Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications
Abstract
:1. Introduction
2. Synthesis of Carbon Dots
2.1. Top-Down Approach
2.1.1. Arc Discharge Deposition Method
2.1.2. Laser Ablation Method
2.1.3. Electrochemical Synthesis
2.1.4. Ultrasonication
2.2. Bottom-Up Approaches
2.2.1. Hydrothermal Method
2.2.2. Microwave Method
2.2.3. Solvothermal Method
2.2.4. Reverse Micelles Method
2.2.5. Pyrolysis Method
3. Properties of Carbon Dots
3.1. Mechanical Strength Concept
3.2. Optical Properties of CDs
4. CDs Mediated Scaffold for Tissue Engineering Application
5. Future Perspectives and Challenges
- (1)
- Preparation of highly performing CDs with suitable size, morphology, crystallinity, and number of surface functional groups should be optimized through a systematic and scalable synthetic protocol. Besides, creating in situ technique is essential to understand the mechanism of CDs’ formation.
- (2)
- Many experiments and theoretical modeling are essential to thoroughly understand the relationship between the optical properties with methods of synthesis of carbon dots.
- (3)
- Biomedical researchers have paid attention to the excitation of CDs from red to NIR region (i.e., 600–1000 nm), which contributes to significant light scattering and deeper light penetration into biological tissues, reducing loss of photon energy, and increase in CDs’ biomedical efficacy. However, the preparation of red emissive CDs is a challenging task with very few synthetic methods and the associated indirect bandgap narrowing mechanisms. To mitigate this problem, future research works should be carried out focusing on developing red-to-NIR excitable carbon dots.
- (4)
- Fabrication of next-generation carbon dot-based scaffolds compatible with the surrounding tissues after implantation is essential to minimize clinical trial errors.
- (5)
- When the fluorescent CDs are buried into the scaffold material, the fibers’ fluorescence emission intensity is generally weakened. Further, some scaffold-CDs may suffer leaching issues depending on the nature of the polymer used for the scaffold. Such a problem would result in a decrease in the fluorescent probe concentration in the scaffold and decrease the emissive photon signals. Hence, a detailed study should be presented to amplify the application of CDs in tissue regeneration considering the above problem.
- (6)
- Different synthetic approaches imparting hydrophilicity and surface functionalization are reasonable for the lower cytotoxicity of the synthesized carbon dots. Hence, the researchers should evaluate the cytotoxicity of carbon dots alone before blending them with suitable scaffolds.
- (7)
- Different non-invasive imaging methods having their advantages and disadvantages in clinical trials limit their application in the tissue engineering field. Hence, developing carbon dots mediated tissue engineering scaffold with multimodal imaging capability will enhance their potential in clinical studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CLSM | Confocal laser scanning microscopy |
NIH-3T3 | Mouse embryonic fibroblasts cells |
DS | Dextran sulfate sodium salt |
BrijL4 | Polyoxyethylene (4) lauryl ether |
AOT | Bis(2-ethylhexyl)sulfosuccinate sodium salt |
DTPA | Diethylenetriaminepentaacetic acid |
CA | Citric acid mono hydrate |
EDA | Ethylenediamine |
OxCNT | Oxidized carbon nanotube |
PCL | Polycaprolactone |
CP | Captopril |
BC | Bacterial cellulose |
PVA | Poly(vinyl alcohol) |
SF | Silk fibroin |
PU | Polyurethane |
PLA | Poly(L-lactic acid) |
PP | Polypropylene |
H9C2 | Cardio myoblast cell |
MG-63 | Human osteoblast cell |
3T3 | Mouse fibroblasts cell |
hBFPSCs | Human pluripotent stem cell registry |
ALg | Alginate |
CNF | Cellulose nanofibers |
HAp | Hydroxyapatite |
ALP | Alkaline phosphatase |
CMCS | Carboxymethyl chitosan |
FL | Fluorescence |
CQDAG | Antibacterial carbon quantum dots |
RBC | Red blood cell |
TTDDA | 4,7,10-trioxa-1,13-tridecanediamine |
References
- Huang, S.; Lei, D.; Yang, Q.; Yang, Y.; Jiang, C.; Shi, H.; Qian, B.; Long, Q.; Chen, W.; Chen, Y. A perfusable, multifunctional epicardial device improves cardiac function and tissue repair. Nat. Med. 2021, 27, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Lee, J.H.; Shin, Y.C.; Hwang, D.-G.; Kim, J.S.; Jin, O.S.; Jin, L.; Hong, S.W.; Han, D.-W. Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds. Biomater. Res. 2014, 18, 18–24. [Google Scholar]
- Ort, C.; Dayekh, K.; Xing, M.; Mequanint, K. Emerging strategies for stem cell lineage commitment in tissue engineering and regenerative medicine. ACS Biomater. Sci. Eng. 2018, 4, 3644–3657. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kawazoe, T.; Han, D.W.; Matsumara, K.; Suzuki, S.; Tsutsumi, S.; Hyon, S.H. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen. 2008, 16, 714–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar]
- Manzari-Tavakoli, A.; Tarasi, R.; Sedghi, R.; Moghimi, A.; Niknejad, H. Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart hydrogels in tissue engineering and regenerative medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [Green Version]
