On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optical Rotatory Dispersion Measurement on PLAO during Lactic Acid Polycondensation
2.2. The Progress of Lactic Acid Polycondensation Can Be Followed Also by FT-IR Spectroscopy
2.3. Partial PLLA Racemization by Thermal Treatment in Selected Solvent Followed by ORD Spectroscopy
2.4. Gigantic Optical Activity on PLLA Film
2.5. Gigantic Optical Activity on PLLA Green Film Recovered from Used Water Bottles
3. Materials and Methods
3.1. Materials and Equipment
3.2. l-(+)-Lactic Acid Polycondensation Study to PLAO
3.3. Partial Thermal Racemization of PLLA
3.4. Preparation of PLLA Film
3.5. Green PLLA Film from Used Water Bottle
3.6. Exposure to Ozone and Kinetics of Ozone Bleaching of the Green PLLA Film from Used Water Bottle
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lunt, J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 1998, 59, 145–152. [Google Scholar] [CrossRef]
- Garlotta, D. A literature review of poly (lactic acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Lim, L.T.; Auras, R.; Rubino, M. Processing technologies for poly (lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Maharana, T.; Mohanty, B.; Negi, Y.S. Melt-solid polycondensation of lactic acid and its biodegradability. Prog. Polym. Sci. 2009, 34, 99–124. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly (lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Lasprilla, A.J.; Martinez, G.A.; Lunelli, B.H.; Jardini, A.L.; Maciel Filho, R. Poly-actic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef]
- Tawakkal, I.S.; Cran, M.J.; Miltz, J.; Bigger, S.W. A review of poly (lactic acid)-based materials for antimicrobial packaging. J. Food Sci. 2014, 79, R1477–R1490. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, H. Poly (lactic acid) stereocomplexes: A decade of progress. Adv. Drug Deliv. Rev. 2016, 107, 97–135. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Androsch, R. (Eds.) Synthesis, Structure and Properties of Poly (Lactic Acid); Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Di Lorenzo, M.L.; Androsch, R. (Eds.) Industrial Applications of Poly (Lactic Acid); Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Chahal, S.P. Lactic Acid. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed.; Elvers, B., Hawkins, S., Schulz, G., Eds.; VCH: Weinhein, Germany, 1990; Volume A15, pp. 97–105. [Google Scholar]
- Perego, G.; Cella, G.D.; Bastioli, C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996, 59, 37–43. [Google Scholar] [CrossRef]
- Kameno, N.; Yamada, S.; Amimoto, T.; Amimoto, K.; Ikeda, H.; Koga, N. Thermal degradation of poly (lactic acid) oligomer: Reaction mechanism and multistep kinetic behavior. Polym. Degrad. Stab. 2016, 134, 284–295. [Google Scholar] [CrossRef]
- Cuadri, A.A.; Martín-Alfonso, J.E. Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties. Polym. Degrad. Stab. 2018, 150, 37–45. [Google Scholar] [CrossRef]
- Hongen, T.; Taniguchi, T.; Nomura, S.; Kadokawa, J.I.; Monde, K. In depth study on solution-state structure of poly (lactic acid) by vibrational circular dichroism. Macromolecules 2014, 47, 5313–5319. [Google Scholar] [CrossRef]
- Wen, T.; Wang, H.F.; Li, M.C.; Ho, R.M. Homochiral evolution in self-assembled chiral polymers and block copolymers. Acc. Chem. Res. 2017, 50, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Schultz, R.C.; Schwaab, J. Rotationdispersion bei monomeren und polymerem l-(−)-lactid. Macromol. Chem. Phys. 1965, 87, 90–102. [Google Scholar] [CrossRef]
- Suzuki, Y.; Watanabe, T.; Kosugi, H.; Ueda, K.; Kikuchi, M.; Narumi, A.; Kawaguchi, S. Dilute solution properties of poly (d, l-lactide) by static light scattering, SAXS, and intrinsic viscosity. Polym. J. 2020, 52, 387–396. [Google Scholar] [CrossRef]
