Phytochemical Composition and Biological Activities of Scorzonera Species
Abstract
:1. Introduction
2. Scorzonera in Traditional Medicine
3. Phytochemical Composition of Scorzonera Species
3.1. Scorzonera acuminata Boiss.
3.2. Scorzonera aristata Rameond ex DC.
3.3. Scorzonera aucheriana DC.
3.4. Scorzonera austriaca Willd.
3.5. Scorzonera baetica (Boiss.) Boiss.
3.6. Scorzonera cana (C.A. Meyer) Hoffm. var. alpina (Boiss.) Chamb.
3.7. Scorzonera cana (C.A. Meyer) Hoffm. var. jacquiniana (W. Koch) Chamb.
3.8. Scorzonera cinerea Boiss.
3.9. Scorzonera cretica Willd.
3.10. Scorzonera crispatula Boiss.
3.11. Scorzonera divaricata Turcz.
3.12. Scorzonera eriophora DC.
3.13. Scorzonera graminifolia L.
3.14. Scorzonera hieraciifolia Hayek
3.15. Scorzonera hirsuta L.
3.16. Scorzonera hispanica L.
3.17. Scorzonera humilis L.
3.18. Scorzonera incisa DC.
3.19. Scorzonera judaica Eig.
3.20. Scorzonera laciniata L. ssp. laciniata
3.21. Scorzonera latifolia (Fisch. and Mey.) DC.
3.22. Scorzonera mirabilis Lipsch.
3.23. Scorzonera mollis Bieb. ssp. szowitsii (DC.) Chamb.
3.24. Scorzonera papposa DC.
3.25. Scorzonera parviflora Jacq.
3.26. Scorzonera pseudodivaricata Lipsch.
3.27. Scorzonera pusilla Pall.
3.28. Scorzonera pygmaea Sibth. and Sm.
3.29. Scorzonera radiata Fisch.
3.30. Scorzonera suberosa C. Koch ssp. suberosa
3.31. Scorzonera sublanata Lipsch.
3.32. Scorzonera tomentosa L.
3.33. Scorzonera trachysperma Guss.
3.34. Scorzonera undulata ssp. alexandrina Boiss.
3.35. Scorzonera undulata ssp. deliciosa (Guss.) Marie
3.36. Scorzonera veratrifolia Fenzl.
3.37. Scorzonera villosa Scop. ssp. villosa
4. Biological Activity
4.1. Cytotoxic Activity
4.2. Anti-Inflammatory Activity
4.3. Analgesic Activity
4.4. Hepatoprotective Activity
4.4.1. In Vitro Assays
4.4.2. In Vivo Assays
4.5. Antimicrobial Activity
4.6. Wound Healing Activity
4.6.1. In Vitro Assays
4.6.2. In Vivo Assays
4.7. Antioxidant Capacity
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALT | alanine transaminase |
AST | aspartate transaminase |
BCB | beta-carotene bleaching |
CCl4 | carbon tetrachloride |
CHCl3 | chloroform |
COX-1 | cyclooxygenase 1 |
COX-2 | cyclooxygenase 2 |
CUPRAC | cupric reducing antioxidant capacity |
FRAP | ferric reducing antioxidant activity |
H2O2 | hydrogen peroxide |
H2SO4 | sulfuric acid |
HNO3 | nitric acid |
Hyp | hydroxyproline |
IC50 | half-maximal inhibitory concentration |
IL-1β | interleukin 1β |
MBC | minimal bactericidal concentration |
MIC | minimal inhibitory concentration |
NF-κB | nuclear factor kappa B |
OSI | oxidative stress index |
RACI | relative antioxidant capacity index |
SC50 | half-maximal scavenging concentration |
TAS | total antioxidant status |
TEAC | Trolox equivalent antioxidant capacity |
TNF-α | tumor necrosis factor α |
TOS | total oxidant status |
TPC | total phenolic content |
References
- Duran, A.; Hamzaoğlu, E. A new species of Scorzonera L. (Asteraceae) from South Anatolia, Turkey. Biologia 2004, 59, 47–50. [Google Scholar]
- Karaer, F.; Celep, F. Rediscovery of Scorzonera amasiana Hausskn. and Bornm.—A threatened endemic species in Turkey. Bangladesh J. Bot. 2007, 36, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Bahadir-Acikara, Ö.; Citoğlu-Gülçin, S.; Dall’Acqua, S.; Özbek, H.; Cvačka, J.; Žemlička, M.; Šmejkal, K. Bioassay-guided isolation of the antinociceptive compounds motiol and β-sitosterol from Scorzonera latifolia root extract. Pharmazie 2014, 69, 711–714. [Google Scholar] [CrossRef]
- Küpeli-Akkol, E.; Šmejkal, K.; Kurtul, E.; Ilhan, M.; Güragac, F.T.; Çitoğlu, G.S.; Acıkara, Ö.B.; Cvačka, J.; Buděšínský, M. Inhibitory activity of Scorzonera latifolia and its components on enzymes connected with healing process. J. Ethnopharmacol. 2019, 245. [Google Scholar] [CrossRef]
- Küpeli-Akkol, E.; Acikara, O.B.; Süntar, I.; Citolu, G.S.; Kele, H.; Ergene, B. Enhancement of wound healing by topical application of Scorzonera species: Determination of the constituents by HPLC with new validated reverse phase method. J. Ethnopharmacol. 2011, 137, 1018–1027. [Google Scholar] [CrossRef]
- Bahadır, Ö.; Citoğlu, G.S.; Smejkal, K.; Dall’Acqua, S.; Ozbek, H.; Cvacka, J.; Zemlicka, M. Analgesic compounds from Scorzonera latifolia (Fisch. and Mey.) DC. J. Ethnopharmacol. 2010, 131, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Erik, İ.; Yaylı, N.; Coşkunçelebi, K.; Makbul, S.; Karaoğlu, Ş.A. Three new dihydroisocoumarin glycosides with antimicrobial activities from Scorzonera aucheriana. Phytochem. Lett. 2021, 43, 45–52. [Google Scholar] [CrossRef]
- Sarı, A.; Şahin, H.; Özsoy, N.; Özbek Çelik, B. Phenolic compounds and in vitro antioxidant, anti-inflammatory, antimicrobial activities of Scorzonera hieraciifolia Hayek roots. S. Afr. J. Bot. 2019, 125, 116–119. [Google Scholar] [CrossRef]
- Süntar, I.; Bahadır-Acıkara, Ö.; Saltan-Çitoǧlu, G.; Keleş, H.; Ergene, B.; Küpeli Akkol, E. In vivo and in vitro evaluation of the therapeutic potential of some Turkish Scorzonera species as wound healing agent. Curr. Pharm. Des. 2012, 18, 1421–1433. [Google Scholar] [CrossRef]
- Bahadır-Acikara, Ö.; Hošek, J.; Babula, P.; Cvačka, J.; Budešínský, M.; Dračinský, M.; Saltan İşcan, G.; Kadlecová, D.; Ballová, L.; Šmejkal, K. Turkish Scorzonera species Extracts attenuate cytokine secretion via inhibition of NF-κB activation, showing anti-inflammatory effect in vitro. Molecules 2016, 21, 43. [Google Scholar] [CrossRef] [Green Version]
- Coşkunçelebi, K.; Makbul, S.; Gültepe, M.; Okur, S.; Güzel, M.E. A conspectus of Scorzonera s.l. in Turkey. Turk. J. Bot. 2015, 39, 76–87. [Google Scholar] [CrossRef]
- Tsevegsuren, N.; Proksch, P.; Wang, Y.; Davaakhuu, G. Bioactive phenolic acids from Scorzonera radiata Fisch. Mong. J. Chem. 2014, 12, 78–84. [Google Scholar] [CrossRef]
- Wang, Y.; Wray, V.; Tsevegsuren, N.; Lin, W.; Proksch, P. Phenolic compounds from the Mongolian medicinal plant Scorzonera radiata. Z. Naturforsch. Sect. C J. Biosci. 2012, 67, 135–143. [Google Scholar] [CrossRef]
- Tsevegsuren, N.; Edrada, R.A.; Lin, W.; Ebel, R.; Torre, C.; Ortlepp, S.; Wray, V.; Proksch, P. Biologically active natural products from Mongolian medicinal plants Scorzonera divaricata and Scorzonera pseudodivaricata. J. Nat. Prod. 2007, 70, 962–967. [Google Scholar] [CrossRef]
- Wang, Y.; Edrada-Ebel, R.; Tsevegsuren, N.; Sendker, J.; Braun, M.; Wray, V.; Lin, W.; Proksch, P. Dihydrostilbene derivatives from the mongolian medicinal plant Scorzonera radiata. J. Nat. Prod. 2009, 72, 671–675. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.X.; Shi, Y.P.; Zhu, Y. A new sesquiterpene lactone from Scorzonera austriaca. Chin. Chem. Lett. 2004, 15, 1309–1310. [Google Scholar]
- Zhu, Y.; Wu, Q.X.; Hu, P.Z.; Wu, W.S. Biguaiascorzolides A and B: Two novel dimeric guaianolides with a rare skeleton, from Scorzonera austriaca. Food Chem. 2009, 114, 1316–1320. [Google Scholar] [CrossRef]
- Wang, B.; Li, G.Q.; Qiu, P.J.; Guan, H.S. Two new olean-type triterpene fatty esters from Scorzonera mongolica. Chin. Chem. Lett. 2007, 18, 708–710. [Google Scholar] [CrossRef]
- Zaika, M.A.; Kilian, N.; Jones, K.; Krinitsina, A.A.; Nilova, M.V.; Speranskaya, A.S.; Sukhorukov, A.P. Scorzonera sensu lato (Asteraceae, Cichorieae)—Taxonomic reassessment in the light of new molecular phylogenetic and carpological analyses. PhytoKeys 2020, 137, 1–85. [Google Scholar] [CrossRef]
- Granica, S.; Lohwasser, U.; Jöhrer, K.; Zidorn, C. Qualitative and quantitative analyses of secondary metabolites in aerial and subaerial of Scorzonera hispanica L. (black salsify). Food Chem. 2015, 173, 321–331. [Google Scholar] [CrossRef]
- Buranov, A.U.; Elmuradov, B.J. Extraction and characterization of latex and natural rubber from rubber-bearing plants. J. Agric. Food Chem. 2010, 58, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Erden, Y.; Kırbağ, S.; Yılmaz, Ö. Phytochemical composition and antioxidant activity of some Scorzonera species. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 271–276. [Google Scholar] [CrossRef]
- Benabdelaziz, I.; Haba, H.; Lavaud, C.; Benkhaled, M. Triterpenoids and flavonoid from Scorzonera undulata ssp. alexandrina. Int. J. Chem. Biochem. Sci. 2014, 5, 1–5. [Google Scholar]
- Xie, Y.; Guo, Q.S.; Wang, G.S. Flavonoid glycosides and their derivatives from the herbs of Scorzonera austriaca Willd. Molecules 2016, 21, 803. [Google Scholar] [CrossRef]
- Bader, A.; de Tommasi, N.; Cotugno, R.; Braca, A. Phenolic compounds from the roots of jordanian viper’s grass, Scorzonera judaica. J. Nat. Prod. 2011, 74, 1421–1426. [Google Scholar] [CrossRef]