- Mozafari, M.; Ramedani, A.; Zhang, Y.; Mills, D. Thin films for tissue engineering applications. In Thin Film Coatings for Biomaterials and Biomedical Applications; Woodhead Publishing: Cambridge, UK, 2016; pp. 167–195. [Google Scholar]
- Wang, X.; Wang, G.; Liu, L.; Zhang, D. The mechanism of a chitosan-collagen composite film used as biomaterial support for MC3T3-E1 cell differentiation. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Han, G.T.; Zhang, Y.M.; Zhang, J.F.; Jiang, W.; Tao, X.W.; Gao, S.C. Preparation of alginate membrane for tissue engineering. J. Polym. Eng. 2015, 36, 363–370. [Google Scholar] [CrossRef]
- Vedhanayagam, M.; Nidhin, M.; Duraipandy, N.; Naresh, N.D.; Jaganathan, G.; Ranganathan, M.; Kiran, M.S.; Narayan, S.; Nair, B.U.; Sreeram, K.J. Role of nanoparticle size in self-assemble processes of collagen for tissue engineering application. Int. J. Biol. Macromol. 2017, 99, 655–664. [Google Scholar] [CrossRef]
- Kang, M.S.; Lee, S.H.; Park, W.J.; Lee, J.E.; Kim, B.; Han, D.-W. Advanced techniques for skeletal muscle tissue engineering and regeneration. Bioengineering 2020, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Lee, J.H.; Jin, L.; Jin, O.S.; Shin, Y.C.; Oh, S.J.; Lee, J.; Hyon, S.-H.; Han, D.-W. Hyaluronic acid/poly (lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds. J. Nanosci. Nanotechnol. 2014, 14, 8458–8463. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.C.; Kim, J.; Kim, S.E.; Song, S.-J.; Hong, S.W.; Oh, J.-W.; Lee, J.; Park, J.-C.; Hyon, S.-H.; Han, D.-W. RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering. Regener. Biomater. 2017, 4, 159–166. [Google Scholar] [CrossRef]
- Vedhanayagam, M.; Unni Nair, B.; Sreeram, K.J. Collagen-ZnO scaffolds for wound healing applications: Role of dendrimer functionalization and nanoparticle morphology. ACS Appl. Bio Mater. 2018, 1, 1942–1958. [Google Scholar] [CrossRef]
- Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules 2011, 12, 1387–1408. [Google Scholar] [CrossRef]
- Eltom, A.; Zhong, G.; Muhammad, A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv. Mater. Sci. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Babbar, A.; Jain, V.; Gupta, D.; Singh, S.; Prakash, C.; Pruncu, C. Biomaterials and fabrication methods of scaffolds for tissue engineering applications. In 3D Printing in Biomedical Engineering; Springer: Singapore, 2020; pp. 167–186. [Google Scholar]
- Raja, I.S.; Fathima, N.N. Gelatin—Cerium oxide nanocomposite for enhanced excisional wound healing. ACS Appl. Bio Mater. 2018, 1, 487–495. [Google Scholar] [CrossRef]
- Nidhin, M.; Vedhanayagam, M.; Sangeetha, S.; Kiran, M.S.; Nazeer, S.S.; Jayasree, R.S.; Sreeram, K.J.; Nair, B.U. Fluorescent nanonetworks: A novel bioalley for collagen scaffolds and Tissue Engineering. Sci. Rep. 2014, 4, 5968. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.; Dinda, A.K.; Mishra, N.C. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater. Sci. Eng. C 2013, 33, 1228–1235. [Google Scholar] [CrossRef]
- Shin, Y.M.; Kim, K.-S.; Lim, Y.M.; Nho, Y.C.; Shin, H. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly (l-lactide-co-caprolactone) substrates. Biomacromolecules 2008, 9, 1772–1781. [Google Scholar] [CrossRef]
- Shin, Y.C.; Jin, L.; Lee, J.H.; Jun, S.; Hong, S.W.; Kim, C.-S.; Kim, Y.-J.; Hyun, J.K.; Han, D.-W. Graphene oxide-incorporated PLGA-collagen fibrous matrices as biomimetic scaffolds for vascular smooth muscle cells. Sci. Adv. Mater. 2017, 9, 232–237. [Google Scholar] [CrossRef]
- Zhang, Y.; Rossi, F.; Papa, S.; Violatto, M.B.; Bigini, P.; Sorbona, M.; Redaelli, F.; Veglianese, P.; Hilborn, J.n.; Ossipov, D.A. Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomater. 2016, 30, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Vedhanayagam, M.; Nair, B.U.; Sreeram, K.J. Dimension effect: Dendrimer functionalized carbon based nanomaterial mediated collagen scaffold for wound healing application. Materialia 2019, 7, 100354. [Google Scholar] [CrossRef]
- Dehghani, A.; Ardekani, S.M.; Hassan, M.; Gomes, V.G. Collagen derived carbon quantum dots for cell imaging in 3D scaffolds via two-photon spectroscopy. Carbon 2018, 131, 238–245. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Yang, C.-H.; Shen, S.-C.; Lee, Y.-J.; Chang, F.-Y.; Feng, C.-S. Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography. Biomed. Opt. Express 2013, 4, 2362–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, C.-P.; Shi, Y.; Amin, K.; Greenberg, C.S.; Haroon, Z.; Faris, G.W. Wound healing monitoring using near infrared fluorescent fibrinogen. Biomed. Opt. Express 2010, 1, 285–294. [Google Scholar] [CrossRef]
- Wang, Y.; Gutierrez-Herrera, E.; Ortega-Martinez, A.; Anderson, R.R.; Franco, W. UV fluorescence excitation imaging of healing of wounds in skin: Evaluation of wound closure in organ culture model. Lasers Surg. Med. 2016, 48, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Navarro, F.A.; So, P.T.; Driessen, A.; Kropf, N.; Park, C.S.; Huertas, J.C.; Lee, H.B.; Orgill, D.P. Two-photon confocal microscopy in wound healing. SPIE 2001, 27–40. [Google Scholar] [CrossRef]
