Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2 and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model of F Intoxication
2.2. ELISA Analysis of MMP2, MMP9, TIMP2 and TIMP3 Protein Levels
2.3. qRT-PCR Analysis of MMP2, MMP9, TIMP2 and TIMP3 mRNA Levels
2.4. Immunohistochemistry
2.5. Quantitation
2.6. Statistical Analysis
3. Results
3.1. mRNA, Protein Level and Immunolocalization of MMP2 and MMP9
3.2. mRNA, Protein Level and Immunolocalization of TIMP2 and TIMP3
4. Discussion
4.1. Fluoride Accumulates Selectively in Different Parts of the Brain
4.2. Fluoride Changes Gene and Protein Expression of Metalloproteinases
4.3. Fluoride Upregulates Gene Expression of Metalloproteinase Inhibitors in the Brain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shivarajashankara, Y.; Shivashankara, A.; Fluoride, P.B. Histological changes in the brain of young fluoride-intoxicated rats. Fluoride 2002, 35, 12–21. [Google Scholar]
- Mullenix, P.J.; Denbesten, P.K.; Schunior, A.; Kernan, W.J. Neurotoxicity of sodium fluoride in rats. Neurotoxicol. Teratol. 1995, 17, 169–177. [Google Scholar] [CrossRef]
- Dec, K.; Łukomska, A.; Maciejewska, D.; Jakubczyk, K.; Baranowska-Bosiacka, I.; Chlubek, D.; Gutowska, I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. BTER 2017, 177, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.W.; Taves, D.R. Fluoride concentrations in the human placenta and maternal and cord blood. Am. J. Obstet. Gynecol. 1974, 119, 205–207. [Google Scholar] [CrossRef]
- Şener, Y.; Tosun, G.; Kahvecioğlu, F.; Gökalp, A.; Koç, H. Fluoride levels of human plasma and breast milk. Eur. J. Dent. 2007, 1, 21–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuster, J.M. Chapter 10 The prefrontal cortex and its relation to behavior. Prog. Brain Res. 1991, 87, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Bozdagi, O.; Nagy, V.; Kwei, K.T.; Huntley, G.W. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol. 2007, 98, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.R.; Li, J.; Schiller, D.; Phelps, E.A. The role of the striatum in aversive learning and aversive prediction errors. Philos. Transact. R. Soc. B Biol. Sci. 2008, 363, 3787–3800. [Google Scholar] [CrossRef] [Green Version]
- Strick, P.L.; Dum, R.P.; Fiez, J.A. Cerebellum and Nonmotor Function. Ann. Rev. Neurosci. 2009, 32, 413–434. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, C.; Syková, E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998, 21, 207–215. [Google Scholar] [CrossRef]
- Bartus, K.; James, N.D.; Bosch, K.D.; Bradbury, E.J. Chondroitin sulphate proteoglycans: Key modulators of spinal cord and brain plasticity. Exp. Neurol. 2012, 235, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, J.W. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 2015, 218, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Frischknecht, R.; Chang, K.J.; Rasband, M.N.; Seidenbecher, C.I. Neural ECM molecules in axonal and synaptic homeostatic plasticity. Prog. Brain Res. 2014, 214, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Kwok, J.C.F.; Dick, G.; Wang, D.; Fawcett, J.W. Extracellular matrix and perineuronal nets in CNS repair. Dev. Neurobiol. 2011, 71, 1073–1089. [Google Scholar] [CrossRef]
- Sorg, B.A.; Berretta, S.; Blacktop, J.M.; Fawcett, J.W.; Kitagawa, H.; Kwok, J.C.F.; Miquel, M. Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. J. Neurosci. 2016, 36, 11459–11468. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.W.; Harding, J.W. Contributions of matrix metalloproteinases to neural plasticity, habituation, associative learning and drug addiction. Neural Plast. 2009, 2009, 579382. [Google Scholar] [CrossRef] [Green Version]
- Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef]
- Sternlicht, M.D.; Werb, Z. How Matrix Metalloproteinases Regulate Cell Behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef] [Green Version]
- McCawley, L.J.; Matrisian, L.M. Matrix metalloproteinases: They’re not just for matrix anymore! Curr. Opin. Cell Biol. 2001, 13, 534–540. [Google Scholar] [CrossRef]
- Bozdagi, O.; Shan, W.; Tanaka, H.; Benson, D.L.; Huntley, G.W. Increasing Numbers of Synaptic Puncta during Late-Phase LTP: N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation. Neuron 2000, 28, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Nagy, V.; Bozdagi, O.; Matynia, A.; Balcerzyk, M.; Okulski, P.; Dzwonek, J.; Huntley, G.W. Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory. J. Neurosci. 2006, 26, 1923–1934. [Google Scholar] [CrossRef] [PubMed]