- Granica, S.; Zidorn, C. Phenolic compounds from aerial parts as chemosystematic markers in the Scorzonerinae (Asteraceae). Biochem. Syst. Ecol. 2015, 58, 102–113. [Google Scholar] [CrossRef]
- Bahadır-Acıkara, Ö.; Özbilgin, S.; Saltan-İşcan, G.; Dall’Acqua, S.; Rjašková, V.; Özgökçe, F.; Suchý, V.; Šmejkal, K. Phytochemical analysis of Podospermum and Scorzonera n-hexane extracts and the HPLC quantitation of triterpenes. Molecules 2018, 23, 1813. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.X.; Su, Y.B.; Zhu, Y. Triterpenes and steroids from the roots of Scorzonera austriaca. Fitoterapia 2011, 82, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Erik, İ.; Coşkunçelebi, K.; Makbul, S.; Yayli, N. New chlorogenic acid derivatives and triterpenoids from Scorzonera aucheriana. Turk. J. Chem. 2021, 45, 199–209. [Google Scholar] [CrossRef]
- Çetin, B.; Şahin, H.; Sarı, A. Triterpenoids from Scorzonera veratrifolia Fenzl. Istanbul J. Pharm. 2019, 48, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, G.-Q.; Guan, H.; Yang, L.; Tong, G. A new erythrodiol triterpene fatty ester from Scorzonera mongolica. Yao Xue Xue Bao 2009, 44, 1258–1261. [Google Scholar] [PubMed]
- Zidorn, C.; Ellmerer-Müller, E.P.; Stuppner, H. Sesquiterpenoids from Scorzonera hispanica L. Pharmazie 2000, 55, 550–551. [Google Scholar] [PubMed]
- Zhu, Y.; Hu, P.Z.; He, Z.W.; Wu, Q.X.; Li, J.; Wu, W.S. Sesquiterpene lactones from Scorzonera austriaca. J. Nat. Prod. 2010, 73, 237–241. [Google Scholar] [CrossRef]
- Wu, Q.X.; He, X.F.; Jiang, C.X.; Zhang, W.; Shi, Z.N.; Li, H.F.; Zhu, Y. Two novel bioactive sulfated guaiane sesquiterpenoid salt alkaloids from the aerial parts of Scorzonera divaricata. Fitoterapia 2017, 124, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Şahin, H.; Sarı, A.; Özsoy, N.; Özbek Çelik, B.; Koyuncu, O. Two new phenolic compounds and some biological activities of Scorzonera pygmaea Sibth. and Sm. subaerial parts. Nat. Prod. Res. 2020, 34, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Sarı, A.; Zidorn, C.; Ellmerer, E.P.; Özgökçe, F.; Ongania, K.H.; Stuppner, H. Phenolic compounds from Scorzonera tomentosa L. Helv. Chim. Acta 2007, 90, 311–317. [Google Scholar] [CrossRef]
- Paraschos, S.; Magiatis, P.; Kalpoutzakis, E.; Harvala, C.; Skaltsounis, A.L. Three new dihydroisocoumarins from the Greek endemic species Scorzonera cretica. J. Nat. Prod. 2001, 64, 1585–1587. [Google Scholar] [CrossRef]
- Karakaya, S.; Polat, A.; Aksakal, Ö.; Sümbüllü, Y.Z.; İncekara, Ü. Ethnobotanical study of medicinal plants in aziziye district (Erzurum, Turkey). Turk. J. Pharm. Sci. 2020, 17, 211–220. [Google Scholar] [CrossRef]
- Yaldiz, G.; Koca Çalişkan, U.; Aka, C. In vitro screening of natural drug potentials for mass production. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 292–300. [Google Scholar] [CrossRef] [Green Version]
- De Smet, P.A.G.M. The Role of Plant-Derived Drugs and Herbal Medicines in Healthcare. Drugs 1997, 54, 801–840. [Google Scholar] [CrossRef]
- Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today 2008, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, F.S.; Weng, J.K. Demystifying traditional herbal medicine with modern approaches. Nat. Plants 2017, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 2016, 21, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Rees, S.; Harborne, J. Flavonoids and other phenolics of Cichorium and related members of the Lactuceae (Compositae). Bot. J. Linn. Soc. 1984, 89, 313–319. [Google Scholar] [CrossRef]
- Bryanskii, O.V.; Tolstikhina, V.V.; Zinchenko, S.V.; Semenov, A.A. A sesquiterpene glucoside from cultivated cells of Scorzonera hispanica. Chem. Nat. Compd. 1992, 28, 556–560. [Google Scholar] [CrossRef]
- Tolstikhina, V.V.; Bryanskii, O.V.; Syrchina, A.I.; Semenov, A.A. Chemical composition of a culture of tissue of Scorzonera hispanica. Chem. Nat. Compd. 1988, 24, 655. [Google Scholar] [CrossRef]
- Bahadır-Acıkara, Ö.; Saltan-Çitoǧlu, G.; Dall’Acqua, S.; Šmejkal, K.; Cvačka, J.; Žemlička, M. A new triterpene from Scorzonera latifolia (Fisch. and Mey.) DC. Nat. Prod. Res. 2012, 26, 1892–1897. [Google Scholar] [CrossRef]
- Yildirim, B.; Terzioglu, Ö.; Özgökçe, F.; Türközü, D. Ethnobotanical and pharmacological uses of some plants in the districts of Karpuzalan and Adigüzel (Van-Turkey). J. Anim. Vet. Adv. 2008, 7, 873–878. [Google Scholar]
- Harkati, B.; Salah, A.; Bayet, C.; Laouer, H.; Dijoux-Franca, M.-G. Evaluation of antioxidant activity, free radical scavenging and CUPRAC of two compounds isolated from Scorzonera undulata ssp. deliciosa. Adv. Environ. Biol. 2013, 7, 591–594. [Google Scholar]
- Sharma, J.; Gairola, S.; Gaur, R.D.; Painuli, R.M. The treatment of jaundice with medicinal plants in indigenous communities of the Sub-Himalayan region of Uttarakhand, India. J. Ethnopharmacol. 2012, 143, 262–291. [Google Scholar] [CrossRef]
- Auzi, A.R.A.; Hawisa, N.T.; Sherif, F.M.; Sarker, S.D. Neuropharmacological properties of Launaea resedifolia. Rev. Bras. Farmacogn. 2007, 17, 160–165. [Google Scholar] [CrossRef]
- Nasseri, M.A.; Bigy, S.S.; Allahresani, A.; Malekaneh, M. Assessment of antioxidant activity, chemical characterization and evaluation of fatty acid compositions of Scorzonera paradoxa Fisch and C. A. Mey. Jundishapur J. Nat. Pharm. Prod. 2015, 10. [Google Scholar] [CrossRef]
- Zidorn, C.; Spitaler, R.; Ellmerer-Müller, E.P.; Perry, N.B.; Gerhäuser, C.; Stuppner, H. Structure of tyrolobibenzyl D and biological activity of tyrolobibenzyls from Scorzonera humilis. Z. Naturforsch. Sect. C J. Biosci. 2002, 57, 614–619. [Google Scholar] [CrossRef]
- Zidorn, C.; Ellmerer-Müller, E.P.; Stuppner, H. Tyrolobibenzyls—Novel secondary metabolites from Scorzonera humilis. Helv. Chim. Acta 2000, 83, 2920–2925. [Google Scholar] [CrossRef]
- Zidorn, C.; Ellmerer, E.P.; Sturm, S.; Stuppner, H. Tyrolobibenzyls E and F from Scorzonera humilis and distribution of caffeic acid derivatives, lignans and tyrolobibenzyls in European taxa of the subtribe Scorzonerinae (Lactuceae, Asteraceae). Phytochemistry 2003, 63, 61–67. [Google Scholar] [CrossRef]
- Jehle, M.; Bano, J.; Ellmerer, E.; Zidorn, C. Natural products from Scorzonera aristata (Asteraceae). Nat. Prod. Commun. 2010, 5, 725–727. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.H.; Yang, Y.J.; Gong, Y.; Zhu, Y. Chemical constituents of the roots of Scorzonera divaricata and their chemotaxonomic significance. Biochem. Syst. Ecol. 2020, 93, 104135. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Liu, X.; Wu, H.-R.; He, X.-F.; Bi, Y.-R.; Zhu, Y.; Liu, Z.-L. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chem. 2013, 138, 2057–2063. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Yao, J.; Jin, X.-J.; Shi, Z.-N.; Shen, T.-F.; Fang, J.-G.; Yao, X.-J.; Zhu, Y. Sesquiterpenoids and tirucallane triterpenoids from the roots of Scorzonera divaricata. Phytochemistry 2016, 124, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Petkova, N. Characterization of inulin from black salsify (Scorzonera hispanica L.) for food and pharmaceutical purposes. Asian J. Pharm. Clin. Res. 2018, 11, 221–225. [Google Scholar] [CrossRef]
- Zidorn, C.; Gottschlich, G.; Stuppner, H. Chemosystematic investigations on phenolics from flowerheads of Central European taxa of Hieracium sensu lato (Asteraceae). Plant Syst. Evol. 2002, 231, 39–58. [Google Scholar] [CrossRef]
- Milella, L.; Bader, A.; de Tommasi, N.; Russo, D.; Braca, A. Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species. Food Chem. 2014, 160, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Harkati, B.; Akkal, S.; Bayat, C.; Laouer, H.; Dijoux Franca, M.G. Secondary metabolites from Scorzonera undulata ssp. deliciosa (Guss.) Maire (Asteraceae) and their antioxidant activities. Rec. Nat. Prod. 2010, 4, 171–175. [Google Scholar]
- Sarı, A. Two new 3-benzylphthalides from Scorzonera veratrifolia Fenzl. Nat. Prod. Res. 2010, 24, 56–62. [Google Scholar] [CrossRef]
- Scarano, A.; Chieppa, M.; Santino, A. Looking at flavonoid biodiversity in horticultural crops: A colored mine with nutritional benefits. Plants 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Sarı, A. Phenolic compounds from Scorzonera latifolia (Fisch. and Mey.) DC. Nat. Prod. Res. 2012, 26, 50–55. [Google Scholar] [CrossRef]
- Bahadır-Acıkara, Ö.; Küpeli-Akkol, E.; Süntar, I.; Ergene, B.; Saltan-Çitoğlu, G.; Çoban, T. Assessment of anti-inflammatory and free radical scavenger activities of selected Scorzonera species and determination of active components. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 492–498. [Google Scholar]