- Yanez, C.O.; Morales, A.R.; Yue, X.; Urakami, T.; Komatsu, M.; Järvinen, T.A.; Belfield, K.D. Deep vascular imaging in wounds by two-photon fluorescence microscopy. PLoS ONE 2013, 8, e67559. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.Y.; Ricles, L.M.; Suggs, L.J.; Emelianov, S.Y. Imaging strategies for tissue engineering applications. Tissue Eng. Part B Rev. 2015, 21, 88–102. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Lee, J.H.; Han, D.-W.; Kim, H.-K.; Hwang, Y.-H. Ultrafine PEG-capped gadolinia nanoparticles: Cytotoxicity and potential biomedical applications for MRI and luminescent imaging. RSC Adv. 2014, 4, 34343–34349. [Google Scholar] [CrossRef]
- Kim, M.J.; Shin, Y.C.; Lee, J.H.; Jun, S.W.; Kim, C.-S.; Lee, Y.; Park, J.-C.; Lee, S.-H.; Park, K.D.; Han, D.-W. Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds. Biomater. Res. 2016, 20, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha-Reis, C.; El Haj, A.J.; Yang, X.; Yang, Y. Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering. J. Tissue Eng. Regen. Med. 2013, 7, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yiu, H.H.; El Haj, A.J. On-line fluorescent monitoring of the degradation of polymeric scaffolds for tissue engineering. Analyst 2005, 130, 1502–1506. [Google Scholar] [CrossRef]
- Rizvi, S.B.; Ghaderi, S.; Keshtgar, M.; Seifalian, A.M. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev. 2010, 1, 5161. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Guo, B.; Rao, Z.; Zhang, B.; Gong, J.R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441. [Google Scholar] [CrossRef]
- Mehwish, N.; Dou, X.; Zhao, Y.; Feng, C.-L. Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater. Horiz. 2019, 6, 14–44. [Google Scholar] [CrossRef]
- Aper, S.J.; van Spreeuwel, A.C.; van Turnhout, M.C.; van der Linden, A.J.; Pieters, P.A.; van der Zon, N.L.; Sander, L.; Bouten, C.V.; Merkx, M. Colorful protein-based fluorescent probes for collagen imaging. PLoS ONE 2014, 9, e114983. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.-M.; Park, B.-Y.; Ghouri, Z.K.; Park, M.; Kim, H.-Y. Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications. Green Chem. 2015, 17, 3791–3797. [Google Scholar] [CrossRef]
- Lesani, P.; Singh, G.; Viray, C.M.; Ramaswamy, Y.; Zhu, D.M.; Kingshott, P.; Lu, Z.; Zreiqat, H. Two-photon dual-emissive carbon dot-based probe: Deep-tissue imaging and ultrasensitive sensing of intracellular ferric ions. ACS Appl. Mater. Interfaces 2020, 12, 18395–18406. [Google Scholar] [CrossRef]
- Molkenova, A.; Toleshova, A.; Song, S.-J.; Kang, M.S.; Abduraimova, A.; Han, D.-W.; Atabaev, T.S. Rapid synthesis of nontoxic and photostable carbon nanoparticles for bioimaging applications. Mater. Lett. 2020, 261, 127012. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Ren, K.; Xu, Q.; Hong, T.; Wu, S.; Zhang, Y.; Wang, Z. Multifunctional carbon dots for live cell staining and tissue engineering applications. Polym. Compos. 2018, 39, 73–80. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Mohammadinejad, R.; Kailasa, S.K.; Ahmadi, Z.; Afshar, E.G.; Pardakhty, A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review. Adv. Colloid Interface Sci. 2020, 278, 102123. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lu, K.-Q.; Tang, Z.-R.; Xu, Y.-J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef]
- Yan, C.; Ren, Y.; Sun, X.; Jin, L.; Liu, X.; Chen, H.; Wang, K.; Yu, M.; Zhao, Y. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. J. Photochem. Photobiol. B 2019, 202, 111680. [Google Scholar] [CrossRef]
- Das, R.; Bandyopadhyay, R.; Pramanik, P. Carbon quantum dots from natural resource: A review. Mater. Today Chem. 2018, 8, 96–109. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Yu, S.; Jiang, C. Fluorescent carbon dots: Rational synthesis, tunable optical properties and analytical applications. RSC Adv. 2017, 7, 40973–40989. [Google Scholar] [CrossRef] [Green Version]
- Molaei, M.J. Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC Adv. 2019, 9, 6460–6481. [Google Scholar] [CrossRef]
- Dimos, K. Tuning carbon dot’s optoelectronic properties with polymers. Polymers 2018, 10, 1312. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, W.; Han, P.; Zhou, X.; Cheng, J.; Wen, H.; Xue, W. Carbon quantum dots: Synthesis, properties, and sensing applications as a potential clinical analytical method. Anal. Methods 2019, 11, 2240–2258. [Google Scholar] [CrossRef]
- Shen, L.-M.; Liu, J. New development in carbon quantum dots technical applications. Talanta 2016, 156, 245–256. [Google Scholar] [CrossRef]
- Mazrad, Z.A.I.; Lee, K.; Chae, A.; In, I.; Lee, H.; Park, S.Y. Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. J. Mater. Chem. B 2018, 6, 1149–1178. [Google Scholar] [CrossRef]
- Lee, J.S.; Youn, Y.H.; Kwon, I.K.; Ko, N.R. Recent advances in quantum dots for biomedical applications. J. Pharm. Investig. 2018, 48, 209–214. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef]
