevalence increasing? Intern. Med. J. 2017, 47, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; Dutoit, G.; Eigenmann, P.; et al. EAACI Food Allergy and Anaphylaxis Guidelines: Diagnosis and management of food allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.M.A.; Helleur, R.J.; Jeebhay, M.F.; Lopata, A.L. Characterization of Seafood Proteins Causing Allergic Diseases. In Allergic Diseases—Highlights in the Clinic, Mechanisms and Treatment; IntechOpen: London, UK, 2012. [Google Scholar]
- Knol, E.F. Requirements for effective IgE cross-linking on mast cells and basophils. Mol. Nutr. Food Res. 2006, 50, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 2010, 125 (Suppl. 2), S73–S80. [Google Scholar] [CrossRef] [PubMed]
- Pomés, A.; Davies, J.; Gadermaier, G.; Hilger, C.; Holzhauser, T.; Lidholm, J.; Lopata, A.L.; Mueller, G.A.; Nandy, A.; Radauer, C.; et al. WHO/IUIS Allergen Nomenclature: Providing a common language. Mol. Immunol. 2018, 100, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Lopata, A.L.; Kleine-Tebbe, J.; Kamath, S.D. Allergens and molecular diagnostics of shellfish allergy: Part 22 of the Series Molecular Allergology. Allergo J. 2016, 25, 24–32. [Google Scholar] [CrossRef]
- Lee, A.J.; Gerez, I.; Shek, L.P.-C.; Lee, B.W. Shellfish allergy—An Asia-Pacific perspective. Asian Pac. J. Allergy Immunol. 2012, 30, 3–10. [Google Scholar]
- Lee, A.J.; Thalayasingam, M.; Lee, B.W. Food allergy in Asia: How does it compare? Asia Pac. Allergy 2013, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Le, T.T.K.; Tran, T.T.B.; Ho, H.T.M.; Vu, A.T.L.; Lopata, A.L. Prevalence of food allergy in Vietnam: Comparison of web-based with traditional paper-based survey. World Allergy Organ. J. 2018, 11, 16. [Google Scholar] [CrossRef]
- Lopata, A.L.; O’Hehir, R.E.; Lehrer, S.B. Shellfish allergy. Clin. Exp. Allergy 2010, 40, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Carrapatoso, I.; Santos, A.; Faria, E.; Pereira, C.; Loureiro, C.; Chieira, C. Food anaphylaxis. World Allergy Organ. J. 2007, 56, S184. [Google Scholar] [CrossRef]
- Thalayasingam, M.; Gerez, I.F.A.; Yap, G.C.; Llanora, G.V.; Chia, I.P.; Chua, L.; Lee, C.J.A.O.; Ta, L.D.H.; Cheng, Y.K.; Thong, B.Y.H.; et al. Clinical and immunochemical profiles of food challenge proven or anaphylactic shrimp allergy in tropical Singapore. Clin. Exp. Allergy 2015, 45, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Ruethers, T.; Taki, A.C.; Johnston, E.B.; Nugraha, R.; Le, T.T.K.; Kalic, T.; McLean, T.R.; Kamath, S.D.; Lopata, A.L. Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol. Immunol. 2018, 100, 28–57. [Google Scholar] [CrossRef]
- Kamath, S.D.; Johnston, E.B.; Iyer, S.; Schaeffer, P.M.; Koplin, J.J.; Allen, K.; Lopata, A.L. IgE reactivity to shrimp allergens in infants and their cross-reactivity to house dust mite. Pediatr. Allergy Immunol. 2017, 28, 703–707. [Google Scholar] [CrossRef]