- Popp, S.; Andersen, J.S.; Maurel, P.; Margolis, R.U. Localization of aggrecan and versican in the developing rat central nervous system. Dev. Dyn. 2003, 227, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bozdagi, O.; Nikitczuk, J.S.; Zhai, Z.W.; Zhou, Q.; Huntley, G.W. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc. Nat. Acad. Sci. USA 2008, 105, 19520–19525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanzo, R.M.; Perrino, L.A. Peak in matrix metaloproteinases-2 levels observed during recovery from olfactory nerve injury. NeuroReport 2008, 19, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, R.M.; Perrino, L.A.; Kobayashi, M. Response of matrix metalloproteinase-9 to olfactory nerve injury. NeuroReport 2006, 17, 1787–1791. [Google Scholar] [CrossRef] [Green Version]
- Kondratiuk, I.; Łęski, S.; Urbańska, M.; Biecek, P.; Devijver, H.; Lechat, B.; Jaworski, T. GSK-3β and MMP-9 Cooperate in the Control of Dendritic Spine Morphology. Mol. Neurobiol. 2017, 54, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Szepesi, Z.; Bijata, M.; Ruszczycki, B.; Kaczmarek, L.; Wlodarczyk, J. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS ONE 2013, 8, e63314. [Google Scholar] [CrossRef]
- Baker, A.H.; Edwards, D.R.; Murphy, G.; Shinagawa, A. Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. J. Cell Sci. 2002, 115 Pt 19, 3719–3727. [Google Scholar] [CrossRef] [Green Version]
- Mannello, F.; Gazzanelli, G. Tissue inhibitors of metalloproteinases and programmed cell death: Conundrums, controversies and potential implications. Apoptosis 2001, 6, 479–482. [Google Scholar] [CrossRef]
- Qi, J.H.; Ebrahem, Q.; Moore, N.; Murphy, G.; Claesson-Welsh, L.; Bond, M.; Anand-Apte, B. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): Inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. 2003, 9, 407–415. [Google Scholar] [CrossRef]
- Bashash, M.; Thomas, D.; Hu, H.; Martinez-Mier, E.A.; Sanchez, B.N.; Basu, N.; Hernández-Avila, M. Prenatal Fluoride Exposure and Cognitive Outcomes in Children at 4 and 6–12 Years of Age in Mexico. Environ. Health Perspect. 2017, 125, 097017. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.L.; Zhang, Y.; Sun, G.; Bellinger, D.C.; Wang, K.; Yang, X.J.; Grandjean, P. Association of lifetime exposure to fluoride and cognitive functions in Chinese children: A pilot study. Neurotoxicol. Teratol. 2015, 47, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Mondal, N.K. Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of Laxmisagar, Simlapal Block of Bankura District, W.B., India. Environ. Monit. Assess. 2016, 188, 218. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Jiao, J.; Chen, X.; Wang, X. Association between water fluoride and the level of children’s intelligence: A dose—Response meta-analysis. Public Health 2018, 154, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Singh, R.K.; Navit, S.; Chadha, D.; Johri, N.; Navit, P.; Bahuguna, R. Relationship between dental fluorosis and intelligence quotient of school going children in and around lucknow district: Across-sectional study. J. Clin. Diagn. Res. 2015, 9, ZC10–ZC15. [Google Scholar] [CrossRef] [PubMed]
- Shivaprakash, P.; Noorani, H.; Ohri, K. Relation between dental fluorosis and intelligence quotient in school children of Bagalkot district. J. Indian Soc. Pedod. Prev. Dent. 2011, 29, 117. [Google Scholar] [CrossRef]
- Yu, X.; Chen, J.; Li, Y.; Liu, H.; Hou, C.; Zeng, Q.; Wang, A. Threshold effects of moderately excessive fluoride exposure on children’s health: A potential association between dental fluorosis and loss of excellent intelligence. Environ. Int. 2018, 118, 116–124. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, B.; Ma, J.; Wang, Y.; Zhao, L.; Hou, C.; Liu, H. Dopamine receptor D2 gene polymorphism, urine fluoride, and intelligence impairment of children in China: A school-based cross-sectional study. Ecotoxicol. Environ. Saf. 2018, 165, 270–277. [Google Scholar] [CrossRef]
- Yang, L.; Jin, P.; Wang, X.; Zhou, Q.; Lin, X.; Xi, S. Fluoride activates microglia, secretes inflammatory factors and influences synaptic neuron plasticity in the hippocampus of rats. NeuroToxicology 2018, 69, 108–120. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Q.; Niu, R.; Wang, J. Fluoride exposure decreased learning ability and the expressions of the insulin receptor in male mouse hippocampus and olfactory bulb. Chemosphere 2019, 224, 71–76. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Liang, B.; Schroeder, D.; Zhang, Z.; Cox, G.A.; Lin, D.T. Hyperactive somatostatin interneurons contribute to excitotoxicity in neurodegenerative disorders. Nat. Neurosci. 2016, 19, 557–559. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xi, S.; Li, M.; Ding, T.; Liu, N.; Cao, F.; Jiang, S. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats. NeuroToxicology 2017, 59, 56–64. [Google Scholar] [CrossRef] [PubMed]
- George Paxinos Charles Watson, The Rat Brain in Stereotaxic Coordinates; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780123919496. eBook ISBN: 9780124157521.