- Chung, Y.J.; Kim, J.; Park, C.B. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 2020, 14, 6470–6497. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.R.; He, G.; Lin, J.; Huang, P. Recent advances on graphene quantum dots for bioimaging applications. Front. Chem. 2020, 8, 424. [Google Scholar] [CrossRef]
- Qu, D.; Wang, X.; Bao, Y.; Sun, Z. Recent advance of carbon dots in bio-related applications. J. Phys. Mater. 2020, 3, 022003. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, T.; Chen, H.; Ma, Y. The growth mechanism of few-layer graphene in the arc discharge process. Carbon 2016, 102, 494–498. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Bottini, M.; Balasubramanian, C.; Dawson, M.I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Govindaraj, A.; Biswas, K.; Rao, C. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chem. Phys. Lett. 2014, 595, 203–208. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 2011, 47, 932–934. [Google Scholar] [CrossRef]
- Yu, H.; Li, X.; Zeng, X.; Lu, Y. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun. 2016, 52, 819–822. [Google Scholar] [CrossRef]
- Niu, F.; Xu, Y.; Liu, J.; Song, Z.; Liu, M.; Liu, J. Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: Pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications. Electrochim. Acta 2017, 236, 239–251. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Kumar, V.B.; Gedanken, A. Carbon dot initiated synthesis of poly (4, 4′-diaminodiphenylmethane) and its methylene blue adsorption. ACS Omega 2018, 3, 7061–7068. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Hoffman, J.; Morgiel, J.; Moscicki, T.; Stobinski, L.; Szymanski, Z.; Malolepszy, A. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine. Materials 2021, 14, 729. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484–488. [Google Scholar] [CrossRef]
- Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S. Electrochemical synthesis of carbon nanodots directly from alcohols. Chem. Eur. J. 2014, 20, 4993–4999. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Zhang, Z.L.; Tian, Z.Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D.W. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater. 2011, 23, 5801–5806. [Google Scholar] [CrossRef]
- Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC-Trend Anal. Chem. 2017, 89, 163–180. [Google Scholar]
- Park, S.Y.; Lee, H.U.; Park, E.S.; Lee, S.C.; Lee, J.-W.; Jeong, S.W.; Kim, C.H.; Lee, Y.-C.; Huh, Y.S.; Lee, J. Photoluminescent green carbon nanodots from food-waste-derived sources: Large-scale synthesis, properties, and biomedical applications. ACS Appl. Mater. Interfaces 2014, 6, 3365–3370. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Liu, Y.; Yu, H.; Kang, Z.; Lee, S.-T. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 2011, 46, 147–151. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, X.; Jing, N.; Zhang, Y. Hydrothermal synthesis of carbon quantum dots as fluorescent probes for the sensitive and rapid detection of picric acid. Anal. Methods 2018, 10, 2775–2784. [Google Scholar] [CrossRef]
- Ding, H.; Yu, S.-B.; Wei, J.-S.; Xiong, H.-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 2012, 48, 8835–8837. [Google Scholar] [CrossRef]
- Zhan, J.; Peng, R.; Wei, S.; Chen, J.; Peng, X.; Xiao, B. Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum dots from chitosan. ACS Omega 2019, 4, 22574–22580. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 2013, 125, 4045–4049. [Google Scholar] [CrossRef]
- Arsalani, N.; Nezhad-Mokhtari, P.; Jabbari, E. Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery. Artif. Cells Nanomed. Biotechnol. 2019, 47, 540–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, J.; Geng, B.; Wu, K.; Xu, G.; Wang, L.; Guo, R.; Lei, B.; Zheng, F.; Pan, D.; Wu, M. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon 2018, 130, 153–163. [Google Scholar] [CrossRef]
- Linehan, K.; Doyle, H. Size controlled synthesis of carbon quantum dots using hydride reducing agents. J. Mater. Chem. C 2014, 2, 6025–6031. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, C.; Liu, S.; Liu, Z.; Zhu, J.; Yang, J.; Hu, X. Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. RSC Adv. 2015, 5, 64790–64796. [Google Scholar] [CrossRef]
- de Medeiros, T.V.; Manioudakis, J.; Noun, F.; Macairan, J.-R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, N.; Shi, H.; Ji, W.; Guo, X.; Yuan, W.; Hu, Q. One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ions in aqueous solution. New J. Chem. 2018, 42, 3097–3101. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 5118–5120. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Tian, F.; Li, W.; Li, F.; Liu, W. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J. Mater. Chem. 2011, 21, 13163–13167. [Google Scholar] [CrossRef]
- Monte-Filho, S.S.; Andrade, S.I.; Lima, M.B.; Araujo, M.C. Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements. J. Pharm. Anal. 2019, 9, 209–216. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, K.; Zhao, L.; Li, C.; Bu, W.; Shen, Y.; Gu, Z.; Chang, B.; Zheng, C.; Lin, C.; et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation. ACS Appl. Mater. Interfaces 2016, 8, 32706–32716. [Google Scholar] [CrossRef]