- López-Matas, M.A.; Larramendi, C.H.; Moya, R.; Sánchez-Guerrero, I.; Ferrer, A.; Huertas, A.J.; Flores, I.; Navarro, L.A.; García-Abujeta, J.L.; Vicario, S.; et al. In vivo diagnosis with purified tropomyosin in mite and shellfish allergic patients. Ann. Allergy Asthma Immunol. 2016, 116, 538–543. [Google Scholar] [CrossRef]
- Popescu, F.-D. Cross-reactivity between aeroallergens and food allergens. World J. Methodol. 2015, 5, 31–50. [Google Scholar] [CrossRef]
- Wang, J.; Calatroni, A.; Visness, C.M.; Sampson, H.A. Correlation of specific IgE to shrimp with cockroach and dust mite exposure and sensitization in an inner-city population. J. Allergy Clin. Immunol. 2011, 128, 834–837. [Google Scholar] [CrossRef]
- Santos, A.B.R.; Chapman, M.D.; Aalberse, R.C.; Vailes, L.D.; Ferriani, V.P.; Oliver, C.; Rizzo, M.; Naspitz, C.K.; Arruda, L.K. Cockroach allergens and asthma in Brazil: Identification of tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens☆☆☆★. J. Allergy Clin. Immunol. 1999, 104, 329–337. [Google Scholar] [CrossRef]
- Sampson, H.A. Food allergy. Part 2: Diagnosis and management. J. Allergy Clin. Immunol. 1999, 103, 981–989. [Google Scholar] [CrossRef]
- Lopata, A.L.; Lehrer, S.B. New insights into seafood allergy. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Arlian, L.G.; Morgan, M.S.; Vyszenski-Moher, D.L.; Sharra, D. Cross-reactivity between storage and dust mites and between mites and shrimp. Exp. Appl. Acarol. 2008, 47, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, R.; Lehrer, S.; Reese, G. Identification of Continuous, Allergenic Regions of the Major Shrimp Allergen Pen a 1 (Tropomyosin). Int. Arch. Allergy Immunol. 2002, 127, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Čelakovská, J.; Bukač, J.; Vaňková, R.; Krejsek, J.; Andrýs, C.; Krcmova, I. Food allergy to shrimps and fish in patients suffering from atopic dermatitis, the results of ISAC Multiplex examination. Food Agric. Immunol. 2020, 31, 1061–1078. [Google Scholar] [CrossRef]
- Čelakovská, J.; Josef, B.; Vaneckova, J.; Krcmova, I.; Komorousová, M.; Cetkovská, P.; Vankova, R.; Krejsek, J. Food Hypersensitivity Reactions to Seafish in Atopic Dermatitis Patients Older than 14 Year of Age—The Evaluation of Association with Other Allergic Diseases and Parameters. Indian J. Dermatol. 2020, 65, 97–104. [Google Scholar] [CrossRef]
- WHO/IUIS. Allergen Nomenclature. Available online: http://allergen.org/ (accessed on 10 May 2017).
- Goodman, R.E.; Ebisawa, M.; Ferreira, F.; Sampson, H.A.; Van Ree, R.; Vieths, S.; Baumert, J.L.; Bohle, B.; Lalithambika, S.; Wise, J.; et al. AllergenOnline: A peer-reviewed, curated allergen database to assess novel food proteins for potential cross-reactivity. Mol. Nutr. Food Res. 2016, 60, 1183–1198. [Google Scholar] [CrossRef] [Green Version]
- FARRP. Allergen Online: Home of the FARRP (Food Allergy Research and Resource Program) Allergen Protein Database. Available online: http://www.allergenonline.org/databasebrowse.shtml (accessed on 10 May 2017).