- Turan, M.; Kordali, S.; Zengin, H.; Dursun, A.; Sezen, Y. Macro and micro mineral content of some wild edible leaves consumed in Eastern Anatolia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2003, 53, 129–137. [Google Scholar] [CrossRef]
- Bahadır, Ö.; Saltan, H.G.; Özbek, H. Antinociceptive activity of some Scorzonera L. species. Turk. J. Med. Sci. 2012, 42, 861–866. [Google Scholar] [CrossRef]
- Bahadır-Acıkara, Ö.; Smejkal, K.; Cvačka, J.; Buděšínský, M.; Dračínský, M.; Saltan, G. Secondary metabolites from Scorzonera latifolia roots. Planta Med. 2015, 81. [Google Scholar] [CrossRef]
- Bahadır-Acıkara, Ö.; Ilhan, M.; Kurtul, E.; Šmejkal, K.; Küpeli Akkol, E. Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorg. Chem. 2019, 93. [Google Scholar] [CrossRef] [PubMed]
- Özbek, H.; Bahadir, O.; Keskin, I.; Kırmızı, N.İ.; Yigitbasi, T.; Sayin Sakul, A.; Iscan, G. Preclinical evaluation of Scorzonera sp. root extracts and major compounds against acute hepatotoxicity induced by carbon tetrachloride. Indian J. Pharm. Sci. 2017, 79. [Google Scholar] [CrossRef]
- Erden, Y.; Kırbağ, S. Chemical and biological activities of some Scorzonera species: An in vitro study. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 319–326. [Google Scholar] [CrossRef]
- Donia, A.E.R.M. Phytochemical and pharmacological studies on Scorzonera alexandrina Boiss. J. Saudi Chem. Soc. 2016, 20, S433–S439. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K. Bioassay-Guided Isolation and Evaluation of Herbal Drugs. In Quality Control and Evaluation of Herbal Drugs; Elsevier: Amsterdam, The Netherlands, 2019; pp. 515–537. [Google Scholar]
- Zhang, W.G.; Zhao, R.; Ren, J.; Ren, L.X.; Lin, J.G.; Liu, D.L.; Wu, Y.L.; Yao, X.S. Synthesis and anti-proliferative in vitro activity of two natural dihydrostilbenes and their analogues. Arch. Pharm. 2007, 340, 244–250. [Google Scholar] [CrossRef]
- Csupor-Löffler, B.; Hajdú, Z.; Réthy, B.; Zupkó, I.; Máthé, I.; Rédei, T.; Falkay, G.; Hohmann, J. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part II. Phyther. Res. 2009, 23, 1109–1115. [Google Scholar] [CrossRef]
- Perveen, S.; Al-Taweel, A.M.; Yusufoglu, H.S.; Fawzy, G.A.; Foudah, A.; Abdel-Kader, M.S. Hepatoprotective and cytotoxic activities of Anvillea garcinii and isolation of four new secondary metabolites. J. Nat. Med. 2018, 72, 106–117. [Google Scholar] [CrossRef]
- Alshehri, K.M.; Ghobashy, M.O.I. Antitumor, antimicrobial activities and phytochemicals constituent of different extracts of Pulicaria undulata (Forssk.) Oliver. grown naturally in Saudi Arabia. Int. J. Res. Pharm. Sci. 2020, 11, 4889–4901. [Google Scholar] [CrossRef]
- Park, B.Y.; Oh, S.R.; Ahn, K.S.; Kwon, O.K.; Lee, H.K. (-)-Syringaresinol inhibits proliferation of human promyelocytic HL-60 leukemia cells via G1 arrest and apoptosis. Int. Immunopharmacol. 2008, 8, 967–973. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Chung, S.Y.; Han, A.R.; Sung, M.K.; Jang, D.S.; Lee, J.; Kwon, Y.; Lee, H.J.; Seo, E.K. P-glycoprotein inhibitory activity of two phenolic compounds, (-)-syringaresinol and tricin from Sasa borealis. Chem. Biodivers. 2007, 4, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res. 2019, 139, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Wal, P.; Wal, A.; Sharma, G.; Rai, A. Biological activities of lupeol. Syst. Rev. Pharm. 2011, 2, 96–103. [Google Scholar] [CrossRef]
- Lucetti, D.L.; Lucetti, E.C.P.; Bandeira, M.A.M.; Veras, H.N.H.; Silva, A.H.; Leal, L.K.A.M.; Lopes, A.A.; Alves, V.C.C.; Silva, G.S.; Brito, G.A.; et al. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel. J. Inflamm. 2010, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shilpi, J.A.; Uddin, S.J. Analgesic and antipyretic natural products. In Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 55, pp. 435–458. [Google Scholar]
- Köngül-Şafak, E. Plant extracts with putative hepatoprotective activity. In Influence of Nutrients, Bioactive Compounds, and Plant Extracts in Liver Diseases; Elsevier: Amsterdam, The Netherlands, 2021; pp. 227–257. [Google Scholar]
- Lal, M.; Chandraker, S.K.; Shukla, R. Antimicrobial properties of selected plants used in traditional Chinese medicine. In Functional and Preservative Properties of Phytochemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–143. [Google Scholar]
- Gutiérrez-del-Río, I.; Fernández, J.; Lombó, F. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. Int. J. Antimicrob. Agents 2018, 52, 309–315. [Google Scholar] [CrossRef]
- Boussaada, O.; Saidana, D.; Chriaa, J.; Chraif, I.; Mahjoub, M.A.; Mighri, Z.; Daami, M.; Helal, A.N. Chemical composition and antimicrobial activity of volatile components of Scorzonera undulata. J. Essent. Oil Res. 2008, 20, 358–362. [Google Scholar] [CrossRef]
- Abdelkader, H.B.; Salah, K.B.H.; Liouane, K.; Boussaada, O.; Gafsi, K.; Mahjoub, M.A.; Aouni, M.; Hellal, A.N.; Mighri, Z. Antimicrobial activity of Rhaponticum acaule and Scorzonera undulata growing wild in Tunisia. Afr. J. Microbiol. Res. 2010, 4, 1954–1958. [Google Scholar]
- Sweidan, A.; El-Mestrah, M.; Kanaan, H.; Dandache, I.; Merhi, F.; Chokr, A. Antibacterial and antibiofilm activities of Scorzonera mackmeliana. Pak. J. Pharm. Sci. 2020, 33, 199–206. [Google Scholar]
- Buru, A.S.; Pichika, M.R.; Neela, V.; Mohandas, K. In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2014, 153, 587–595. [Google Scholar] [CrossRef]
- Mavi, A.; Yiǧit, N.; Yiǧit, D.; Kandemir, A. Antioxidant and antimicrobial activity of Turkish endemic Sonchus erzincanicus extracts. Turk. J. Biol. 2011, 35, 243–250. [Google Scholar] [CrossRef]
- Mohammed, F.; Şabik, A.; Akgül, H.; Sevindik, M. Antioxidant and Antimicrobial activity of Scorzonera papposa collected from Iraq and Turkey. Kahramanmaraş Sütçü İmam Üniv. Tarım Doğa Dergisi 2020, 23, 1114–1118. [Google Scholar] [CrossRef]
- Yadav, S.; Mishra, A.P.; Kumar, S.; Negi, A.; Maurya, V.K. Herbal wound healing agents. In Preparation of Phytopharmaceuticals for the Management of Disorders; Elsevier: Amsterdam, The Netherlands, 2021; pp. 169–184. [Google Scholar]
- Khuda-Bukhsh, A.R.; Saha, S.K.; Das, S.; Saha, S.S. Molecular approaches toward targeted cancer therapy with some food plant products: On the role of antioxidants and immune microenvironment. In Cancer; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–202. [Google Scholar]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, M.; Suznjevic, D.; Pastor, F.; Veljovic, M.; Pezo, L.; Antic, M.; Gorjanovic, S. Antioxidant capacity determination of complex samples and individual phenolics-multilateral approach. Comb. Chem. High Throughput Screen. 2016, 19, 58–65. [Google Scholar] [CrossRef] [PubMed]
Compounds | Scorzonera Species | Concentration | Type of Solvent | References |
---|---|---|---|---|
Benzoic acid derivatives | ||||
Methyl-3,4-dihydroxybenzoate | S. divaricata | 0.6 μg/g | methanol | [34] |
3-Hydroxybenzoic acid | S. divaricata | 0.32 μg/g | methanol | [34] |
Coumarins and coumarin glycosides | ||||
Scopoletin | S. divaricata | 3 μg/g | methanol | [34] |
S. pseudodivaricata | N/D | methanol | [14] | |
Hydrangenol 8-O-glucoside | S. latifolia | N/D | 20% aqueous methanol | [10] |
7-Hydroxycoumarin | S. divaricata | 0.13 μg/g | methanol | [34] |
Dihydroisocoumarins and dihydroisocoumarins glycosides | ||||
(3S)-6-[O-β-d-glucopyranosyl-(6→1)-O-β-d-apiofuranosyl]-8-hydroxy-3-(4-methoxyphenyl)-3,4-dihydro-1H-isochromen-1-one (iso-scorzopygmaecoside) | S. aucheriana | 19.208 μg/g | methanol | [7] |
(3S)-6-{O-β-d-glucopyranosyl-[(4→2)-O-glyceryl)]-(6→1)-O-β-d-apiofuranosyl}-8-hydroxy-3-(4-methoxyphenyl)-3,4-dihydro-1H-isochromen-1-one (scorzoaucherioside I) | S. aucheriana | 49.67 μg/g | methanol | [7] |
(3S,3′ R)-8-{O-β-d-glucopyranosyl-[(4→2)-O-glyceryl)]-(6→1)-O-β-d-apiofuranosyl}-3-(4- methoxyphenyl)-6-{[3-(4-methoxyphenyl)-1-oxo-8-[O-β-d-glucopyranosyl-(6→1)-O-α-l-rhamnopyranosyl-(4→1)-O-β-d-glucopyran-osyl]-3,4-dihydro-1H-isochromen-6-yl]oxy}-3,4-dihydro-1H-isochromen-1-one (scorzoaucherioside II) | S. aucheriana | 11.165 μg/g | methanol | [7] |
Scorzopygmaecoside | S. aucheriana | 9.724 μg/g | methanol | [7] |
Scorzocreticoside II | S. aucheriana | 5.642 μg/g | methanol | [7] |
Flavonoids | ||||
Flavonoid aglycones | ||||
5,7-dihydroxy-6-methoxyflavone | S. divaricata | 0.56 μg/g | methanol | [34] |
5,7-dihydroxy-8-methoxyflavone | S. divaricata | 2.01 μg/g | methanol | [34] |
7,3′,4′-trihydroxyflavonol | S. divaricata | 0.23 μg/g | methanol | [34] |
Apigenin | S. divaricata | N/D | methanol | [44] |