- Wu, H.; Mi, C.; Huang, H.; Han, B.; Li, J.; Xu, S. Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application. J. Lumin. 2012, 132, 1603–1607. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Lu, C.; Sun, J.; Wang, L.; Qu, B.; Li, T.; Liu, Y.; Li, S. In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications. J. Mater. Chem. B 2017, 5, 7328–7334. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, K.; Das, P.K. Hydrophobically tailored carbon dots toward modulating microstructure of reverse micelle and amplification of lipase catalytic response. Langmuir 2016, 32, 3890–3900. [Google Scholar] [CrossRef] [PubMed]
- Prikhozhdenko, E.S.; Bratashov, D.N.; Mitrofanova, A.N.; Sapelkin, A.V.; Yashchenok, A.M.; Sukhorukov, G.B.; Goryacheva, I.Y. Solvothermal synthesis of hydrophobic carbon dots in reversed micelles. J. Nanopart. Res. 2018, 20, 1–11. [Google Scholar] [CrossRef]
- Kwon, W.; Rhee, S.-W. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun. 2012, 48, 5256–5258. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-W.; Hsiao, Y.-H.; Peng, Y.-K.; Chou, P.-T. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J. Mater. Chem. 2012, 22, 14403–14409. [Google Scholar] [CrossRef]
- Guo, X.; Xu, L.; Zhang, L.; Wang, H.; Wang, X.; Liu, X.; Yao, J.; Hao, A. One-pot solid phase pyrolysis synthesis of highly fluorescent nitrogen-doped carbon dots and the interaction with human serum albumin. J. Lumin. 2018, 196, 100–110. [Google Scholar] [CrossRef]
- Yin, C.; Fan, Y.; Yang, X.; Zhou, X. Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. J. Mater. Sci. 2019, 54, 9372–9384. [Google Scholar]
- Robinson, M.; Douglas, S.; Willerth, S.M. Mechanically stable fibrin scaffolds promote viability and induce neurite outgrowth in neural aggregates derived from human induced pluripotent stem cells. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Maleki, A.; De La Guardia, M.; Bani, M.S.; Chenab, K.K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res. 2019, 18, 185–201. [Google Scholar] [CrossRef]
- Konwar, A.; Gogoi, N.; Majumdar, G.; Chowdhury, D. Green chitosan—carbon dots nanocomposite hydrogel film with superior properties. Carbohydr. Polym. 2015, 115, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Ge, H.; Gu, N.; Zhang, K.; Jin, C. Interfacial microstructure and mechanical properties of carbon fiber composite modified with carbon dots. Compos. Sci. Technol. 2019, 184, 107856. [Google Scholar] [CrossRef]
- Shao, J.; Yu, Q.; Wang, S.; Hu, Y.; Guo, Z.; Kang, K.; Ji, X. Poly (vinyl alcohol)-carbon nanodots fluorescent hydrogel with superior mechanical properties and sensitive to detection of Iron (III) ions. Macromol. Mater. Eng. 2019, 304, 1900326. [Google Scholar] [CrossRef]
- Chen, X.; Song, Z.; Li, S.; Thang, N.T.; Gao, X.; Gong, X.; Guo, M. Facile one-pot synthesis of self-assembled nitrogen-doped carbon dots/cellulose nanofibril hydrogel with enhanced fluorescence and mechanical properties. Green Chem. 2020, 22, 3296–3308. [Google Scholar] [CrossRef]
- Ghorghi, M.; Rafienia, M.; Nasirian, V.; Bitaraf, F.S.; Gharravi, A.M.; Zarrabi, A. Electrospun captopril-loaded PCL- carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polym. Adv. Technol. 2020, 31, 3302–3315. [Google Scholar] [CrossRef]
- Omidi, M.; Yadegari, A.; Tayebi, L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Adv. 2017, 7, 10638–10649. [Google Scholar] [CrossRef] [Green Version]
- Abolghasemzade, S.; Pourmadadi, M.; Rashedi, H.; Yazdian, F.; Kianbakht, S.; Navaei-Nigjeh, M. PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model. J. Mater. Chem. B 2021, 9, 658–676. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Su, Z.; Zhang, K.; Ren, J.; Sun, R.; Wang, X. All-biomass fluorescent hydrogels based on biomass carbon dots and alginate/nanocellulose for biosensing. ACS Appl. Bio Mater. 2018, 1, 1398–1407. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Yang, X.; Du, S.; Tang, W.; Cao, W.; Zhou, J.; Gong, X.; Xing, X. Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing. Chem. Eng. J. 2021, 403, 126387. [Google Scholar] [CrossRef]
- Safaie, B.; Youssefi, M.; Rezaei, B. The structure and fluorescence properties of polypropylene/carbon quantum dot composite fibers. Polym. Bull. 2021, 78, 1–23. [Google Scholar]
- El-Shamy, A.G. Novel conducting PVA/Carbon quantum dots (CQDs) nanocomposite for high anti-electromagnetic wave performance. J. Alloys Compd. 2019, 810, 151940. [Google Scholar] [CrossRef]
- El-Shamy, A.; Attia, W.; Abd El-Kader, K. The optical and mechanical properties of PVA-Ag nanocomposite films. J. Alloys Compd. 2014, 590, 309–312. [Google Scholar] [CrossRef]
- Gogoi, S.; Kumar, M.; Mandal, B.B.; Karak, N. A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. RSC Adv. 2016, 6, 26066–26076. [Google Scholar] [CrossRef]