- Kamath, S.D.; Rahman, A.M.A.; Voskamp, A.; Komoda, T.; Rolland, J.M.; O’Hehir, R.E.; Lopata, A.L. Effect of heat processing on antibody reactivity to allergen variants and fragments of black tiger prawn: A comprehensive allergenomic approach. Mol. Nutr. Food Res. 2014, 58, 1144–1155. [Google Scholar] [CrossRef]
- Rahman, A.M.A.; Kamath, S.D.; Gagné, S.; Lopata, A.L.; Helleur, R. Comprehensive Proteomics Approach in Characterizing and Quantifying Allergenic Proteins from Northern Shrimp: Toward Better Occupational Asthma Prevention. J. Proteome Res. 2013, 12, 647–656. [Google Scholar] [CrossRef]
- Rahman, A.M.A.; Kamath, S.; Lopata, A.L.; Helleur, R.J. Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 2462–2470. [Google Scholar] [CrossRef]
- Kamath, S.D.; Rahman, A.M.A.; Komoda, T.; Lopata, A.L. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies. Food Chem. 2013, 141, 4031–4039. [Google Scholar] [CrossRef]
- Nugraha, R.; Kamath, S.D.; Johnston, E.; Zenger, K.R.; Rolland, J.M.; O’Hehir, R.E.; Lopata, A.L. Rapid and comprehensive discovery of unreported shellfish allergens using large-scale transcriptomic and proteomic resources. J. Allergy Clin. Immunol. 2018, 141, 1501–1504.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aalberse, R.C. Structural biology of allergens. J. Allergy Clin. Immunol. 2000, 106, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, R.; Kamath, S.D.; Johnston, E.; Karnaneedi, S.; Ruethers, T.; Lopata, A.L. Conservation Analysis of B-Cell Allergen Epitopes to Predict Clinical Cross-Reactivity Between Shellfish and Inhalant Invertebrate Allergens. Front. Immunol. 2019, 10, 2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.M.; Gupta, R.S.; Aktas, O.N.; Diaz, V.; Kamath, S.D.; Lopata, A.L. Clinical Management of Seafood Allergy. J. Allergy Clin. Immunol. Pract. 2020, 8, 37–44. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Meinlschmidt, P.; Larenas-Linnemann, D.; Purschke, B.; Hofstetter, G.; Rodríguez-Monroy, F.A.; Einhorn, L.; Mothes-Luksch, N.; Jensen-Jarolim, E.; Jäger, H. Edible insects: Cross-recognition of IgE from crustacean- and house dust mite allergic patients, and reduction of allergenicity by food processing. World Allergy Organ. J. 2019, 12, 100006. [Google Scholar] [CrossRef] [Green Version]
- Lopata, A.L.; Kleine-Tebbe, J.; Kamath, S.D. Allergens and Molecular Diagnostics of Shellfish Allergy. Mol. Allergy Diagn. 2017, 25, 399–414. [Google Scholar] [CrossRef]
- Faisal, M.; Vasiljevic, T.; Donkor, O.N. Effects of selected processing treatments on antigenicity of banana prawn (Fenneropenaeus merguiensis) tropomyosin. Int. J. Food Sci. Technol. 2019, 54, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Sharp, M.; Kamath, S.D.; Saptarshi, S.R.; Smout, M.; Rolland, J.M.; O’Hehir, R.E.; Lopata, A.L. Auto-induction for high yield expression of recombinant novel isoallergen tropomyosin from King prawn (Melicertus latisulcatus) for improved diagnostics and immunotherapeutics. J. Immunol. Methods 2014, 415, 6–16. [Google Scholar] [CrossRef]
- Ayuso, R.; Reese, G.; Leong-Kee, S.; Plante, M.; Lehrer, S.B. Molecular Basis of Arthropod Cross-Reactivity: IgE-Binding Cross-Reactive Epitopes of Shrimp, House Dust Mite and Cockroach Tropomyosins. Int. Arch. Allergy Immunol. 2002, 129, 38–48. [Google Scholar] [CrossRef]