- Castillo-Melendez, M.; Chow, J.A.; Walker, D.W. Lipid Peroxidation, Caspase-3 Immunoreactivity, and Pyknosis in Late-Gestation Fetal Sheep Brain after Umbilical Cord Occlusion. Pediatric. Res. 2004, 55, 864–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, C.A.N.; Leite, A.L.; Silva, T.L.; Santos, L.D.; Nogueira, F.C.S.; Santos, K.S.; Buzalaf, M.A.R. Proteomic analysis of urine in rats chronically exposed to fluoride. J. Biochem. Mol. Toxicol. 2011, 25, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Morales-González, J.A.; Gutiérrez-Salinas, J.; García-Ortiz, L.; Del Carmen Chima-Galán, M.; Madrigal-Santillán, E.; Esquivel-Soto, J.; González-Rubio, M.G. Effect of sodium fluoride ingestion on malondialdehyde concentration and the activity of antioxidant enzymes in rat erythrocytes. Int. J. Mol. Sci. 2010, 11, 2443–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centeno, V.A.; Fontanetti, P.A.; Interlandi, V.; Ponce, R.H.; Gallará, R.V. Fluoride alters connexin expression in rat incisor pulp. Arch. Oral Biol. 2015, 60, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, Y.; Gu, H.; Zhang, K.; Ma, L.; Cheng, R.; Zhang, S. The effect of fluoride on the metabolism of teeth and bone in rats. Shanghai Kou Qiang Yi Xue (Shanghai J. Stomat.) 2014, 23, 129–132. [Google Scholar]
- Lu, Z.; Wang, S.; Sun, Z.; Niu, R.; Wang, J. In vivo influence of sodium fluoride on sperm chemotaxis in male mice. Arch. Toxicol. 2014, 88, 533–539. [Google Scholar] [CrossRef]
- Dec, K.; Łukomska, A.; Skonieczna-Żydecka, K.; Kolasa-Wołosiuk, A.; Tarnowski, M.; Baranowska-Bosiacka, I.; Gutowska, I. Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures. NeuroToxicology 2019, 74, 81–90. [Google Scholar] [CrossRef]
- Lopes, G.O.; Martins Ferreira, M.K.; Davis, L.; Bittencourt, L.O.; Bragança Aragão, W.A.; Dionizio, A.; Rabelo Buzalaf, M.A.; Crespo-Lopez, M.E.; Maia, C.S.F.; Lima, R.R. Effects of Fluoride Long-Term Exposure over the Cerebellum: Global Proteomic Profile, Oxidative Biochemistry, Cell Density, and Motor Behavior Evaluation. Int. J. Mol. Sci. 2020, 21, 7297. [Google Scholar] [CrossRef]
- Ferreira, M.K.M.; Aragão, W.A.B.; Bittencourt, L.O.; Puty, B.; Dionizio, A.; Souza, M.P.C.; Buzalaf, M.A.R.; de Oliveira, E.H.; Crespo-Lopez, M.E.; Lima, R.R. Fluoride exposure during pregnancy and lactation triggers oxidative stress and molecular changes in hippocampus of offspring rats. Ecotoxicol. Environ. Saf. 2020, 208, 111437. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.T.; Bolanho, A.; Zarella, B.L.; Salo, T.; Tjäderhane, L.; Buzalaf, M.A.R. Sodium Fluoride Inhibits MMP-2 and MMP-9. J. Dent. Res. 2014, 93, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakallioğlu, E.; Muğlalı, M.; Baş, B.; Fluoride, M.G. Effects of Excessive Fluoride intake on Bone Turnover in Mandible: An Immunohistochemical Study in Rabbits; Academia: Cambridge, MA, USA, 2014; Available online: http://www.academia.edu/download/45538979/Effects_of_excessive_fluoride_intake_on_20160511-8973-1sur2bm.pdf (accessed on 12 December 2019).