S. laciniata | N/D | ethanol | [14] | |
Apigenin derivative | S. austriaca | N/D | methanol:water (1:1, v/v) | [26] |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | N/D | methanol:water (1:1, v/v) | [26] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
Diosmetin | S. divaricata | 1.7 μg/g | methanol | [34] |
Kaempferol | S. hirsuta | N/D | ethanol | [44] |
S. laciniata | 3.55 ± 0.78 μg/g | methanol | [22] | |
S. latifolia | 0.62 ± 0.11 μg/g | methanol | [22] | |
Luteolin | S. crispatula | N/D | methanol:water (1:1, v/v) | [26] |
S. divaricata | 0.21 μg/g | methanol | [34] | |
S. graminifolia | N/D | ethanol | [44] | |
S. hirsuta | N/D | ethanol | [44] | |
S. laciniata | N/D | ethanol | [44] | |
S. mollis | N/D | ethanol | [44] | |
S. pseudodivaricata | N/D | methanol | [14] | |
S. pussila | N/D | ethanol | [44] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one (morin) | S. laciniata | 0.17 ± 0.01 μg/g | methanol | [22] |
S. latifolia | 0.23 ± 0.04 μg/g | methanol | [22] | |
S. suberosa | 0.91 ± 0.83 μg/g | methanol | [22] | |
Myricetin | S. laciniata | 4.45 ± 0.9 μg/g | methanol | [22] |
S. latifolia | 16.16 ± 0.92 μg/g | methanol | [22] | |
S. suberosa | 3.12 ± 1.02 μg/g | methanol | [22] | |
Quercetin | S. austriaca var. angustifolia | N/D | ethanol | [44] |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. graminifolia | N/D | ethanol | [44] | |
S. hirsuta | N/D | ethanol | [44] | |
S. hispanica | N/D | methanol:water (1:1, v/v) | [26] | |
S. laciniata | 0.17 ± 0.01 μg/g | methanol | [22] | |
S. latifolia | 0.65 ± 0.15 μg/g | methanol | [22] | |
S. mollis | N/D | ethanol | [44] | |
S. pussila | N/D | ethanol | [44] | |
S. suberosa | 6.54 ± 1.16 μg/g | methanol | [22] | |
Quercetin derivative | S. aristata | N/D | methanol:water (1:1, v/v) | [26] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
Tricin | S. divaricata | 0.16 μg/g | methanol | [34] |
Unknown flavonoid | S. hispanica | N/D | methanol:water (1:1, v/v) | [26] |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
Flavonoid C-glycosides | ||||
3′-methoxy-5,7,4′-trihydroxyflavone 6-C-β-D-glucopyranoside | S. austriaca | 10 μg/g | 70% aqueous ethanol | [24] |
5,7,3′,4′-tetrahydroxyflavone 8-C-(6″-O-trans-caffeoyl β-D-glucopyranoside) | S. austriaca | 100 μg/g | 70% aqueous ethanol | [24] |
5,7,3′,4′-tetrahydroxyflavone 6-C-(2″-O-β-D-glucopyranosyl β-D-glucopyranoside) | S. austriaca | 15 μg/g | 70%aqueous ethanol | [24] |
5,7,4′-trihydroxyflavone 6-C-(2″-O-β-D-glucopyranosyl β-D-glucopyranoside) | S. austriaca | 15 μg/g | 70% aqueous ethanol | [24] |
5,7,4′-trihydroxyflavone 6-C-β-D-glucopyranoside | S. austriaca | 15 μg/g | 70% aqueous ethanol | [24] |
5,7,4′-trihydroxyflavone 8-C-(6″-O-trans-caffeoyl β-D-glucopyranoside) | S. austriaca | 30 μg/g | 70% aqueous ethanol | [24] |
5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]chromen-4-one (violanthin) | S. radiata | N/D | methanol | [13] |
7-methylisoorientin | S. latifolia | 6.4 μg/g | methanol | [4] |
7-O-methylapigenin 6-C-β-D-glucopyranoside (swertisin) | S. latifolia | N/D | 20% aqueous methanol | [10] |
S. tomentosa | N/D | 20% aqueous methanol | [10] | |
Apigenin 3-C-α-L6-rhamnopyranosyl-8-C-β-D-glucopyranoside (scorzonerin B) | S. radiata | 7.334 μg/g | methanol | [13] |
Apigenin 6-C-glucoside (isovitexin) | S. baetica | N/D | methanol:water (1:1, v/v) | [26] |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
Apigenin 6-C-β-D-galactopyranosyl-8-C-α-L-6-rhamnopyranoside (scorzonerin A) | S. radiata | 30.667 μg/g | methanol | [13] |
Apigenin 8-C-glucoside (vitexin) | S. baetica | N/D | methanol:water (1:1, v/v) | [26] |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
Apigenin di-C-glycoside (C-pentoside, C-hexoside) | S. crispatula | N/D | methanol:water (1:1, v/v) | [26] |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
Apigenin di-C-glycoside (di-C-hexoside) | S. austriaca | N/D | methanol:water (1:1, v/v) | [26] |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one (isoschaftoside) | S. papposa | 3.334 μg/g | methanol | [62] |
Luteolin 6-C-glucoside (isoorientin) | S. aristata | 24.815 μg/g | methanol methanol:acetone:water (3/1/1, v/v/v) | [56] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | N/D | methanol:water (1:1, v/v) | [26] | |
S. latifolia | 9 μg/g | methanol | [4] | |
S. papposa | 48.667 μg/g | methanol | [62] | |
S. radiata | N/D | methanol | [13] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
Luteolin 8-C-glucoside (orientin) | S. aristata | N/D | methanol:water (1:1, v/v) | [26] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. papposa | 6.667 μg/g | methanol | [62] | |
Luteolin di-C-glycoside (C-hexoside, C-pentoside) | S. crispatula | N/D | methanol:water (1:1, v/v) | [26] |
S. hispanica | N/D | methanol:water (1:1, v/v) | [26] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
Swertiajaponin | S. papposa | 3.667 μg/g | methanol | [62] |
Flavonoid O-glycosides and O-glucuronides | ||||
Apigenin 7-O-glucoside (apigetrin) | S. villosa | N/D | methanol:water (1:1, v/v) | [26] |
Apigenin 7-O-glucuronide | S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
Kaempferol 3-O-rutinoside | S. divaricata | N/D | methanol | [14] |
S. radiata | N/D | methanol | [13] | |
Luteolin 5-O-glucoside | S. pseudodivaricata | N/D | methanol | [14] |
Luteolin 7-O-glucoside (cynaroside) | S. acuminata | 9.583 ± 0.203 μg/mg | 20% aqueous methanol | [9] |
S. baetica, | N/D | methanol:water (1:1, v/v) | [26] | |
S. cinerea | 81.14 ± 0.62 μg/mg | 20% aqueous methanol | [5] | |
S. incisa | 12.08 ± 0.1 μg/mg | 20% aqueous methanol | [5] | |
S. latifolia | 629.23 ± 3.53 μg/mg | 20% aqueous methanol | [5] | |
S. mollis ssp. szowitsii | 107.43 ± 0.09 μg/mg | 20% aqueous methanol | [5] | |
S. parviflora | 51.80 ± 0.71 μg/mg | 20% aqueous methanol | [5] | |
S. pseudodivaricata | N/D | methanol | [14] | |
S. tomentosa | 47.81 ± 0.50 μg/mg | 20% aqueous methanol | [5] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
Luteolin 7-O-glucuronide | S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] |
S. villosa | N/D | methanol:water (1:1, v/v) | ||
Quercetin 3-O-arabinofuranoside (avicularin) | S. austriaca | N/D | methanol:water (1:1, v/v) | [26] |
Quercetin 3-O-galactoside (hyperoside) | S. cinerea | 124.22 ± 0.56 μg/mg | 20% aqueous methanol | [5] |
S. hispanica | 11.41 ± 0.05 mg/g 11.35 ± 0.15 mg/g | methanol:acetone:water (3:1:1) | [20] | |
S. latifolia | 305.71 ± 1.70 μg/mg | 20% aqueous methanol | [5] | |
S. mollis ssp. szowitsii | 39.46 ± 0.03 μg/mg | 20% aqueous methanol | [5] | |
S. parviflora | 9.71 ± 0.51 μg/mg | 20% aqueous methanol | [5] | |
S. tomentosa | 94.54 ± 0.33 μg/mg | 20% aqueous methanol | [5] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
Quercetin 3-O-glucoside (isoquercitrin) | S. aristata | 40.37 μg/g | methanol methanol:acetone:water (3/1/1, v/v/v) | [56] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | 6.41 ± 0.02 mg/g 6.91 ± 0.01 mg/g | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
Quercetin 3-O-glucuronide (miquelianin) | S. hispanica | N/D | methanol:water (1:1, v/v) | [26] |
13.87 ± 0.10 mg/g 15.29 ± 0.25 mg/g | methanol:acetone:water (3/1/1, v/v/v) | [20] | ||
Quercetin 3-O-rhamnoglucoside (rutin) | S. acuminata | 597.335 ± 1.104 μg/mg | 20% aqueous methanol | [9] |
S. aristata | 36.667 μg/g | methanol methanol:acetone:water (3/1/1, v/v/v) | [56] | |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. incisa | 198.81 ± 0.18 μg/mg | 20% aqueous methanol | [5] | |
S. mollis ssp. szowitsii | 26.32 ± 0.04 μg/mg | 20% aqueous methanol | [5] | |
S. radiata | N/D | methanol | [13] | |
S. suberosa | 15.38 ± 3.27 μg/g | methanol | [22] | |
Quercetin 3-O-α-rhamnopyranosyl-(1→6)-β-D-galactopyranoside | S. latifolia | 2.267 μg/g | methanol | [4] |
Quercetin 3-O-β-apiofuranosyl-(1‴→2″)-β-D-glucopyranoside | S. latifolia | 11.53 μg/g | methanol | [4] |
Quercetin 3-O-β-D-glucoside | S. latifolia | N/D | 20% aqueous methanol | [10] |
S. tomentosa | N/D | 20% aqueous methanol | ||
Quercetin O-mallonylhexoside | S. aristata | N/D | methanol:water (1:1, v/v) | [26] |
S. hispanica | 2.65 ± 0.05 μg/mg 2.83 ± 0.01 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
Flavonoid O-C-glycosides | ||||
Apigenin O-C-glycoside (O-hexoside, C-hexoside) | S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] |
Apigenin O-C-glycoside (O-pentoside, C-hexoside) | S. crispatula | N/D | methanol:water (1:1, v/v) | [26] |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
Isovitexin 2′-O-xyloside | S. divaricata | N/D | methanol | [14] |