- Faber, M.A.; Pascal, M.; El Kharbouchi, O.; Sabato, V.; Hagendorens, M.M.; Decuyper, I.I.; Bridts, C.H.; Ebo, D.G. Shellfish allergens: Tropomyosin and beyond. Allergy 2017, 72, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Gámez, C.; Zafra, M.P.; Boquete, M.; Sanz, V.; Mazzeo, C.; Ibáñez, M.D.; Sánchez-García, S.; Sastre, J.; Pozo, V. New shrimp IgE-binding proteins involved in mite-seafood cross-reactivity. Mol. Nutr. Food Res. 2014, 58, 1915–1925. [Google Scholar] [CrossRef] [PubMed]
- Reese, G.; Ayuso, R.; Lehrer, S.B. Tropomyosin: An Invertebrate Pan–Allergen. Int. Arch. Allergy Immunol. 1999, 119, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.; Huang, C.H.; Lee, B.W. Shellfish and House Dust Mite Allergies: Is the Link Tropomyosin? Allergy Asthma Immunol. Res. 2016, 8, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.M.A.; Kamath, S.D.; Lopata, A.L.; Robinson, J.J.; Helleur, R.J. Biomolecular characterization of allergenic proteins in snow crab (Chionoecetes opilio) and de novo sequencing of the second allergen arginine kinase using tandem mass spectrometry. J. Proteom. 2011, 74, 231–241. [Google Scholar] [CrossRef]
- Binder, M.; Mahler, V.; Hayek, B.; Sperr, W.R.; Schöller, M.; Prozell, S.; Wiedermann, G.; Valent, P.; Valenta, R.; Duchêne, M. Molecular and Immunological Characterization of Arginine Kinase from the Indianmeal Moth, Plodia interpunctella, a Novel Cross-Reactive Invertebrate Pan-Allergen. J. Immunol. 2001, 167, 5470–5477. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xia, L.; Wu, Y.; Xia, Q.; Chen, J.; Roux, K.H. Identification and Characterization of an Arginine Kinase as a Major Allergen from Silkworm (Bombyx mori) Larvae. Int. Arch. Allergy Immunol. 2009, 150, 8–14. [Google Scholar] [CrossRef]
- Bobolea, I.; Barranco, P.; Pastor-Vargas, C.; Iraola, V.; Vivanco, F.; Quirce, S. Arginine Kinase from the Cellar Spider (Holocnemus pluchei): A New Asthma-Causing Allergen. Int. Arch. Allergy Immunol. 2011, 155, 180–186. [Google Scholar] [CrossRef]
- Liu, J.; Han, L.-N.; Zhang, Q.; Wang, Q.-L.; Chang, Q.; Zhuang, H.; Liu, J.; Li, M.; Yu, D.; Kang, Z. Cloning and molecular characterization of a myosin light chain gene from Puccinia striiformis f. sp. tritici. World J. Microbiol. Biotechnol. 2013, 30, 631–637. [Google Scholar] [CrossRef]
- Funkenstein, B.; Skopal, T.; Rapoport, B.L.; Rebhan, Y.; Du, S.J.; Radaelli, G. Characterization and functional analysis of the 5′ flanking region of myosin light chain-2 gene expressed in white muscle of the gilthead sea bream (Sparus aurata). Comp. Biochem. Physiol. Part D Genom. Proteom. 2007, 2, 187–199. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Chen, H.-L.; Maleki, S.J.; Cao, M.-J.; Zhang, L.-J.; Su, W.-J.; Liu, G.-M. Purification, Characterization, and Analysis of the Allergenic Properties of Myosin Light Chain inProcambarus clarkii. J. Agric. Food Chem. 2015, 63, 6271–6282. [Google Scholar] [CrossRef]