- Feng, T.; Ai, X.; An, G.; Yang, P.; Zhao, Y. Correction to charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lai, H.; Cheng, Z.; Kang, H.; Wang, Y.; Zhang, H.; Wang, J.; Liu, Y. Water-induced poly (vinyl alcohol)/carbon quantum dot nanocomposites with tunable shape recovery performance and fluorescence. J. Mater. Chem. B 2018, 6, 7444–7450. [Google Scholar] [CrossRef]
- Song, P.; Zhang, L.; Long, H.; Meng, M.; Liu, T.; Yin, Y.; Xi, R. A multianalyte fluorescent carbon dots sensing system constructed based on specific recognition of Fe (III) ions. RSC Adv. 2017, 7, 28637–28646. [Google Scholar] [CrossRef] [Green Version]
- Reckmeier, C.J.; Wang, Y.; Zboril, R.; Rogach, A.L. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J. Phys. Chem. C 2016, 120, 10591–10604. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 2014, 6, 1890–1895. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Bao, L.; Liu, C.; Zhang, Z.L.; Pang, D.W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Gao, W.; Gupta, B.K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L.B.; Zhan, X.; Gao, G.; et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Hwang, S.W.; Kim, M.-K.; Shin, D.Y.; Shin, D.H.; Kim, C.O.; Yang, S.B.; Park, J.H.; Hwang, E.; Choi, S.-H. Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano 2012, 6, 8203–8208. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.A.; Yang, X.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 2010, 122, 4532–4536. [Google Scholar] [CrossRef]
- Gogoi, S.; Khan, R. NIR upconversion characteristics of carbon dots for selective detection of glutathione. New J. Chem. 2018, 42, 6399–6407. [Google Scholar] [CrossRef]
- Valeur, B. Molecular fluorescence. Digit. Encycl. Appl. Phys. 2009, 477–531. [Google Scholar] [CrossRef]
- Shen, D.; Long, Y.; Wang, J.; Yu, Y.; Pi, J.; Yang, L.; Zheng, H. Tuning the fluorescence performance of carbon dots with a reduction pathway. Nanoscale 2019, 11, 5998–6003. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Q.; Long, Y.; Zhang, H.; Huang, X.; Zhu, R. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 2011, 47, 10650–10652. [Google Scholar] [CrossRef] [PubMed]
- Ehtesabi, H.; Hallaji, Z.; Nobar, S.N.; Bagheri, Z. Carbon dots with pH-responsive fluorescence: A review on synthesis and cell biological applications. Microchim. Acta 2020, 187, 1–18. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, C.; Peng, D.; Zhou, Y.; Zhuang, J.; Zhang, X.; Lei, B.; Liu, Y.; Hu, C. pH-responsive carbon dots with red emission for real-time and visual detection of amines. J. Mater. Chem. C 2020, 8, 11563–11571. [Google Scholar] [CrossRef]
- Wang, C.; Xu, Z.; Zhang, C. Polyethyleneimine-functionalized fluorescent carbon dots: Water stability, pH sensing, and cellular imaging. Chem. Nano Mat. 2015, 1, 122–127. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Cao, L.; Wang, X.; Meziani, M.J.; Lu, F.; Wang, H.; Luo, P.G.; Lin, Y.; Harruff, B.A.; Veca, L.M.; Murray, D. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Zhang, J.; Li, Z.; Wu, C.; Yan, X.; Wu, M. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 2010, 46, 3681–3683. [Google Scholar] [CrossRef]
- Carbonaro, C.M.; Corpino, R.; Salis, M.; Mocci, F.; Thakkar, S.V.; Olla, C.; Ricci, P.C. On the emission properties of carbon dots: Reviewing data and discussing models. J. Carbon Res. 2019, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Li, X.-H.; Chen, X.-B.; Wei, J.-S.; Li, X.-B.; Xiong, H.-M. Surface states of carbon dots and their influences on luminescence. J. Appl. Phys. 2020, 127, 231101. [Google Scholar] [CrossRef]
- Chen, Y.; Lian, H.; Wei, Y.; He, X.; Chen, Y.; Wang, B.; Zeng, Q.; Lin, J. Concentration-induced multi-colored emissions in carbon dots: Origination from triple fluorescent centers. Nanoscale 2018, 10, 6734–6743. [Google Scholar] [CrossRef]
- Chien, C.T.; Li, S.S.; Lai, W.J.; Yeh, Y.C.; Chen, H.A.; Chen, I.S.; Chen, L.C.; Chen, K.H.; Nemoto, T.; Isoda, S. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed. 2012, 51, 6662–6666. [Google Scholar] [CrossRef]
- Yan, J.-A.; Xian, L.; Chou, M.Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 2009, 103, 086802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mkhoyan, K.A.; Contryman, A.W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett. 2009, 9, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563–5565. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun. 2012, 48, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, S.; Omidi, M.; Nasehi, F.; Golzar, H.; Mohammadrezaei, D.; Rad, M.R.; Khojasteh, A. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Mater. Sci. Eng. C 2019, 100, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Das, B.; Dadhich, P.; Achar, A.; Dhara, S. Carbon nanodot impregnated fluorescent nanofibers for in vivo monitoring and accelerating full-thickness wound healing. J. Mater. Chem. B 2017, 5, 6645–6656. [Google Scholar] [CrossRef] [PubMed]
- Kandra, R.; Bajpai, S. Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. Arab. J. Chem. 2020, 13, 4882–4894. [Google Scholar] [CrossRef]