Isovitexin 2″-O-xyloside | S. pseudodivaricata | N/D | methanol | [14] |
Isovitexin 4′-O-glucoside | S. divaricata | N/D | methanol | [14] |
Luteolin O-C-glycoside (O-hexoside, C-hexoside) | S. austriaca | N/D | methanol:water (1:1, v/v) | [26] |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
Luteolin O-C-glycoside (O-pentoside, C-hexoside) | S. aristata | N/D | methanol:water (1:1, v/v) | [26] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
Macrolides | ||||
Sacrolide A | S. divaricata | 0.6 μg/g | methanol | [34] |
Organic acids/Phenolic acids and their derivatives | ||||
1,5-O-dicaffeoylquinic acid | S. baetica | N/D | methanol:water (1:1, v/v) | [26] |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | 3.95 ± 0.11 μg/mg 6.59 ± 0.17 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
3,4-bis[(3′,4-dioxo-1′,3′,5′,6′-tetrahydrospiro[cyclohexa-2,5-diene-1,4′-cyclopenta[c]-furan]-1′-yl)]chlorogenic acid | S. aucheriana | 7.443 μg/g | methanol | [29] |
3,4-O-dihydroxyphenyl caffeate | S. aucheriana | 7.323 μg/g | methanol | [7] |
3,5-O-dicaffeoyl quinic acid | S. pseudodivaricata | N/D | methanol | [14] |
3,5-O-dicaffeoyl-epi-quinic acid | S. radiata | N/D | methanol | [12,13] |
S. aucheriana | 6.243 μg/g | methanol | [7] | |
3,5-O-dicaffeoylquinic acid methyl ester (macroantoin G) | S. radiata | N/D | methanol | [13] |
3,5-O-dicaffeoylquinic acid (isochlorogenic acid A) | S. aristata | 23.334 μg/g | methanol methanol:acetone:water (3/1/1, v/v/v) | [56] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | 35.15 ± 0.61 μg/mg 19.23 ± 0.58 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. radiata | N/D | methanol | [13] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
3-O-caffeoylquinic acid (chlorogenic acid) | S. acuminata | 372.128 ± 0.961 μg/mg | 20% aqueous methanol | [9] |
S. aristata | 9.259 μg/g | methanol methanol:acetone:water (3/1/1, v/v/v) | [56] | |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. cinerea | 266.51 ± 1.51 μg/mg | 20% aqueous methanol | [5] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. divaricata | N/D | methanol | [14] | |
S. hispanica | 85.49 ± 1.49 μg/mg 75.83 ± 1.01 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. incisa | 569.19 ± 1.62 μg/mg | 20% aqueous methanol | [5] | |
S. latifolia | 652.32 ± 2.48 μg/mg | 20% aqueous methanol | [5] | |
S. mollis ssp. szowitsii | 1032.16 ± 2.05 μg/mg | 20% aqueous methanol | [5] | |
S. parviflora | 444.77 ± 2.78 μg/mg | 20% aqueous methanol | [5] | |
S. radiata | N/D | methanol | [13] | |
S. tomentosa | 268.75 ± 1.72 μg/mg | 20% aqueous methanol | [5] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
3-O-feruloyl-1,4-di-O-dihydrocaffeoylquinic acid (feruloylpodospermic acid B) | S. divaricata | 23.438 μg/g | methanol | [14] |
3-O-feruloyl-1,5-di-O-dihydrocaffeoylquinic acid (feruloylpodospermic acid A) | S. divaricata | 82.031 μg/g | methanol | [14] |
4,5-dicaffeoyl-epi-quinic acid | S. radiata | 10.333 μg/g | methanol | [13] |
4,5-dicaffeoyl-epi-quinic acid methyl ester (macroantoin F) | S. radiata | N/D | methanol | [13] |
4,5-O-dicaffeoylquinic acid (isochlorogenic acid C) | S. aristata | 13.33 μg/g | methanol methanol:acetone:water (3/1/1, v/v/v) | [56] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | 5.42 ± 0.01 μg/mg 3.14 ± 0.15 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. radiata | N/D | methanol | [13] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
4-hydroxy-3-methoxyphenyl ferulate | S. divaricata | 0.13 μg/g | methanol | [34] |
4-O-caffeoylquinic acid (cryptochlorogenic acid) | S. aristata | N/D | methanol:water (1:1, v/v) | [26] |
S. austriaca | N/D | methanol:water (1:1, v/v) | [26] | |
S. baetica | N/D | methanol:water (1:1, v/v) | [26] | |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | 2.99 ± 0.03 μg/mg 3.99 ± 0.04 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
5-O-caffeoylquinic acid (cis-chlorogenic acid) | S. baetica | N/D | methanol:water (1:1, v/v) | [26] |
S. crispatula | N/D | methanol:water (1:1, v/v) | [26] | |
S. hispanica | N/D | methanol:water (1:1, v/v) | [26] | |
S. trachysperma | N/D | methanol:water (1:1, v/v) | [26] | |
S. villosa | N/D | methanol:water (1:1, v/v) | [26] | |
5-p-coumaroylquinic acid (cis) | S. radiata | N/D | methanol | [12] |
5-p-coumaroylquinic acid (trans) | S. radiata | N/D | methanol | [12,13] |
Methyl 1-(2-methylcyclopropyl-1-carbonyloxy)chlorogenate | S. aucheriana | 7.683 μg/g | methanol | [29] |
Quinic acid | S. radiata | N/D | methanol | [12,13] |
Trans-caffeic acid | S. divaricata | 1.8 μg/g | methanol | [34] |
Trans-p-hydroxy coumaric acid | S. divaricata | 1 μg/g | methanol | [34] |
Sesquiterpenoids | ||||
1β,4α- dihydroxy-5α,6β,7α,11βH-eudermn-12,6-olide | S. divaricata | 0.038 μg/g | methanol | [34] |
5-(1-(2-O-hexanoyl)-β-D-glucopyranosyloxy)-2-hydroxy-3-[4-(4-hydroxyphenyl)-2-oxobutyl]benzoic acid (scorzoneric acid) | S. pseudodivaricata | 14.5 μg/g | methanol | [14] |
8R-matricarinyl 3-[4-(1-β-D-glucopyranosyloxy)phenyl]propanoate (scorzonerin) | S. pseudodivaricata | 260 μg/g | methanol | [14] |
Glucozaluzanin C | S. divaricata | 1.56 μg/g | methanol | [34] |
Sulfoscorzonin D | S. divaricata | 1.3 μg/g | methanol | [34] |
Sulfoscorzonin E | S. divaricata | 1.25 μg/g | methanol | [34] |
Steroids | ||||
(22E)-5α,8α-epidioxyergosta-6,22-dien-3β-ol | S. divaricata | 0.76 μg/g | methanol | [34] |
Ergosta-3β,5α,6β-trialcohol | S. divaricata | 0.7 μg/g | methanol | [34] |
Ergosterol | S. laciniata | 2.44 ± 0.11 μg/g | hexane/isopropanol (3:2, v/v) | [22] |
S. latifolia | 3.22 ± 0.09 μg/g | hexane/isopropanol (3:2, v/v) | [22] | |
S. suberosa | 3.06 ± 0.41 μg/g | hexane/isopropanol (3:2, v/v) | [22] | |
Stigma-5-en-3-O-β-glucoside | S. divaricata | 3.5 μg/g | methanol | [34] |
Stigmasterol | S. laciniata | 21.67 ± 1.1 μg/g | hexane/isopropanol (3:2, v/v) | [22] |
S. latifolia | 30.76 ± 1.19 μg/g | hexane/isopropanol (3:2, v/v) | [22] | |
S. suberosa | 10.80 ± 0.54 μg/g | hexane/isopropanol (3:2, v/v) | [22] | |
β-Sitosterol | S. aucheriana | 11.765 μg/g | methanol | [29] |
S. laciniata | 4.26 ± 0.34 μg/g | hexane/isopropanol (3:2, v/v) | [22] | |
S. latifolia | 35.55 ± 1.71 μg/g | hexane/isopropanol (3:2, v/v) | [22] | |
S. suberosa | 50.75 ± 3.15 μg/g | hexane/isopropanol (3:2, v/v) | [22] | |
Triterpenoids | ||||
3β-hydroxy-fern-7-en-6-one-acetate | S. latifolia | 18 ± 1 μg/g | n-hexane | [27] |
Lup-20(29)-ene3β,28-diol | S. divaricata | 3 μg/g | methanol | [34] |
Lupeol | S. acuminata | 327 ± 5 μg/g | n-hexane | [27] |
S. aucheriana | 9.724 μg/g | methanol | [29] | |
S. cana var. jacquiniana | 932 ± 2 μg/g | n-hexane | [27] | |
S. cinerea | 1174 ± 16 μg/g | n-hexane | [27] | |
S. eriophora | 228 ± 6 μg/g | n-hexane | [27] | |
S. incisa | 1090 ± 2 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 932 ± 2 μg/g | n-hexane | [27] | |
S. latifolia | 1538 ± 1 μg/g | n-hexane | [27] | |
S. mirabilis | 954 ± 14 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 321 ± 1 μg/g | n-hexane | [27] | |
S. parviflora | 649 ± 6 μg/g | n-hexane | [27] | |
S. suberosa ssp. suberosa | 1005 ± 17 μg/g | n-hexane | [27] | |
S. sublanata | 169 ± 1 μg/g | n-hexane | [27] | |
S. tomentosa | 509 ± 2 μg/g | n-hexane | [27] | |
Lupeol acetate | S. acuminata | 67 ± 1 μg/g | n-hexane | [27] |
S. aucheriana | 5.642 μg/g | methanol | [29] | |
S. cana var. jacquiniana | 535 ± 4 μg/g | n-hexane | [27] | |
S. cinerea | 839 ± 6 μg/g | n-hexane | [27] | |
S. eriophora | 368 ± 1 μg/g | n-hexane | [27] | |
S. incisa | 236 ± 9 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 892 ± 2 μg/g | n-hexane | [27] | |
S. latifolia | 607 ± 1 μg/g | n-hexane | [27] | |
S. mirabilis | 998 ± 13 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 149 ± 7 μg/g | n-hexane | [27] | |
S. parviflora | 594 ± 5 μg/g | n-hexane | [27] | |
S. suberosa ssp. suberosa | 312 ± 4 μg/g | n-hexane | [27] | |
S. sublanata | 302 ± 1 μg/g | n-hexane | [27] | |
S. tomentosa | 411 ± 1 μg/g | n-hexane | [27] | |
Oleanolic acid | S. divaricata | 1.5 μg/g | methanol | [34] |
Ptiloepoxide | S. aucheriana | 14.646 μg/g | methanol | [29] |
Taraxasterol | S. aucheriana | 30.972 μg/g | methanol | [29] |
Taraxasteryl acetate/Taraxasterol acetate | S. aucheriana | 5.552 μg/g | methanol | [29] |
S. cana var. jacquiniana | 81 ± 3 μg/g | n-hexane | [9] | |
S. cinerea | 417 ± 11 μg/g | n-hexane | [27] | |
S. eriophora | 545 ± 5 μg/g | n-hexane | [27] | |
S. incisa | 280 ± 10 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 69 ± 5 μg/g | n-hexane | [27] | |