- Ayuso, R.; Grishina, G.; Bardina, L.; Carrillo, T.; Blanco, C.; Ibáñez, M.D.; Sampson, H.A.; Beyer, K. Myosin light chain is a novel shrimp allergen, Lit v 3. J. Allergy Clin. Immunol. 2008, 122, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Bauermeister, K.; Wangorsch, A.; Garoffo, L.P.; Reuter, A.; Conti, A.; Taylor, S.L.; Lidholm, J.; DeWitt, Å.M.; Enrique, E.; Vieths, S.; et al. Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Mol. Immunol. 2011, 48, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, R.; Grishina, G.; Ibáñez, M.D.; Blanco, C.; Carrillo, T.; Bencharitiwong, R.; Sánchez, S.; Nowak-Wegrzyn, A.; Sampson, H.A. Sarcoplasmic calcium-binding protein is an EF-hand–type protein identified as a new shrimp allergen. J. Allergy Clin. Immunol. 2009, 124, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Johnston, E.B.; Kamath, S.D.; Iyer, S.P.; Pratap, K.; Karnaneedi, S.; Taki, A.C.; Nugraha, R.; Schaeffer, P.M.; Rolland, J.M.; O’Hehir, R.E.; et al. Defining specific allergens for improved component-resolved diagnosis of shrimp allergy in adults. Mol. Immunol. 2019, 112, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundaram, A.; Santiago, T.C. Identification and characterization of new allergen troponin C (Pen m 6.0101) from Indian black tiger shrimp Penaeus monodon. Eur. Food Res. Technol. 2015, 240, 509–515. [Google Scholar] [CrossRef]
- Chao, E.; Kim, H.-W.; Mykles, D.L. Cloning and tissue expression of eleven troponin-C isoforms in the American lobster, Homarus americanus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 157, 88–101. [Google Scholar] [CrossRef]
- Hindley, J.; Wunschmann, S.; Satinover, S.; Woodfolk, J.; Chew, F.T.; Chapman, M.D.; Pomés, A. Bla g 6: A troponin C allergen from Blattella germanica with IgE binding calcium dependence. J. Allergy Clin. Immunol. 2006, 117, 1389–1395. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Kim, C.-R.; Un, S.; Yi, M.-H.; Lee, I.-Y.; Park, J.W.; Hong, C.-S.; Yong, T.-S. Allergenicity of Recombinant Troponin C from Tyrophagus putrescentiae. Int. Arch. Allergy Immunol. 2010, 151, 207–213. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.-X.; Liu, M.; Maleki, S.J.; Zhang, M.-L.; Liu, Q.-M.; Cao, M.-J.; Su, W.-J.; Liu, G.-M. Triosephosphate Isomerase and Filamin C Share Common Epitopes as Novel Allergens of Procambarus clarkii. J. Agric. Food Chem. 2017, 65, 950–963. [Google Scholar] [CrossRef]
- An, S.; Chen, L.; Long, C.; Liu, X.; Xu, X.; Lu, X.; Rong, M.; Liu, Z.; Lai, R. Dermatophagoides farinaeAllergens Diversity Identification by Proteomics. Mol. Cell. Proteom. 2013, 12, 1818–1828. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chen, Z.-W.; Hurlburt, B.K.; Li, G.-L.; Zhang, Y.-X.; Fei, D.-X.; Shen, H.-W.; Cao, M.-J.; Liu, G.-M. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao. Mol. Immunol. 2017, 85, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Rozynek, P.; Sander, I.; Appenzeller, U.; Crameri, R.; Baur, X.; Clarke, B.; Brüning, T.; Raulf-Heimsoth, M. TPIS—An IgE-binding wheat protein. Allergy 2002, 57, 463. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Ogburn, R.N.; Randall, T.A.; Xu, Y.; Roberts, J.H.; Mebrahtu, B.; Karnuta, J.M.; Rider, S.D.; Kissling, G.E.; London, R.E.; Pomés, A.; et al. Are dust mite allergens more abundant and/or more stable than other Dermatophagoides pteronyssinus proteins? J. Allergy Clin. Immunol. 