- Suzuki, Y.; Watanabe, T.; Kosugi, H.; Ueda, K.; Kikuchi, M.; Narumi, A.; Kawaguchi, S. Chain conformation of poly(D-lactide) in tetrahydrofuran by static light scattering, small-angle X-ray scattering, and intrinsic viscosity. Macromolecules 2020, 53, 1604–1612. [Google Scholar] [CrossRef]
- Jirgensons, B. Optical Activity of Proteins and Other Macromolecules, 2nd ed.; Chapman & Hall Ltd.: London, UK, 1973; pp. 16–17. [Google Scholar]
- Schultz, R. Addition compounds and complexes with polymers and models. Pure Appl. Chem. 1974, 38, 227–247. [Google Scholar] [CrossRef]
- Schultz, R. Modification of chiral properties due to the interaction of polymers and small molecules or ions. In Optically Active Polymers; Selegny, E., Ed.; Reidel: Dordrecht, The Netherlands, 1979; pp. 267–290. [Google Scholar]
- Hatano, M. Induced circular dichroism in biopolymer-dye systems. Adv. Polym. Sci. 1986, 77, 1–136. [Google Scholar]
- Ikai, T.; Okubo, M.; Wada, Y. Helical assemblies of one-dimensional supramolecular polymers composed of helical macromolecules: Generation of circularly polarized light using an infinitesimal chiral source. J. Am. Chem. Soc. 2020, 142, 3254–3261. [Google Scholar] [CrossRef]
- Cataldo, F. Formation and decomposition of poly(l-lactic acid) charge-transfer complex with iodine. Polym. Degrad. Stab. 2020, 176, 109175. [Google Scholar] [CrossRef]
- Cataldo, F. On the interaction of C60 fullerene with poly(l-lactic acid) or poly(lactide). Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 621–626. [Google Scholar] [CrossRef]
- Burgos, N.; Martino, V.P.; Jiménez, A. Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 2013, 98, 651–658. [Google Scholar] [CrossRef]
- Burgos, N.; Tolaguera, D.; Fiori, S.; Jiménez, A. Synthesis and characterization of lactic acid oligomers: Evaluation of performance as poly (lactic acid) plasticizers. J. Polym. Environ. 2014, 22, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio-Martín, J.; Fabra, M.J.; Lopez-Rubio, A.; Lagaron, J.M. An effect of lactic acid oligomers on the barrier properties of polylactide. J. Mater. Sci. 2014, 49, 2975–2986. [Google Scholar] [CrossRef]
- Albano, G.; Pescitelli, G.; Di Bari, L. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 2020, 120, 10145–10243. [Google Scholar] [CrossRef]
- Filachione, E.M. Lactic Acid. In Encyclopedia of Chemical Technology, 1st ed.; Kirk, R.E., Othmer, D.F., Eds.; The Interscience Encyclopedia Inc.: New York, NY, USA, 1952; Volume 8, pp. 167–177. [Google Scholar]
- Lowry, T.M. Optical Rotatory Power; Dover Publications Inc.: New York, NY, USA, 1964; pp. 20–24. [Google Scholar]
- Feng, L.; Bian, X.; Chen, Z.; Xiang, S.; Liu, Y.; Sun, B.; Li, G.; Chen, X. Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry. Talanta 2017, 164, 268–274. [Google Scholar] [CrossRef]
- Kimura, T.; Fukuda, T.; Shimada, S.; Matsuda, H. Effect of polymerization degree on building-up helical structure of oligo-(l-lactic acid). Chem. Lett. 2004, 33, 608–609. [Google Scholar] [CrossRef]
- Nakanishi, K.; Solomon, P.H. Infrared Absorption Spectroscopy, 2nd ed.; Holden-Day Inc.: San Francisco, CA, USA, 1978; pp. 42–47. [Google Scholar]
- Fan, Y.; Nishida, H.; Shirai, Y.; Endo, T. Racemization on thermal degradation of poly (l-lactide) with calcium salt end structure. Polym. Degrad. Stab. 2003, 80, 503–511. [Google Scholar] [CrossRef]
- Tsukegi, T.; Motoyama, T.; Shirai, Y.; Nishida, H.; Endo, T. Racemization behavior of l, l-lactide during heating. Polym. Degrad. Stab. 2007, 92, 552–559. [Google Scholar] [CrossRef]
- Yasuda, N.; Wang, Y.; Tsukegi, T.; Shirai, Y.; Nishida, H. Quantitative evaluation of photodegradation and racemization of poly (l-lactic acid) under UV-C irradiation. Polym. Degrad. Stab. 2010, 95, 1238–1243. [Google Scholar] [CrossRef]
- Feng, L.; Chen, X.; Sun, B.; Bian, X.; Chen, Z. Water-catalyzed racemisation of lactide. Polym. Degrad. Stab. 2011, 96, 1745–1750. [Google Scholar] [CrossRef]