- Huntley, G.W. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat. Rev. Neurosci. 2012, 13, 743–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimzade, S.; Aghaei, M.; Fluoride, A.M. Investigation of intelligence quotient in 9–12-year-old children exposed to high-and low-drinking water fluoride in West Azerbaijan Province, Iran. Fluoride 2014, 47, 9–14. [Google Scholar]
- Li, Y.; Jing, X.; Chen, D.; Lin, L.; Fluoride, Z.W. Effects of Endemic Fluoride Poisoning on the Intellectual Development of Children in Baotou. Int. Soc. Fluoride Res. 2008. Available online: https://scholar.google.pl/scholar?hl=pl&as_sdt=0%2C5&q=Effects+of+endemic+fluoride+poisoning+on+the+intellectual+development+of+children+in+baotou&btnG= (accessed on 8 December 2019).
- Lu, Y.; Sun, Z.; Wu, L.; Wang, X.; Lu, W.; Fluoride, S.L. Effect of High-Fluoride Water on Intelligence in Children. Citeseer 2000. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.552.8988&rep=rep1&type=pdf (accessed on 12 December 2019).
- Zhao, L.; Liang, G.; Zhang, D.; Fluoride, X.W. Effect of a High Fluoride Water Supply on Children’s Intelligence. Falseflag Inf. 1996. Available online: http://www.falseflag.info/wp-content/uploads/2015/02/Effect-of-a-High-Fluoride-Water-Supply-on-Childrens-Intelligence1.pdf#page=8 (accessed on 20 April 2020).
- Beroun, A.; Mitra, S.; Michaluk, P.; Pijet, B.; Stefaniuk, M.; Kaczmarek, L. MMPs in learning and memory and neuropsychiatric disorders. Cell. Mol. Life Sci. 2019, 76, 3207–3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murase, S.; Lantz, C.L.; Kim, E.; Gupta, N.; Higgins, R.; Stopfer, M.; Quinlan, E.M. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability. Mol. Neurobiol. 2016, 53, 3477–3493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raz, L.; Yang, Y.; Thompson, J.; Hobson, S.; Pesko, J.; Mobashery, S.; Rosenberg, G. MMP-9 inhibitors impair learning in spontaneously hypertensive rats. PLoS ONE 2018, 13, e0208357. [Google Scholar] [CrossRef]
- Lebida, K.; Mozrzymas, J.W. Spike Timing-Dependent Plasticity in the Mouse Barrel Cortex Is Strongly Modulated by Sensory Learning and Depends on Activity of Matrix Metalloproteinase 9. Mol. Neurobiol. 2017, 54, 6723–6736. [Google Scholar] [CrossRef] [Green Version]
- Bobińska, K.; Szemraj, J.; Gałecki, P.; Talarowska, M. The role of MMP genes in recurrent depressive disorders and cognitive functions. Acta Neuropsychiatr. 2016, 28, 221–231. [Google Scholar] [CrossRef]
- Li, Q.; Michaud, M.; Shankar, R.; Canosa, S.; Schwartz, M.; Madri, J.A. MMP-2: A modulator of neuronal precursor activity and cognitive and motor behaviors. Behav. Brain Res. 2017, 333, 74–82. [Google Scholar] [CrossRef]
- Banala, R.R.; Karnati, P.R. Vitamin A deficiency: An oxidative stress marker in sodium fluoride (NaF) induced oxidative damage in developing rat brain. Int. J. Dev. Neurosci. 2015, 47, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Kaul, M.; Yan, B.; Kridel, S.J.; Cui, J.; Strongin, A.; Lipton, S.A. S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science 2002, 297, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Larsen, P.H.; Wells, J.E.; Stallcup, W.B.; Opdenakker, G.; Yong, V.W. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 2003, 23, 11127–11135. [Google Scholar] [CrossRef] [PubMed]
- Noble, L.J.; Donovan, F.; Igarashi, T.; Goussev, S.; Werb, Z. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J. Neurosci. 2002, 22, 7526–7535. [Google Scholar] [CrossRef]
- Opdenakker, G.; Steen, P.E.; Dubois, B.; Nelissen, I.; Van Coillie, E.; Masure, S.; Van Damme, J. Gelatinase B functions as regulator and effector in leukocyte biology. J. Leukocyte Biol. 2001, 69, 851–859. [Google Scholar] [CrossRef]