2017, 139, 1030–1032.e1. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.-F.; Ji, K.-M.; Yim, A.K.-Y.; Liu, X.-Y.; Zhou, J.-W.; Li, R.-Q.; Yang, K.Y.; Li, J.; Li, M.; Law, P.T.-W.; et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J. Allergy Clin. Immunol. 2015, 135, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, N.; Nasti, T.H.; Huang, C.-M.; Huber, B.S.; Jaleel, T.; Lin, H.-Y.; Xu, H.; Elmets, C.A. Heat Shock Proteins HSP27 and HSP70 Are Present in the Skin and Are Important Mediators of Allergic Contact Hypersensitivity. J. Immunol. 2009, 182, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Radauer, C.; Bublin, M.; Wagner, S.; Mari, A.; Breiteneder, H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J. Allergy Clin. Immunol. 2008, 121, 847–852.e7. [Google Scholar] [CrossRef]
- Wang, H.; Lin, J.; Liu, X.; Liang, Z.; Yang, P.-C.; Ran, P.; Liu, Z.-Q. Identification of α-tubulin, Der f 33, as a novel allergen from Dermatophagoides farinae. Immunobiology 2016, 221, 911–917. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Son, M.; Lee, J.-H.; Hong, C.-S.; Park, J.-W. Allergenic Characterization of a Novel Allergen, Homologous to Chymotrypsin, from German Cockroach. Allergy Asthma Immunol. Res. 2015, 7, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, L.; Tsoulis, M.W.; Milio, K.; Schnittke, M.; Kim, H. High rate of house dust mite sensitization in a shrimp allergic southern Ontario population. Allergy Asthma Clin. Immunol. 2017, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Villalta, D.; Tonutti, E.; Visentini, D.; Bizzaro, N.; Roncarolo, D.; Amato, S.; Mistrello, G. Detection of a novel 20 kDa shrimp allergen showing cross-reactivity to house dust mites. Eur. Ann. Allergy Clin. Immunol. 2010, 42, 20. [Google Scholar] [PubMed]
- Zhang, H.; Lu, Y.; Ushio, H.; Shiomi, K. Development of sandwich ELISA for detection and quantification of invertebrate major allergen tropomyosin by a monoclonal antibody. Food Chem. 2014, 150, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A.; Codreanu-Morel, F.; Lehners-Weber, C.; Doyen, V.; Gomez-André, S.-A.; Bienvenu, F.; Fischer, J.; Ballardini, N.; Van Hage, M.; Perotin, J.-M.; et al. Cross-reactivity to fish and chicken meat—A new clinical syndrome. Allergy 2016, 71, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A.; Hilger, C.; Lehners-Weber, C.; Codreanu-Morel, F.; Morisset, M.; Metz-Favre, C.; Pauli, G.; De Blay, F.; Revets, D.; Muller, C.P.; et al. Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: Component resolved diagnosis using parvalbumin and the new allergens. Clin. Exp. Allergy 2013, 43, 811–822. [Google Scholar] [CrossRef]
- Glaser, A.G.; Limacher, A.; Flückiger, S.; Scheynius, A.; Scapozza, L.; Crameri, R. Analysis of the cross-reactivity and of the 1.5 Å crystal structure of the Malassezia sympodialis Mala s 6 allergen, a member of the cyclophilin pan-allergen family. Biochem. J. 2006, 396, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Sander, I.; Rozynek, P.; Rihs, H.-P.; Van Kampen, V.; Chew, F.T.; Lee, W.S.; Kotschy-Lang, N.; Merget, R.; Brüning, T.; Raulf-Heimsoth, M. Multiple wheat flour allergens and cross-reactive carbohydrate determinants bind IgE in baker’s asthma. Allergy 2011, 66, 1208–1215. [Google Scholar] [CrossRef]