- Botvin, V.; Karaseva, S.; Khasanov, V. Depolymerization of lactic acid oligomers into lactide: Epimerization, stereocomplex formation, and nature of interactions of oligomers. Polym. Degrad. Stab. 2020, 182, 109382. [Google Scholar] [CrossRef]
- Vogl, O.; Bartus, J.; Murdoch, J.R. Solid-state, optical-rotation measurements on macromolecules using powder-suspensions. Monatsh. Chem. Chem. Month. 1990, 121, 311–316. [Google Scholar] [CrossRef]
- Bartus, J.; Weng, D.; Vogl, O. Optical activity measurements in solids 7. Polylactides and poly (β-hydroxybutyrates). Polym. Int. 1994, 34, 433–442. [Google Scholar] [CrossRef]
- Kobayashi, J.; Asahi, T.; Ichiki, M.; Oikawa, A.; Suzuki, H.; Watanabe, T.; Fukada, E.; Shikinami, Y. Structural and optical properties of poly lactic acids. J. Appl. Phys. 1995, 77, 2957–2973. [Google Scholar] [CrossRef]
- Tajitsu, Y.; Hosoya, R.; Maruyama, T.; Aoki, M.; Shikinami, Y.; Date, M.; Fukada, E. Huge optical rotatory power of uniaxially oriented film of poly-l-lactic acid. J. Mater. Sci. Lett. 1999, 18, 1785–1787. [Google Scholar] [CrossRef]
- Ye, H.M.; Xu, J.; Freudenthal, J.; Kahr, B. On the circular birefringence of polycrystalline polymers: Polylactide. J. Am. Chem. Soc. 2011, 133, 13848–13851. [Google Scholar] [CrossRef]
- Christensen, I. Developments in Colorants for Plastics; Report 157; Smithers Rapra Publishing: Shawbury, UK, 2003; Volume 14, pp. 18–19. [Google Scholar]
- Johnson, K.C. Phthalocyanine dyes. In Encyclopedia of Chemical Technology, 1st ed.; Kirk, R.E., Othmer, D.F., Eds.; The Interscience Encyclopedia Inc.: New York, NY, USA, 1952; Volume 10, p. 609. [Google Scholar]
- Griffiths, J. Colour and Constitution of Organic Molecules; Academic Press: London, UK, 1976; pp. 227–229. [Google Scholar]
- Zollinger, H. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments; John Wiley & Sons: New York, NY, USA, 2003; pp. 99–101. [Google Scholar]
- Cataldo, F. Synthesis and study of electronic spectra of planar polymeric phthalocyanines. Dyes Pigment. 1997, 34, 75–85. [Google Scholar] [CrossRef]
- Cataldo, F. On the action of ozone on the haemoglobin prosthetic group, haemin and haematoporphyrin: A comparison with the synthetic copper phthalocyanines. Polym. Degrad. Stab. 2004, 86, 367–376. [Google Scholar] [CrossRef]
- Snatzke, G. (Ed.) Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry, Including Applications from Inorganic Chemistry and Biochemistry; Heyden and Son: London, UK, 1967. [Google Scholar]
Integr. abs. | Integr. abs. | Integr. abs. | Integr. abs. | Integr. abs. | Integr. abs. | |
---|---|---|---|---|---|---|
3450-20 cm−1 | 1750 cm−1 | 1129 cm−1 | 1456 cm−1 | 1224 cm−1 | 1096 cm−1 | |
Lactic acid 88% | 19.44 | 23.25 | 14.57 | 2.79 | 6.00 | 1.09 |
Lactic acid 100% | 13.45 | 22.50 | 14.32 | 2.69 | 6.00 | 1.08 |
PLAO 1st stage | 9.67 | 22.40 | 10.63 | 3.90 | 14.45 | 3.27 |
PLAO 2nd stage | 4.40 | 22.20 | 6.07 | 4.07 | 15.68 | 6.92 |
PLAO 3rd stage | 4.90 | 21.00 | 6.19 | 4.12 | 16.42 | 7.23 |
PLLA high Mw | 2.03 | 14.40 | 3.99 | 7.50 | 20.00 | 7.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldo, F. On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes. Int. J. Mol. Sci. 2021, 22, 8. https://doi.org/10.3390/ijms22010008
Cataldo F. On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes. International Journal of Molecular Sciences. 2021; 22(1):8. https://doi.org/10.3390/ijms22010008
Chicago/Turabian StyleCataldo, Franco. 2021. "On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes" International Journal of Molecular Sciences 22, no. 1: 8. https://doi.org/10.3390/ijms22010008
APA StyleCataldo, F. (2021). On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes. International Journal of Molecular Sciences, 22(1), 8. https://doi.org/10.3390/ijms22010008