S. latifolia | 1062 ± 2 μg/g | n-hexane | [27] | |
S. mirabilis | 1262 ± 728 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 263 ± 4 μg/g | n-hexane | [27] | |
S. parviflora | 433 ± 2 μg/g | n-hexane | [27] | |
S. suberosa ssp. suberosa | 535 ± 4 μg/g | n-hexane | [27] | |
S. sublanata | 4981 ± 2 μg/g | n-hexane | [27] | |
S. tomentosa | 376 ± 13 μg/g | n-hexane | [27] | |
Taraxasterol oleate | S. aucheriana | 36.255 μg/g | methanol | [29] |
α-Amyrin | S. acuminata | 1102 ± 6 μg/g | n-hexane | [27] |
S. cana var. jacquiniana | 442 ± 5 μg/g | n-hexane | [27] | |
S. cinerea | 309 ± 2 μg/g | n-hexane | [27] | |
S. incisa | 644 ± 2 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 209 ± 3 μg/g | n-hexane | [27] | |
S. latifolia | 827 ± 2 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 246 ± 8 μg/g | n-hexane | [27] | |
Vomifoliols | ||||
Vomifoliol | S. divaricata | 0.7 μg/g | methanol | [34] |
Compounds | Scorzonera Species | Concentration | Type of Solvent | References |
---|---|---|---|---|
Coumarins and coumarin derivatives | ||||
Scopoletin | S. divaricata | 2.546 μg/g | 95% aqueous ethanol | [57] |
Scopolin | S. divaricata | 16.364 μg/g | 95% aqueous ethanol | [57] |
Coumarin O-β-glycoside (cichoriin) | S. undulata ssp. deliciosa | 12.99 μg/g | dichloromethane | [63] |
S. cana var. jacquiniana | 6.667 μg/g | methanol | [72] | |
Scorzonerol | S. pygmaea | 0.857 μg/g | ethanol | [35] |
Dihydroisocoumarins and dihydroisocoumarin glycosides | ||||
(‒)-Hydrangenol 4′-O-glucoside | S. tomentosa | 20.101 μg/g | methanol | [36] |
S. judaica | 14.286 μg/g | chloroform:methanol (9:1) methanol | [25] | |
(‒)-Scorzotomentosin 4′-O-β-glucoside | S. tomentosa | 158.29 μg/g | methanol | [36] |
S. latifolia | N/D | methanol:water (8:2) | [73] | |
(±)-Hydrangenol | S. tomentosa | 82.915 μg/g | methanol | [36] |
S. judaica | 51.143 μg/g | chloroform chloroform:methanol (9:1) | [25] | |
(3RS)-3,4-dihydro-3-(4-hydroxyphenyl)-8-methoxy-1H-2-benzopyran-1-one ((±)-scorzotomentosin) | S. tomentosa | 216.08 μg/g | methanol | [36] |
S. judaica | 8.714 μg/g | chloroform | [25] | |
8-O-[α-L-rhamnopyranosyl(1→6)-β-D-glucopyranosyl]scorzocreticin (scorzocreticoside II) | S. pygmaea | 21.429 μg/g | ethanol | [35] |
8-O-β-D-glucopyranosylscorzocreticin (scorzocreticoside I) | S. pygmaea | 14.286 μg/g | ethanol | [35] |
Hydrangenol 4′-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside | S. judaica | 22.143 μg/g | chloroform:methanol (9:1) methanol | [25] |
3S-hydrangenol 4′-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranoside | S. judaica | 48.571 μg/g | chloroform:methanol (9:1) methanol | [25] |
Hydrangenol 8-O-β-D-glucopyranoside | S. judaica | 14.143 μg/g | chloroform:methanol (9:1) methanol | [25] |
Scorzopygmaecoside | S. pygmaea | 14.286 μg/g | ethanol | [35] |
Thunberginol C | S. pygmaea | 4.714 μg/g | ethanol | [35] |
Thunberginol F | S. judaica | 7.429 μg/g | chloroform:methanol (9:1) | [25] |
Thunberginol G | S. papposa | 38.4 μg/g | methanol | [62] |
Fatty acids | ||||
Linoleic acid | S. divaricata | 1.091 μg/g | 95% aqueous ethanol | [57] |
S. hispanica | 7.143 μg/g | ethyl acetate | [20] | |
9S,12S,13S-trihydroxy-10E-octadecenoate | S. divaricata | 0.546 μg/g | 95% aqueous ethanol | [57] |
Palmitic acid | S. divaricata | 0.727 μg/g | 95% aqueous ethanol | [57] |
Flavonoid aglycones | ||||
Galangustin | S. undulata ssp. deliciosa | 15.464 μg/g | dichloromethane | [49,63] |
Flavonoid C-glycosides | ||||
Luteolin 6-C-glucoside (isoorientin) | S. cana var. jacquiniana | 21.667 μg/g | methanol | [72] |
Luteolin 8-C-glucoside (orientin) | S. cana var. jacquiniana | 20 μg/g | methanol | [72] |
Apigenin 8-C-glucoside (vitexin) | S. cana var. jacquiniana | 7.133 μg/g | methanol | [72] |
Flavonoid O-glycosides | ||||
Apigenin 7-O-β-glucoside | S. cana var. jacquiniana | 18.333 μg/g | methanol | [72] |
Luteolin 7-O-β-glucoside | S. cana var. jacquiniana | 12.55 μg/g | methanol | [72] |
Apigenin 7-O-β-rutinoside | S. cana var. jacquiniana | 25 μg/g | methanol | [72] |
Hydroquinone derivatives | ||||
Arbutin | S. cana var. jacquiniana | 13.333 μg/g | methanol | [72] |
6′-O-caffeoylarbutin | S. cana var. jacquiniana | 10.5 μg/g | methanol | [72] |
Lignans | ||||
Pinoresinol-1-yl-β-D-glucopyranoside | S. humilis | 90.147 μg/g | methanol | [54] |
(‒)-Syringaresinol | S. hispanica | 9.643 μg/g | ethyl acetate | [20] |
Pinoresinol | S. divaricata | 0.909 μg/g | 95% aqueous ethanol | [57] |
4-[β-D-glucopyranosyl)hydroxy]-pinoresinol (pinoresinol-4-O-glucoside) | S. judaica | 15.857 μg/g | chloroform:methanol (9:1) methanol | [25] |
4α-hydroxypinoresinol | S. judaica | 26.429 μg/g | chloroform chloroform:methanol (9:1) | [25] |
Organic acids/Phenolic acids and their derivatives | ||||
(–)–1,4-di-O-feruloyl-3-O-dihydrocaffeoylquinic acid | S. divaricata | 5.363 μg/g | 95% aqueous ethanol | [58] |
(–)–1-O-feruloyl-3-O-dihydrocaffeoylquinic acid | S. divaricata | N/D | 95% aqueous ethanol | [58] |
(–)–1-O-feruloyl-4-O-dihydrocaffeoylquinic acid | S. divaricata | 0.909 μg/g | 95% aqueous ethanol | [58] |
(–)–1-O-feruloyl-5-O-dihydrocaffeoylquinic acid | S. divaricata | N/D | 95% aqueous ethanol | [58] |
(–)–3,5-di-O-feruloylquinic acid | S. divaricata | 1.818 μg/g | 95% aqueous ethanol | [58] |
1,3-di-O-caffeoylquinic acid methyl ester | S. hieraciifolia | N/D | ethanol | [8] |
1,5-di-O-feruloylquinic acid | S. hieraciifolia | N/D | ethanol | [8] |
1,5-O-dicaffeoylquinic acid | S. hispanica | 2.26–12.72 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] |
13-Oxo-(9E,11E)-octadecadienoic acid | S. hispanica | 3.929 μg/g | ethyl acetate | [20] |
13-Oxo-(9Z,11E)-octadecadienoic acid | S. hispanica | 2.679 μg/g | ethyl acetate | [20] |
2-Hydroxy-6-[2-(3,4-dihydroxyphenyl)-2-oxo-ethyl]benzoic acid | S. judaica | 5 μg/g | methanol | [25] |
2-Hydroxy-6-[2-(3,4-dihydroxyphenyl-5-methoxy)-2-oxoethyl]benzoic acid | S. judaica | 3.714 μg/g | methanol | [25] |
2-Hydroxy-6-[2-(4-hydroxyphenyl)-2-oxo-ethyl]benzoic acid | S. judaica | 17.143 μg/g | chloroform:methanol (9:1) methanol | [25] |
3-(4′-Hydroxyphenyl)-2-propenoic acid (4″-carboxyl)-phenyl ester | S. hieraciifolia | N/D | ethanol | [8] |
3,5-di-O-caffeoylquinic acid | S. aristata | 13.735 μg/g | methanol:acetone:water (3/1/1, v/v/v) methanol | [56] |
S. hispanica | 1.04–52.13 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. humilis | N/D | methanol | [55] | |
S. latifolia | 12.5 μg/g | methanol | [67] | |
S. pygmaea | 3.214 μg/g | ethanol | [35] | |
3,5-dicaffeoylquinic acid methyl ester (macroantoin G) | S. cana var. jacquiniana | 10 μg/g | methanol | [72] |
S. hieraciifolia | N/D | ethanol | [8] | |
3-O-caffeoylquinic acid methyl ester | S. hieraciifolia | N/D | ethanol | [8] |
4,5-dicaffeoylquinic acid (isochlorogenic acid C) | S. hispanica | 2.46–4.59 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] |
S. latifolia | 2.5 μg/g | methanol | [67] | |
S. veratrifolia | 25.667 μg/g | methanol | [64] | |
4,5-di-O-caffeoylquinic acid methyl ester | S. latifolia | 25 μg/g | methanol | [67] |
S. hieraciifolia | N/D | ethanol | [8] | |
4-Hydroxybenzoic acid 4-(6-O-α-rhamnopyranosyl-β-glucopyranosyl) benzyl ester | S. cana var. jacquiniana | 20.433 μg/g | methanol | [72] |
4-O-caffeoylquinic acid (cryptochlorogenic acid) | S. hispanica | 0.52–0.93 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] |
5-O-feruloyl quinic acid methyl ester | S. hieraciifolia | N/D | ethanol | [8] |
9-Hydroxyocta-(10E,12E)-decadienoic acid | S. hispanica | N/D | ethyl acetate | [20] |
9-Oxo-(10E,12E)-octadecadienoic acid | S. hispanica | 1.071 μg/g | ethyl acetate | [20] |
9-Oxo-(10E,12Z)-octadecadienoic acid | S. hispanica | N/D | ethyl acetate | [20] |
Butyl 3-O-feruloylquinate | S. divaricata | 2.909 μg/g | 95% aqueous ethanol | [58] |
Caffeic acid | S. divaricata | 2.909 μg/g | 95% aqueous ethanol | [57] |
S. hieraciifolia | N/D | ethanol | [8] | |
S. hispanica | 0.13–2.47 μg/g | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. latifolia | 4.58 μg/g | Methanol | [67] | |
Caffeic acid methyl ester | S. aristata | 56.627 μg/g | methanol:acetone:water (3/1/1, v/v/v) methanol | [56] |
Chlorogenic acid | S. cinerea | 412.89 ± 0.55 μg/mg | 20% aqueous methanol | [5] |
S. hispanica | 3.80–43.82 μg/mg | methanol:acetone:water (3/1/1, v/v/v) | [20] | |
S. humilis | N.D | methanol | [55] | |
S. incisa | 141.49 ± 0.20 μg/mg | 20% aqueous methanol | [5] | |
S. latifolia | 1246.78 ± 3.20 μg/mg | 20% aqueous methanol | [5] | |
S. mollis ssp. szowitsii | 159.25 ± 0.24 μg/mg | 20% aqueous methanol | [5] | |