- Kenyon, R.A.; Ellis, N.; Donovan, A.G.; van der Velde, T.D.; Fry, G.; Tonks, M.; Cheers, S.; Dennis, D. An Integrated Monitoring Program for the Northern Prawn Fishery 2012–2015; CSIRO Oceans and Atmosphere: Brisbane, Australia, 2015; p. 200. [Google Scholar]
- Grey, D.L.; Dall, W.; Baker, A. A Guide to the Australian Penaeid Prawns; CABI: Wallingford, UK, 1983. [Google Scholar]
- Huerlimann, R.; Maes, G.E.; Maxwell, M.J.; Mobli, M.; Launikonis, B.S.; Jerry, D.R.; Wade, N.M. Multi-species transcriptomics reveals evolutionary diversity in the mechanisms regulating shrimp tail muscle excitation-contraction coupling. Gene 2020, 752, 144765. [Google Scholar] [CrossRef]
- Huerlimann, R.; Wade, N.M.; Gordon, L.; Montenegro, J.D.; Goodall, J.; McWilliam, S.; Tinning, M.; Siemering, K.; Giardina, E.; Donovan, D.; et al. De novo assembly, characterization, functional annotation and expression patterns of the black tiger shrimp (Penaeus monodon) transcriptome. Sci. Rep. 2018, 8, 13553. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 2015, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Vasani, N. Review of “De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis”. Nat. Protoc. 2019, 8, 1494–1512. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, J.M.; Kelly, S. TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016, 26, 1134–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanke, M. Faculty Opinions recommendation of BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2017, 31, 3210–3212. [Google Scholar] [CrossRef]
- Zdobnov, E.M.; Tegenfeldt, F.; Kuznetsov, D.; Waterhouse, R.M.; Simão, F.A.; Ioannidis, P.; Seppey, M.; Loetscher, A.; Kriventseva, E.V. OrthoDB v9.1: Cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2017, 45, D744–D749. [Google Scholar] [CrossRef] [PubMed]
- MacManes, M.D. The Oyster River Protocol: A multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ 2018, 6, e5428. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Ives, A.R.; Surget-Groba, Y.; Cannon, C.H. An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data. BMC Genom. 2015, 16, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.Y.; Chan, T.Y.; Chu, K.H. Refuting the six-genus classification of Penaeus s.l. (Dendrobranchiata, Penaeidae): A combined analysis of mitochondrial and nuclear genes. Zool. Scr. 2011, 40, 498–508. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon: Fast and bias-aware quantification of transcript expression using dual-phase inference. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
Shrimp Species | Replicates | RNA-Seq | Transcriptome Assembly Metrics | Transrate Quality Assessment | BUSCO Scores | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Normalised Read Count | No. of Contigs | Assembly Size | GC Content (%) | Proportion of Read Pairs Mapped (%) | Assembly Score | Complete (%) | Fragmented (%) | Missing (%) | |||
L. vannamei (Whiteleg shrimp) | 1 | 1,412,587 | 32,302 | 28.6 Mb | 43.4 | 93.2 | 0.413 | 56 | 21 | 23 | |
2 | 1,412,010 | 33,574 | 29.4 Mb | 43.0 | 92.6 | 0.401 | 56 | 23 | 21 | ||
3 | 1,070,376 | 28,101 | 22.7 Mb | 44.8 | 92.8 | 0.419 | 48 | 25 | 27 | ||