- Gogoi, S.; Maji, S.; Mishra, D.; Devi, K.S.P.; Maiti, T.K.; Karak, N. Nano-bio engineered carbon dot-peptide functionalized water dispersible hyperbranched polyurethane for bone tissue regeneration. Macromol. Biosci. 2017, 17, 1600271. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Zhang, M.; Wang, W.; Shen, J.; Ye, Z.; Zhou, N. Injectable in situ self-cross-linking hydrogels based on hemoglobin, carbon quantum dots, and sodium alginate for real-time detection of wound bacterial infection and efficient postoperative prevention of tumor recurrence. Langmuir 2020, 36, 13263–13273. [Google Scholar] [CrossRef]
- Bullock, A.J.; Garcia, M.; Shepherd, J.; Rehman, I.; Sheila, M. Bacteria induced pH changes in tissue-engineered human skin detected non-invasively using Raman confocal spectroscopy. Appl. Spectrosc. Rev. 2020, 55, 158–171. [Google Scholar] [CrossRef]
- Jones, E.M.; Cochrane, C.A.; Percival, S.L. The effect of pH on the extracellular matrix and biofilms. Adv. Wound Care 2015, 4, 431–439. [Google Scholar] [CrossRef]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef]
Synthetic Methods | Carbon Source | Reaction Condition | Size of CDs (nm) | Quantum Yield (%) | Application | Study Authors | |
---|---|---|---|---|---|---|---|
Top-down approaches | Arc discharge deposition | Arc soot | Electrodes, agarose gel | 1 | 1.6 | - | Xu et al. (2004) [64] |
Arc discharge deposition | oxCNT | Electrodes | - | - | - | Bottini et al. (2006) [65] | |
Arc discharge deposition | Graphite | Electrodes, current 100–150 A | 4–6 | 2.3–8.7 | - | Dey et al. (2014) [66] | |
Laser ablation | Graphite powder and cement | Nd:YAG laser (1064 nm, 10 Hz) | 5 | 4–10 | - | Sun et al. (2006) [72] | |
Laser ablation | Graphite powder | Nd:YAG laser (wavelength 1.64 µm, intensity 6.0 × 106 W cm−2), 2 h | 3.2–3.3 | 3–8 | - | Hu et al. (2009) [73] | |
Laser ablation | Nano-carbon material | Nd:YAG laser wavelength 532 nm | - | - | - | Li et al. (2011) [67] | |
Electrochemical carbonization | Alcohols | Current density 15–100 mA cm−2, 4 h | 2.1–4.3 | 15.9 | Bioimaging | Deng et al. (2014) [74] | |
Electrochemical carbonization | Amino acids | 1–10 V, 2 h | 2.95 ± 0.12 | 46.2 | Cellular imaging, Fe3+ ions detection, and fiber staining | Niu et al. (2017) [69] | |
Electrochemical carbonization | Carbon fibers | 0.5–2.5 V, 2 h | 2.2 ± 0.6–3.3 ± 0.6 | 1.47 ± 0.20 | - | Bao et al. (2011) [75] | |
Ultrasonication | Food waste | 20 kHz, 45 min | 4 | 2.85 | Bioimaging | Part et al. (2014) [77] | |
Ultrasonication | Activated carbon | 40 kHz, 2 h | 5–10 | 5 | - | Li et al. (2011) [78] | |
Ultrasonication | PEG-400 | 20 kHz, 230 V AC, 3 h | 6 | - | Catalyst | Maruthapandi et al. (2018) [70] | |
Bottom-up approaches | Hydrothermal | Urea, p-phenylenediamine | 160 °C, 10 h | 2.6 | 35 | Bioimaging | Ding et al. (2016) [80] |
Hydrothermal | Orange juice | 120 °C, 2.5 h | 2.5 | 26 | Cellular imaging | Sahu et al. (2012) [81] | |
Hydrothermal | Chitosan | 180 °C, 10 h | 2–10 | 6.6 | Metal ion detection | Zhan et al. (2019) [82] | |
Hydrothermal | Citric acid, ethylenediamine | 150–300 °C, 5 h | 2–6 | 80 | Printing ink, biosensor, and composites | Zhu et al. (2013) [83] | |
Microwave | PEG-200 and saccharides | 500 W, 2–10 min | 2.75 ± 0.45–3.65 ± 0.6 | 3.1–6.3 | - | Zhu et al. (2009) [90] | |
Microwave | Glycerol and TTDDA | 700 W | 3.5 | 12.02 | Cellular imaging | Liu et al. (2011) [91] | |
Microwave | Lemon and onion biomass | 1450 W, 6 min | 6.15 | 23.6 | Detection of riboflavin | Monte-Filho et al. (2019) [92] | |
Microwave | Gelatin and PEG | 600 W, 10 min | 6 | 34 | Bioimaging and anticancer | Arsalani et al. (2019) [84] | |
Microwave | Aspirin and hydrazine | 500 W, 8 min | 2–5.5 | 23 | Cellular imaging and bioimaging | Xu et al. (2016) [93] | |
Solvothermal | Spinach | 150 °C, 6 h | 3–11 | 15.34 | Bioimaging | Li et al. (2017) [95] | |
Solvothermal | 1,3,6-trinitropyrene | 230 °C, 12 h | 2.25–3.98 | 6.4–59 | Bioimaging | Zhan et al. (2018) [85] | |
Reverse micelles | CCl4, TOAB, and allylamine | Stir for 30 min | 2–6 | 27 | - | Linehan et al. (2014) [86] | |
Solvothermal assisted reverse micelles | DS and Brij L4 | Stir for 30 min, 180 °C, 10 h | 5 ± 0.7 | 2.6 | - | Prikhozhdenko et al. (2018) [97] | |
Reverse micelles | Glucose and AOT | 160 °C | ~2–4 | 35 | - | Kwon et al. (2012) [98] | |
Pyrolysis | Glycerol and PEG | 230 °C, 30 min | 5.5 ± 1.1 | 20 | Cellular imaging and drug delivery | Lai et al. (2012) [99] | |
Pyrolysis | DTPA | 180 °C | 5 | 17 | Detection of curcumin | Shi et al. (2015) [87] | |
Pyrolysis | CA, EDA | 150 °C, 20 min | 5 | 88 | - | Yin et al. (2019) [101] |
Composite of CQDs | Tissue Regenerative Scaffold and Methodology | Physicochemical Properties | Invasive/Non-Invasive Imaging Devices and Performances | Cellular Type | Salient Observations | Biomedical Applications | Study Authors |
---|---|---|---|---|---|---|---|
SF-CQD-PLA | Electrospun nanofiber | Higher porosity, better swelling ability, and Young’s modulus of 1610 kPa | CLSM/Cell proliferation | H9c2 rat myoblast cells | Increased cell viability and cardiac-maker gene expression | Tissue engineering and nursing care | Yan et al. (2019) [49] |