S. parviflora | 509.96 ± 6.64 μg/mg | 20% aqueous methanol | [5] | |
S. pygmaea | 3.43 μg/g | ethanol | [35] | |
S. tomentosa | 734.72 ± 1.04 μg/mg | 20% aqueous methanol | [5] | |
S. veratrifolia | 61.857 μg/g | methanol | [64] | |
Chlorogenic acid methyl ester | S. hieraciifolia | N/D | ethanol | [8] |
S. latifolia | 3.75 μg/g | methanol | [67] | |
S. pygmaea | 10 μg/g | ethanol | [35] | |
S. veratrifolia | 31.667 μg/g | methanol | [64] | |
Cryptochlorogenic acid | S. veratrifolia | 11 μg/g | methanol | [64] |
Dihydrocaffeic acid | S. divaricata | 1.091 μg/g | 95% aqueous ethanol | [57] |
Dihydrocaffeic acid ethyl ester (ethyl dihydrocaffeate) | S. divaricata | 1.091 μg/g | 95% aqueous ethanol | [57] |
Dihydrocaffeic acid methyl ester (methyl dihydrocaffeate) | S. divaricata | 0.909 μg/g | 95% aqueous ethanol | [57] |
Dihydrocaffeic acid n-butyl ester (propyl dihydrocaffeate) | S. divaricata | 7.273 μg/g | 95% aqueous ethanol | [57] |
E-3-(3,4-dihydroxybenzylidene)-5-(3,4-dihydroxyphenyl)dihydrofuran-2-one | S. judaica | 9.714 μg/g | chloroform:methanol (9:1) | [25] |
Hydrangeic acid 4′-O-β-D-glucopyranoside | S. judaica | 3.857 μg/g | methanol | [25] |
Methyl 3-O-feruloylquinate | S. divaricata | 0.727 μg/g | 95% aqueous ethanol | [58] |
Protocatechuic acid | S. cana var. jacquiniana | 8.5 μg/g | methanol | [72] |
Z-3-(3,4-dihydroxybenzylidene)-5-(3,4-dihydroxyphenyl)-2(3H)-furanone | S. judaica | 4.571 μg/g | chloroform:methanol (9:1) | [25] |
Phtalides | ||||
(3RS)-3-[(SR)-hydroxy(4-hydroxyphenyl)-methyl]-7-methoxy-2-benzofuran-1(3H)-one ((±)-scorzophthalide) | S. tomentosa | 7.538 μg/g | methanol | [36] |
(±)-hydramacrophyllol A | S. judaica | 3.571 μg/g | chloroform:methanol (9:1) | [25] |
S. tomentosa | 31.91 μg/g | methanol | [36] | |
(±)-hydramacrophyllol B | S. tomentosa | 43.97 μg/g | methanol | [36] |
S. judaica | 6.429 μg/g | chloroform:methanol (9:1) | [25] | |
(±)-3-(4-hydroxybenzyl)-7-hydroxyphthalide (scorzoveratrin) | S. latifolia | 25.83 μg/g | methanol | [67] |
S. veratrifolia | 65 μg/g | methanol | [64] | |
Scorzoveratrin 4′-O-β-glucoside | S. latifolia | 8.833 μg/g | methanol | [67] |
3-(4-β-glucopyranosyloxybenzyl)-7-methoxyphthalide (scorzoveratrozit) | S. latifolia | 50 μg/g | methanol | [67] |
S. veratrifolia | 333.333 μg/g | methanol | [64] | |
Polysaccharides | ||||
Inulin | S. hispanica | 226.4 μg/g | water | [60] |
Sesquiterpene lactones | ||||
(3aS,6aR,8S,9aR,9bS)-3,6,9-trimethylidene-8-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[4,5-b]furan-2-one (glucozaluzanin C) | S. austriaca | N/D | acetone | [33] |
(3aS,6aR,8S,9aR,9bS)-8-hydroxy-3,6,9-trimethylidene-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[4,5-b]furan-2-one (zaluzanin C) | S. austriaca | N/D | acetone | [33] |
(3aS,6aR,9aR,9bS)-3,6,9-trimethylidene-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[4,5-b]furan-2-one (dehydrocostus lactone) | S. austriaca | N/D | acetone | [33] |
11β,13-dihydrozaluzanin C | S. austriaca | N/D | acetone | [33] |
14-isovaleroxyscorzoaustricin | S. austriaca | 4.286 μg/g | acetone | [33] |
14-isovaleroxyscorzoaustricin sulfate | S. austriaca | 7.143 μg/g | acetone | [33] |
4-epi-dihydroestafiatol | S. austriaca | 4.286 μg/g | acetone | [33] |
Biguaiascorzolide A | S. austriaca | 5.714 μg/g | acetone | [17] |
Biguaiascorzolide B | S. austriaca | 0.857 μg/g | acetone | [17] |
Diacetoxyisolippidiol | S. austriaca | N/D | acetone | [33] |
Scorzoaustriacin | S. austriaca | 7.143 μg/g | acetone | [33] |
Scorzoaustriacin 3-O-β-D-glucoside | S. austriaca | 10 μg/g | acetone | [33] |
Scorzoaustriacoside | S. austriaca | 5.714 μg/g | acetone | [33] |
Sesquiterpenoids | ||||
(1R,5S,6S,7R,8S)-8-sulfoxyguaia-4(15),10(14),11(13)-trine-6,12-olide (sulfoscorzonin A) | S. divaricata | 0.546 μg/g | 95% aqueous ethanol | [59] |
(1R,5S,6S,7R,8S,13S)-8-sulfoxy-13-L-prolineyl-guaia-4(15),10(14)-dien-6a,12-olide (sulfoscorzonin C) | S. divaricata | 7.273 μg/g | 95% aqueous ethanol | [59] |
(1R,5S,6S,7R,8S,13S)-8-sulfoxy-13-pyridyl-guaia-4(15),10(14)-dien-6,12-olide (sulfoscorzonin B) | S. divaricata | 0.723 μg/g | 95% aqueous ethanol | [59] |
10(Z)-1-oxo-bisabola-2,10-dien-13-al | S. divaricata | 1.455 μg/g | 95% aqueous ethanol | [59] |
1-Oxo-bisabola-(2,10E)-diene-12-al (puliglutone) | S. hispanica | 21.786 μg/g | ethyl acetate | [20] |
1-Oxo-bisabola-(2,10E)-diene-12-carboxylic acid | S. hispanica | 14.286 μg/g | ethyl acetate | [20] |
1-Oxo-bisabola-(2,10E)-diene-12-carboxylic acid methyl ester | S. hispanica | 10.714 μg/g | ethyl acetate | [20] |
1-Oxo-bisabola-(2,10E)-diene-12-ol | S. hispanica | 3.929 μg/g | ethyl acetate | [20] |
1-Oxo-bisabola-2-ene-12-ol (ptilostemonol) | S. hispanica | 7.143 μg/g | ethyl acetate | [20] |
2,9-Epoxycurcumen-12-al | S. hispanica | 4.643 μg/g | ethyl acetate | [20] |
Ixerisoside D | S. hispanica | 7.021 μg/g | methanol | [32] |
3β,11α-dihydroxy-4β-methyl-guaia-10(14)-en-12,6α-olide | S. austriaca | N/D | acetone | [16] |
Steroids | ||||
3β-hydroxystigmast-5-en-7-one | S. divaricata | 1.455 μg/g | 95% aqueous ethanol | [57] |
3β-hydroxyl-5α,8α-epidioxyergosta-6,22-diene (5α,8α-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol) | S. divaricata | 3.636 μg/g | 95% aqueous ethanol | [57] |
5,6α-epoxy-5α-stigmastan-3β-ol | S. divaricata | 1.273 μg/g | 95% aqueous ethanol | [57] |
Stigmast-3β, 5α, 6β-trihydroxy | S. austriaca | 2.837 μg/g | acetone | [28] |
Stigmast-3β, 7β-dihydroxyl-5-ene (7β-hydroxysitosterol) | S. divaricata | 0.909 μg/g (mixture) | 95% aqueous ethanol | [57] |
Stigmast-3β,7α-dihydroxyl-5-ene (7α-hydroxysitosterol) | S. divaricata | 95% aqueous ethanol | [57] | |
Stigmast-4-en-3-one | S. austriaca | 2.257 μg/g | acetone | [28] |
Stigmast-4-en-6β-ol-3-one (6β-hydroxystigmastan-4-en-3-one) | S. divaricata | 1.636 μg/g | 95% aqueous ethanol | [57] |
Stigmasterol | S. undulata ssp. deliciosa | N/D | dichloromethane | [63] |
β-Sitosterol | S. austriaca, | 3.286 μg/g | acetone | [28] |
S. divaricata | 6.182 μg/g | 95% aqueous ethanol | [57] | |
S. latifolia | 75.714 μg/g | methanol | [3,6] | |
S. undulata ssp. deliciosa | N/D | dichloromethane | [63] | |
S. veratrifolia | N/D | methanol | [30] | |
β-Sitosterol 3-O-β-D-glucoside (β-daucosterol) | S. austriaca | 4.314 μg/g | acetone | [28] |
S. divaricata | 3.636 μg/g | 95% aqueous ethanol | [57] | |
β-Stigmasterol | S. austriaca | 1.971 μg/g | acetone | [28] |
Triterpenoids | ||||
(23Z)-Cycloart-23-en-3β,25-dihydroxy | S. austriaca | 2.943 μg/g | acetone | [28] |
(3S,10R,13S,14S,17S,20S,24R)-(23E)-3-acetoxy-25-hydroperoxy-tirucalla-7,23-diene (scorzodivaricin C) | S. divaricata | 0.909 μg/g | 95% aqueous ethanol | [59] |
(3S,10R,13S,14S,17S,20S,24R)-3β-hydroxyl-24-hydroperoxy-24-vinyl-tirucalla-8-ene (scorzodivaricin D) | S. divaricata | 1.091 μg/g | 95% aqueous ethanol | [59] |
(3S,5R,10R,13S,14S,17R,20S,24R)-3-acetoxy-24-hydroxyl-tirucalla-7,25-diene (scorzodivaricin B) | S. divaricata | 0.909 μg/g | 95% aqueous ethanol | [59] |
(6S,7R)-10,11,13-trihydroxy-bisabola-2-en-1-one (scorzodivaricin A) | S. divaricata | 0.727 μg/g | 95% aqueous ethanol | [59] |
23(Z)-3β, 25-dihydroxy-tirucalla-7,23-diene | S. divaricata | 3.091 μg/g | 95% aqueous ethanol | [59] |
23(Z)-3β-acetoxy-25-hydroxy-tirucalla-7,23-diene | S. divaricata | 1.273 μg/g | 95% aqueous ethanol | [59] |
3α-hydroxyolean-5-ene | S. aristata | 19.036 μg/g | methanol:acetone:water (3/1/1, v/v/v) methanol | [56] |
3β-acetoxyglutin-5(10)-en-6-oxo | S. austriaca | 4.086 μg/g | acetone | [28] |
3β-acetyl-11α,12α-oxidotaraxerol | S. austriaca | 3.3171 μg/g | acetone | [28] |
3-β-hydroxy-fern-7-en-6-one-acetate | S. cinerea | 65 ± 1 μg/g | n-hexane | [27] |
S. eriophora | 20 ± 1 μg/g | n-hexane | [27] | |
S. latifolia | 50 ± 1 μg/g | n-hexane | [27] | |
7.143 μg/g | methanol | [47] | ||
S. sublanata | 35 ± 1 μg/g | n-hexane | [27] | |
S. tomentosa | 47 ± 1 μg/g | n-hexane | [27] | |
3-β-hydroxy-fern-8-en-7-one-acetate | S. latifolia | N/D | methanol | [73] |
9β,19-cyclolanostane- 24-en-3-oxo | S. austriaca | 7.314 μg/g | acetone | [28] |
Amyrin β-acetate | S. undulata ssp. deliciosa | 10.103 μg/g | dichloromethane | [49] |
D-friedours-14-en-3β-acetyl-11α,12α-epoxy | S. austriaca | 2.229 μg/g | acetone | [28] |
Fern-7-en-3-one | S. veratrifolia | N/D | methanol | [30] |
Fern-7-en-3-β-ol (motiol) | S. latifolia | 6.714 μg/g | methanol | [3,6] |
Fern-7-en-3-β-one | S. latifolia | 32.143 μg/g | methanol | [6] |
Germanicol | S. veratrifolia | N/D | methanol | [30] |
Germanicol acetate | S. veratrifolia, | N/D | methanol | [30] |