- Wells, J.E.A.; Hurlbert, R.J.; Fehlings, M.G.; Yong, V.W. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 2003, 126, 1628–1637. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, G.A.; Estrada, E.; Kelley, R.O.; Kornfeld, M. Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat. Neurosci. Lett. 1993, 160, 117–119. [Google Scholar] [CrossRef]
- Rosenberg, G.A.; Kornfeld, M.; Estrada, E.; Kelley, R.O.; Liotta, L.A.; Stetler-Stevenson, W.G. TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res. 1992, 576, 203–207. [Google Scholar] [CrossRef]
- Gonthier, B.; Koncina, E.; Satkauskas, S.; Perraut, M.; Roussel, G.; Aunis, D.; Bagnard, D. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites. PLoS ONE 2009, 4, e5099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Klassen, H.J.; Tucker, B.A.; Perez, M.T.R.; Young, M.J. CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism. J. Neurosci. 2007, 27, 4499–4506. [Google Scholar] [CrossRef] [Green Version]
- Jourquin, J.; Tremblay, E.; Decanis, N.; Charton, G.; Hanessian, S.; Chollet, A.M.; Rivera, S. Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur. J. Neurosci. 2003, 18, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, M.; Chintala, S.K. Kainic acid-mediated upregulation of matrix metalloproteinase-9 promotes retinal degeneration. Investig. Opthalmology Vis. Sci. 2004, 45, 2374–2383. [Google Scholar] [CrossRef] [PubMed]
- Fassina, G.; Ferrari, N.; Brigati, C.; Benelli, R.; Santi, L.; Noonan, D.M.; Albini, A. Tissue inhibitors of metalloproteases: Regulation and biological activities. Clin. Exp. Metastasis. 2000, 18, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.H.; Yu, S.C.; Meng, Q.; Brew, K.; Woessner, J.F. TIMP-3 Binds to Sulfated Glycosaminoglycans of the Extracellular Matrix. J. Biol. Chem. 2000, 275, 31226–31232. [Google Scholar] [CrossRef] [Green Version]
- Leco, K.J.; Waterhouse, P.; Sanchez, O.H.; Gowing, K.L.; Poole, A.R.; Wakeham, A.; Khokha, R. Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J. Clin. Investig. 2001, 108, 817–829. [Google Scholar] [CrossRef]
- Magnowska, M.; Gorkiewicz, T.; Suska, A.; Wawrzyniak, M.; Rutkowska-Wlodarczyk, I.; Kaczmarek, L.; Wlodarczyk, J. Transient ECM protease activity promotes synaptic plasticity. Sci. Rep. 2016, 6, 27757. [Google Scholar] [CrossRef]
- Vaillant, C.; Didier-Bazès, M.; Hutter, A.; Belin, M.F.; Thomasset, N. Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum. J. Neurosci. 1999, 19, 4994–5004. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.B.; Krasnopolsky, V.; Dehlinger, E. Inhibition of retinal growth cone activity by specific metalloproteinase inhibitors in vitro. Dev. Dyn. 1994, 200, 79–88. [Google Scholar] [CrossRef]
- Jaworski, D.M.; Fager, N. Regulation of tissue inhibitor of metalloproteinase-3 (Timp-3) mRNA expression during rat CNS development. J. Neurosci. Res. 2002, 61, 396–408. [Google Scholar] [CrossRef]
- Amour, A.; Knight, C.G.; Webster, A.; Slocombe, P.M.; Stephens, P.E.; Knäuper, V.; Murphy, G. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 2000, 473, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Amour, A.; Slocombe, P.M.; Webster, A.; Butler, M.; Knight, C.G.; Smith, B.J.; Murphy, G. TNF-α converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 1998, 435, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, M.; Tortorella, M.; Nagase, H.; Brew, K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J. Biol. Chem. 2001, 276, 12501–12504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaswamy, V.R.; Benbenishty, A.; Blinder, P.; Sagi, I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: Structural and functional insights. Cell. Mol. Life Sci. 2019, 76, 3229–3248. [Google Scholar] [CrossRef] [PubMed]
- Förster, C.; Kahles, T.; Kietz, S.; Drenckhahn, D. Dexamethasone induces the expression of metalloproteinase inhibitor TIMP-1 in the murine cerebral vascular endothelial cell line cEND. J. Physiol. 2007, 580, 937–949. [Google Scholar] [CrossRef]