CP-CQD-PCL | Electrospun nanofiber | Decreased fiber diameter, increased surface hydrophilicity, and Young’s modulus of 2.83 ± 0.23 MPa | SEM/Cell morphology and adhesion | MG-63 human osteoblast cells | Increased cell proliferation and ALP activity; more drug release at lower concentration | Bone tissue engineering | Ghorghi et al. (2020) [108] |
CMCS-CQDAG-ODex | Injectable hydrogel/Chemical cross-linking method | Self-healing, stretchable, compressive property, pH dependent release of CQDs, and compressive modulus of 11.441 kPa | Fluorescence and optical microscopy/Cell adhesion survival and RBC imaging | NIH-3T3 mouse embryonic fibroblast cells | Inhibition of biofilm formation; low drug resistance; better antibacterial and anti-inflammation; higher collagen deposition | Skin tissue regeneration | Li et al. (2021) [112] |
BC-CQDs-Si NPs-SF& PVA-CQDs-Si NPs-SF | Nanofiber/Spray printing and electrospinning method | Moderate swelling, biodegradability, and Young’s modulus of 320 MPa & 70 MPa | Optical microscopy/Cell migration and tissue regeneration | NIH-3T3 fibroblasts | Better antibacterial activity; enhanced cell viability, proliferation, and re-epithelialization | Skin tissue and hair regeneration | Abolghasemzade et al. (2021) [110] |
PCL-CNDs-gelatin | Electrospun nanofiber | Fiber diameter of 698 ± 420 nm, pore diameter of 2.93 ± 1.13 µm, photo stability, and Young’s modulus of 0.866 ± 0.06 MPa | SEM and two-photon microscopy/Cell attachment, growth, cytotoxicity, and skin regeneration kinetics | Human fibroblasts and keratinocyte cells | Increased antioxidant activity; accelerated cell adhesion, migration, and proliferation | Skin tissue regeneration | Pal et al. (2017) [146] |
CQDs-chitosan | Film/Solvent casting method | Decrease in water absorption and moisture permeation and 1.3-fold flexibility | - | - | Enhanced antioxidant activity | Skin tissue regeneration and drug delivery | Kandra et al. (2020) [147] |
PCL-PVA-TCP-CD | Electrospun nanofiber | Fiber diameter range of 300–414.8 nm and contact angle of 33–45° | SEM and CLSM/Cell attachment, morphology viability, and proliferation | Human buccal fat pad-derived stem cells (hBFPSCs) | Enhanced ALP activity, osteogenic differentiation, and cell proliferation | Bone tissue engineering | Shafiei et al. (2019) [145] |
CDP-f-PU | Injectable hydrogel/Chemical cross-linking method | Moderate biodegradation | Phase contrast and CLSM/Cell viability, adhesion, migration, morphology, and vascularization pattern | MG-63 human osteoblasts | Better biocompatibility, osteoblast adhesion, proliferation, and differentiation | Bone tissue engineering | Gogoi et al. (2017) [148] |
CD-HAp-PU | Film/Chemical cross-linking method | Dose dependent thermal stability and Young’s modulus of 28.42 ± 0.35 MPa | Fluorescence microscopy/Cell morphology, viability, and proliferation | MG-63 human osteoblasts | Higher cytocompatibility, cell proliferation, and ALP activity | Bone tissue engineering | Gogoi et al. (2016) [116] |
Chitosan-CDs | Hydrogel/Solvent casting method | Higher pH sensitivity and Young’s modulus of 2.90 ± 0.15 GPa | Fluorescence microscopy/Cell viability and proliferation | L929 mouse fibroblasts | More antibacterial activity; better biocompatibility | Skin tissue regeneration | Omidi et al. (2017) [109] |
PLA-CQDs | Scaffold/3D Printing method | Long term photostability and pH flexible fluorescence | Two-photon & multi-photon microscopy/Cell-scaffold imaging | RL-14 human fetal ventricular cardiomyocyte cell | Excellent biocompatibility; deep cellular and scaffold imaging | Tissue engineering | Dehghani et al. (2018) [26] |
SA-Hb-CQDs | Injectable hydrogel/Phase separation | Contact angle of 42.5°, higher pH sensitivity, and excellent biodegradability | CLSM/Cell viability | NIH-3T3 fibroblasts | Enhanced biocompatibility and antibacterial activity | Skin tissue regeneration | Zhang et al. (2020) [149] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vedhanayagam, M.; Raja, I.S.; Molkenova, A.; Atabaev, T.S.; Sreeram, K.J.; Han, D.-W. Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications. Int. J. Mol. Sci. 2021, 22, 5378. https://doi.org/10.3390/ijms22105378
Vedhanayagam M, Raja IS, Molkenova A, Atabaev TS, Sreeram KJ, Han D-W. Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications. International Journal of Molecular Sciences. 2021; 22(10):5378. https://doi.org/10.3390/ijms22105378
Chicago/Turabian StyleVedhanayagam, Mohan, Iruthayapandi Selestin Raja, Anara Molkenova, Timur Sh. Atabaev, Kalarical Janardhanan Sreeram, and Dong-Wook Han. 2021. "Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications" International Journal of Molecular Sciences 22, no. 10: 5378. https://doi.org/10.3390/ijms22105378
APA StyleVedhanayagam, M., Raja, I. S., Molkenova, A., Atabaev, T. S., Sreeram, K. J., & Han, D. -W. (2021). Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications. International Journal of Molecular Sciences, 22(10), 5378. https://doi.org/10.3390/ijms22105378