Germanicone | S. veratrifolia | N/D | methanol | [30] |
Glutinol | S. austriaca | 4.4861 μg/g | acetone | [28] |
Lupenone | S. veratrifolia | N/D | methanol | [30] |
Lupeol | S. acuminata | 512 ± 1 μg/g | n-hexane | [27] |
S. aristata | N/D | methanol:acetone:water (3/1/1, v/v/v) methanol | [56] | |
S. austriaca | 2.7431 μg/g | acetone | [28] | |
S. cana var. jacquiniana | 932 ± 2 μg/g | n-hexane | [27] | |
S. cinerea | 1073 ± 6 μg/g | n-hexane | [27] | |
S. eriophora | 244 ± 7 μg/g | n-hexane | [27] | |
S. incisa | 283 ± 2 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 447 ± 2 μg/g | n-hexane | [27] | |
S. latifolia | 213 ± 2 μg/g | n-hexane | [27] | |
S. mirabilis | 224 ± 1 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 282 ± 11 μg/g | n-hexane | [27] | |
S. parviflora | 132 ± 4 μg/g | n-hexane | [27] | |
S. suberosa ssp. suberosa | 342 ± 4 μg/g | n-hexane | [27] | |
S. sublanata | 415 ± 1 μg/g | n-hexane | [27] | |
S. tomentosa | 564 ± 2 μg/g | n-hexane | [27] | |
S. veratrifolia | N/D | methanol | [30] | |
Lupeol acetate | S. acuminata | 297 ± 1 μg/g | n-hexane | [27] |
S. cana var. jacquiniana | 4273 ± 12 μg/g | n-hexane | [27] | |
S. cinerea | 3645 ± 8 μg/g | n-hexane | [27] | |
S. eriophora | 2195 ± 7 μg/g | n-hexane | [27] | |
S. incisa | 736 ± 10 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 3212 ± 13 μg/g | n-hexane | [27] | |
S. latifolia | 2261 ± 94 μg/g | n-hexane | [27] | |
S. mirabilis | 1356 ± 2 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 1244 ± 1 μg/g | n-hexane | [27] | |
S. parviflora | 711 ± 3 μg/g | n-hexane | [27] | |
S. suberosa ssp. suberosa | 1261 ± 5 μg/g | n-hexane | [27] | |
S. sublanata | 3920 ± 8 μg/g | n-hexane | [27] | |
S. tomentosa | 2502 ± 7 μg/g | n-hexane | [27] | |
S. veratrifolia | N/D | methanol | [30] | |
Magnificol | S. aristata | N/D | methanol:acetone:water (3/1/1, v/v/v) methanol | [56] |
Methyl oleanate | S. undulata ssp. deliciosa | N/D | dichloromethane | [63] |
Methyl ursolate | S. undulata ssp. deliciosa | N/D | dichloromethane | [63] |
Olean-12-en-11-one-3-acetyl | S. cinerea | 115 ± 1 μg/g | n-hexane | [27] |
S. incisa | 151 ± 1 μg/g | n-hexane | [27] | |
S. latifolia | 8 μg/g | methanol | [47] | |
135 ± 1 μg/g | n-hexane | [27] | ||
S. tomentosa | 187 ± 1 μg/g | n-hexane | [27] | |
Oleanolic acid | S. divaricata | 1.818 μg/g | 95% aqueous ethanol | [59] |
Taraxasterol | S. austriaca | 3.371 μg/g | acetone | [28] |
S. veratrifolia | N/D | methanol | [30] | |
Taraxasterol acetate/Taraxasteryl acetate | S. cana var. jacquiniana | 719 ± 3 μg/g | n-hexane | [27] |
S. cinerea | 2171 ± 6 μg/g | n-hexane | [27] | |
S. eriophora | 3212 ± 17 μg/g | n-hexane | [27] | |
S. incisa | 1191 ± 5 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 276 ± 3 μg/g | n-hexane | [27] | |
S. latifolia, | 4201 ± 16 μg/g | n-hexane | [27] | |
S. mirabilis | 2099 ±4 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 3791 ± 14 μg/g | n-hexane | [27] | |
S. parviflora | 811.96 ± 4 μg/g | n-hexane | [27] | |
S. suberosa ssp. suberosa | 2340 ± 6 μg/g | n-hexane | [27] | |
S. sublanata | 4981 ± 2 μg/g | n-hexane | [27] | |
S. tomentosa | 3168 ± 12 μg/g | n-hexane | [27] | |
S. veratrifolia | N/D | methanol | [30] | |
Taraxasteryl myristate | S. latifolia | 142.85 μg/g | methanol | [6] |
Urs-12-en-11-one-3-acetyl | S. latifolia | N/D | methanol | [10] |
α-Amyrin | S. acuminata | 1646 ± 10 μg/g | n-hexane | [27] |
S. cana var. jacquiniana | 920 ± 11 μg/g | n-hexane | [27] | |
S. cinerea | 3221 ± 13 μg/g | n-hexane | [27] | |
S. laciniata ssp. laciniata | 146 ± 4 μg/g | n-hexane | [27] | |
S. mollis ssp. szowitsii | 609 ± 6 μg/g | n-hexane | [27] | |
S. tomentosa | 969 ± 11 μg/g | n-hexane | [27] | |
α-Amyrin acetate | S. veratrifolia | N/D | methanol | [30] |
α-Amyrin-3-acetyl | S. austriaca | 2.857 μg/g | acetone | [28] |
α-Amyrin-3-acetyl-11-oxo | S. austriaca | 2.971 μg/g | acetone | [28] |
α-Amyrinone | S. veratrifolia | N/D | methanol | [30] |
β-Amyrin acetate | S. veratrifolia | N/D | methanol | [30] |
β-Amyrinone | S. veratrifolia | N/D | methanol | [30] |
β-Amyrin | S. veratrifolia | N/D | methanol | [30] |
β-Amyrin acetate | S. undulata ssp. deliciosa | 10.103 μg/g | dichloromethane | [63] |
β-Amyrin-3- acetyl | S. austriaca | 3.2 μg/g | acetone | [28] |
β-Amyrin-3(3′-methylbutanoate) | S. austriaca | 2.857 μg/g | acetone | [28] |
ψ-Taraxasterol | S. veratrifolia | N/D | methanol | [30] |
ψ-Taraxasterol acetate | S. veratrifolia | N/D | methanol | [30] |
ψ-Taraxasteryl-3 (3′-methyl-butanonate) | S. austriaca | 2.8 μg/g | acetone | [28] |
Tyrolobibenzyls | ||||
β-D-glucopyranosyl 4-[2-(4-hydroxyphenyl)ethyl]benzofuran-2-carboxylate (tyrolobibenzyl A) | S. humilis | 701.258 μg/g | methanol | [54] |
β-D-glucopyranosyl 5-hydroxy-4-[2-(4-hydroxyphenyl)ethyl]benzofuran-2-carboxylate (tyrolobibenzyl B) | S. humilis | 829.141 μg/g | methanol | [54] |
1-{3-(β-D-glucopyranosyloxy)-6-hydroxy-2-[2-(4-hydroxyphenyl)ethyl]phenyl}ethanone (tyrolobibenzyl C) | S. humilis | 489.518 μg/g | methanol | [54] |
1‴→6″-β-D-apiofuranosyl-β-D-glucopyranosyl 4-[2-(4-hydroxyphenyl)ethyl]benzofuran-2-carboxylate (tyrolobibenzyl D) | S. humilis | 223.594 μg/g | methanol | [53] |
6-O-β-D-glucosyl derivative of tyrolobibenzyl C (tyrolobibenzyl E) | S. humilis | 78.189 μg/g | methanol | [55] |
5-O-glucosyl derivative of tyrolobibenzyl B (tyrolobibenzyl F) | S. humilis | 6.859 μg/g | methanol | [55] |
Other compounds | ||||
Verbascoside (acteoside) | S. undulata ssp. deliciosa | 72.165 μg/g | dichloromethane | [49,63] |
Methyl-β-D-fructofuranoside | S. divaricata | 3.273 μg/g | 95% aqueous ethanol | [57] |
1-monolinolein (glycerol 1–9′,12′-octadecadienoate) | S. divaricata | 2.364 μg/g | 95% aqueous ethanol | [57] |
2-[(E)-2-(4-hydroxyphenyl)ethenyl]-6-methoxybenzoic acid (scorzoerzincanin) | S. tomentosa | 105.528 μg/g | methanol | [36] |
Compounds | Scorzonera Species | Concentration | Type of Solvent | References |
---|---|---|---|---|
Dihydroisocoumarins and dihydroisocoumarin derivatives | ||||
6,8-dihydroxy-3-(4methoxyphenyl)isochroman-1-one (scorzocreticin) | S. cretica | 13.334 μg/g | methanol | [37] |
8-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl]scorzocreticin (scorzocreticoside II) | S. cretica | 48.2 μg/g | methanol | [37] |
8-O-β-D-glucopyranosylscorzocreticin (scorzocreticoside I) | S. cretica | 23.334 μg/g | methanol | [37] |
Flavonoid aglycones | ||||
Apigenin | S. undulata ssp. alexandrina | 9 μg/g | petroleum ether | [23] |
Steroids | ||||
3-O-β-D-glucopyranosylsitosterol | S. cretica | N/D | methanol | [37] |
3-O-(6-O-acetyl-β-D-glucopyranosyl)β-sitosterol | S. undulata ssp. alexandrina | 6 μg/g | petroleum ether | [23] |
Daucosterol | S. undulata ssp. alexandrina | 12 μg/g | petroleum ether | [23] |
Triterpenoids | [37] | |||
24-methylenecycloartanol | S. undulata ssp. alexandrina | 4 μg/g | petroleum ether | [23] |
Germanicol | S. cretica | N/D | dichloromethane | [37] |
Germanicol acetate | S. cretica | N/D | dichloromethane | [37] |
Germanicone | S. cretica | N/D | dichloromethane | [37] |
Lupenone | S. cretica | N/D | dichloromethane | [37] |
Lupeol | S. cretica | N/D | dichloromethane | [37] |
S. undulata ssp. alexandrina | 5 μg/g | petroleum ether | [23] | |
Lupeol acetate | S. cretica | N/D | dichloromethane | [37] |
Oleanol | S. cretica | N/D | dichloromethane | [37] |
Oleanol acetate | S. cretica | N/D | dichloromethane | [37] |
Taraxasterol | S. cretica | N/D | dichloromethane | [37] |
Taraxasterol acetate/Taraxasteryl acetate | S. cretica | N/D | dichloromethane | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lendzion, K.; Gornowicz, A.; Bielawski, K.; Bielawska, A. Phytochemical Composition and Biological Activities of Scorzonera Species. Int. J. Mol. Sci. 2021, 22, 5128. https://doi.org/10.3390/ijms22105128
Lendzion K, Gornowicz A, Bielawski K, Bielawska A. Phytochemical Composition and Biological Activities of Scorzonera Species. International Journal of Molecular Sciences. 2021; 22(10):5128. https://doi.org/10.3390/ijms22105128
Chicago/Turabian StyleLendzion, Karolina, Agnieszka Gornowicz, Krzysztof Bielawski, and Anna Bielawska. 2021. "Phytochemical Composition and Biological Activities of Scorzonera Species" International Journal of Molecular Sciences 22, no. 10: 5128. https://doi.org/10.3390/ijms22105128
APA StyleLendzion, K., Gornowicz, A., Bielawski, K., & Bielawska, A. (2021). Phytochemical Composition and Biological Activities of Scorzonera Species. International Journal of Molecular Sciences, 22(10), 5128. https://doi.org/10.3390/ijms22105128