P. monodon (Black Tiger shrimp) | 1 | 1,609,374 | 41,971 | 37.9 Mb | 44.3 | 91.9 | 0.387 | 66 | 20 | 14 | |
2 | 1,443,066 | 40,927 | 36.5 Mb | 45.1 | 91.0 | 0.364 | 66 | 19 | 14 | ||
3 | 1,643,259 | 42,510 | 38.1 Mb | 43.7 | 92.3 | 0.390 | 64 | 21 | 14 | ||
F. merguiensis (Banana shrimp) | 1 | 1,486,264 | 37,572 | 31.4 Mb | 43.0 | 91.8 | 0.385 | 64 | 17 | 19 | |
2 | 1,657,940 | 41,336 | 34.8 Mb | 42.6 | 91.7 | 0.385 | 67 | 16 | 17 | ||
3 | 1,602,775 | 38,638 | 33.5 Mb | 42.5 | 92.6 | 0.389 | 65 | 19 | 16 | ||
M. latisulactus (King shrimp) | 1 | 1,130,898 | 37,128 | 25.6 Mb | 42.9 | 90.7 | 0.410 | 46 | 26 | 27 | |
2 | 1,052,237 | 28,125 | 21.7 Mb | 42.8 | 92.2 | 0.411 | 43 | 25 | 32 | ||
M. endeavouri (Endeavour shrimp) | 1 | 1,142,169 | 35,407 | 25.9 Mb | 42.5 | 90.6 | 0.374 | 48 | 25 | 27 | |
2 | 1,035,324 | 30,879 | 23.2 Mb | 42.3 | 91.2 | 0.399 | 48 | 24 | 27 | ||
3 | 1,081,301 | 38,204 | 25.5 Mb | 43.3 | 87.9 | 0.355 | 49 | 26 | 25 |
Allergens | LV Whiteleg Shrimp | PM Black Tiger Shrimp | FM Banana Shrimp | ML King Shrimp | ME Endeavour Shrimp | |||
---|---|---|---|---|---|---|---|---|
Protein Name | Source Name | IUIS Nomenclature | ||||||
Common | Scientific | |||||||
Heat Shock Protein 70 | Storage mite | Tyrophagus putrescentiae | Tyr p 28 | 85.1% (0) | 82.7% (0) | 83.3% (0) | 82.7% (0) | 84.3% (0) |
Alpha-Tubulin | American house dust mite | Dermatophagoides farinae | Der f 33 | 81.8% (0) | 81.7% (0) | 81.6% (0) | 81.6% (0) | 81.6% (0) |
Chymotrypsin | American house dust mite | Dermatophagoides farinae | Der f 6 | 78.7% (4.3 × 10−94) | 78.7% (2.13 × 10−94) | 79.3% (1.45 × 10−94) | 79.9% (3.71 × 10−97) | 80.5% (3.93 × 10−95) |
Enolase 3–2 | Atlantic salmon | Salmo salar | Sal s 2 | 74.8% (0) | 74.6% (0) | 74.1% (0) | 74.6% (0) | 74.5% (0) |
Aldolase A | Yellowfin tuna | Thunnus albacares | Thu a 3 | 66.0% (2.29 × 10−164) | 64.9% (2.25 × 10−164) | 70.1% (4.09 × 10−169) | 69.6% (1.47 × 10−166) | 70.1% (3.65 × 10−167) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karnaneedi, S.; Huerlimann, R.; Johnston, E.B.; Nugraha, R.; Ruethers, T.; Taki, A.C.; Kamath, S.D.; Wade, N.M.; Jerry, D.R.; Lopata, A.L. Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. Int. J. Mol. Sci. 2021, 22, 32. https://doi.org/10.3390/ijms22010032
Karnaneedi S, Huerlimann R, Johnston EB, Nugraha R, Ruethers T, Taki AC, Kamath SD, Wade NM, Jerry DR, Lopata AL. Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. International Journal of Molecular Sciences. 2021; 22(1):32. https://doi.org/10.3390/ijms22010032
Chicago/Turabian StyleKarnaneedi, Shaymaviswanathan, Roger Huerlimann, Elecia B. Johnston, Roni Nugraha, Thimo Ruethers, Aya C. Taki, Sandip D. Kamath, Nicholas M. Wade, Dean R. Jerry, and Andreas L. Lopata. 2021. "Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species" International Journal of Molecular Sciences 22, no. 1: 32. https://doi.org/10.3390/ijms22010032
APA StyleKarnaneedi, S., Huerlimann, R., Johnston, E. B., Nugraha, R., Ruethers, T., Taki, A. C., Kamath, S. D., Wade, N. M., Jerry, D. R., & Lopata, A. L. (2021). Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. International Journal of Molecular Sciences, 22(1), 32. https://doi.org/10.3390/ijms22010032