- Harkness, K.A.; Adamson, P.; Sussman, J.D.; Davies-Jones, G.A.; Greenwood, J.; Woodroofe, M.N. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain: J. Neurol. 2000, 123 Pt 4, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, C.; El-Gindi, J.; Lohmann, C.; Lischper, M.; Zeni, P.; Galla, H.J. TIMP-3: A novel target for glucocorticoid signaling at the blood–brain barrier. Biochem. Biophys. Res. Commun. 2009, 390, 182–186. [Google Scholar] [CrossRef]
- Anderson, R.E.; Kemp, J.W.; Jee, W.S.; Woodbury, D.M. Effects of cortisol and fluoride on ion-transporting ATPase activities in cultured osteoblastlike cells. Vitro Cell. Dev. Biol. Anim. 1984, 20, 847–855. [Google Scholar] [CrossRef]
- Brand, K.; Baker, A.H.; Perez-Cantó, A.; Possling, A.; Sacharjat, M.; Geheeb, M.; Arnold, W. Treatment of Colorectal Liver Metastases by Adenoviral Transfer of Tissue Inhibitor of Metalloproteinases-2 into the Liver Tissue. Cancer Res. 2000, 60, 5723–5730. [Google Scholar]
- Valente, P.; Fassina, G.; Melchiori, A.; Masiello, L.; Cilli, M.; Vacca, A.; Albini, A. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int. J. Cancer 1998, 75, 246–253. [Google Scholar] [CrossRef]
- Bond, M.; Murphy, G.; Bennett, M.R.; Newby, A.C.; Baker, A.H. Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J. Biol. Chem. 2002, 277, 13787–13795. [Google Scholar] [CrossRef] [Green Version]
- Ahonen, M.; Baker, A.H.; & Kähäri, V.M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 1998, 58, 2310–2315. [Google Scholar] [PubMed]
- Baker, A.H.; Zaltsman, A.B.; George, S.J.; Newby, A.C. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J. Clin. Investig. 1998, 101, 1478–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, M.; Murphy, G.; Bennett, M.R.; Amour, A.; Knauper, V.; Newby, A.C.; Baker, A.H. Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity. J. Biol. Chem. 2000, 275, 41358–41363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Zhang, S.; Liu, H.; Guan, Z.; Zeng, Q.; Zhang, C.; Wang, A. Low Glucose Utilization and Neurodegenerative Changes Caused by Sodium Fluoride Exposure in Rat’s Developmental Brain. NeuroMol. Med. 2014, 16, 94–105. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukomska, A.; Baranowska-Bosiacka, I.; Dec, K.; Pilutin, A.; Tarnowski, M.; Jakubczyk, K.; Żwierełło, W.; Skórka-Majewicz, M.; Chlubek, D.; Gutowska, I. Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2 and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain. Int. J. Mol. Sci. 2021, 22, 391. https://doi.org/10.3390/ijms22010391
Łukomska A, Baranowska-Bosiacka I, Dec K, Pilutin A, Tarnowski M, Jakubczyk K, Żwierełło W, Skórka-Majewicz M, Chlubek D, Gutowska I. Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2 and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain. International Journal of Molecular Sciences. 2021; 22(1):391. https://doi.org/10.3390/ijms22010391
Chicago/Turabian StyleŁukomska, Agnieszka, Irena Baranowska-Bosiacka, Karolina Dec, Anna Pilutin, Maciej Tarnowski, Karolina Jakubczyk, Wojciech Żwierełło, Marta Skórka-Majewicz, Dariusz Chlubek, and Izabela Gutowska. 2021. "Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2 and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain" International Journal of Molecular Sciences 22, no. 1: 391. https://doi.org/10.3390/ijms22010391
APA StyleŁukomska, A., Baranowska-Bosiacka, I., Dec, K., Pilutin, A., Tarnowski, M., Jakubczyk, K., Żwierełło, W., Skórka-Majewicz, M., Chlubek, D., & Gutowska, I. (2021). Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2 and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain. International Journal of Molecular Sciences, 22(1), 391. https://doi.org/10.3390/ijms22010391