Selective Inhibition of PDE4B Reduces Binge Drinking in Two C57BL/6 Substrains
Abstract
:1. Introduction
2. Results
2.1. Experiment 1: Dose–Response Analysis of A33 Effects on Alcohol Drinking under Multi-Bottle-Choice Procedures, Followed by Assessment of A33 Effects on Sucrose Consumption, Spontaneous and Alcohol-Induced Changes in Motor Function in Alcohol/A33-Experienced Mice
2.1.1. A33 Reduces Alcohol-Drinking under Multi-Bottle-Choice Procedures in Both C57BL/6NJ and B6J Mice
2.1.2. A33 Differentially Affects Sucrose Intake in Alcohol-Experienced B6NJ vs. B6J Mice
2.1.3. A33 Increases the Time Spent Stationary in A33/Alcohol-Experienced B6j Mice, But Does Not Alter Alcohol-Induced Locomotor Activity in Either Substrain
2.1.4. A33 Does Not Alter Baseline or Alcohol-Induced Reductions in Motor Coordination in A33/Alcohol-Experienced Mice
2.1.5. A33 Does Not Alter the Sedative–Hypnotic Effects of Alcohol in A33/Alcohol-Experienced Mice
2.2. Experiment 2: Examination of the Acute Effect of A33 on Motor Co-Ordination in Experimentally Naïve Mice, Followed by Assessment of the Effects of Repeated Treatment with A33 on Alcohol Consumption under Single-Bottle Procedures
2.2.1. Acute Pretreatment with A33 Does Not Alter Rotarod Performance in Experimentally Naïve Mice
2.2.2. Repeated Pretreatment with A33 Does Not Produce Tolerance to Its Ability to Reduce Binge Drinking
3. Discussion
3.1. Substrain Differences in Binge Drinking under DID Procedures and Effects of A33 Upon Alcohol Consumption
3.2. Substrain by Sex Interaction in the Off-Target Effect of A33 on Sucrose Consumption
3.3. A33 Pretreatment Effects on Behavioral Sensitivity of Alcohol
4. Materials and Methods
4.1. Subjects
4.2. Drugs
4.3. Experiment 1
4.3.1. Multi-Bottle Drinking-in-the-Dark (DID) Procedures and A33 Pretreatment during Drinking
4.3.2. Sucrose Intake in A33/Alcohol-Experienced Mice
4.3.3. A33 Effects Upon Basal and Alcohol-Induced Changes in Locomotor Activity, Intoxication and Sedation in A33/Alcohol-Experienced Mice
4.3.4. Statistical Analyses for Experiment 1
4.4. Experiment 2
4.4.1. A33 Effects Upon Basal Motor Co-Ordination and Alcohol Intoxication in Experimentally Naive Mice
4.4.2. Single-Bottle DID Procedures and A33 Pretreatment during Drinking
4.4.3. Statistical Analyses for Experiment 2
4.5. Blood Sampling and BEC Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behl, T.; Yadav, H.N.; Sharma, P.L. Alcoholic Neuropathy: Involvement of Multifaceted Signalling Mechanisms. Curr. Mol. Pharmacol. 2020, 14, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Elnagdy, M.; Barve, S.; McClain, C.; Gobejishvili, L. cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020, 10, 1433. [Google Scholar] [CrossRef]
- Logrip, M.L. Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol 2015, 49, 795–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.C. Neuronal signaling systems and ethanol dependence. Mol. Neurobiol. 1998, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wand, G. The anxious amygdala: CREB signaling and predisposition to anxiety and alcoholism. J. Clin. Investig. 2005, 115, 2697–2699. [Google Scholar] [CrossRef]
- Bender, A.T.; Beavo, J.A. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef]
- Conti, M.; Beavo, J. Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling. Annu. Rev. Biochem. 2007, 76, 481–511. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.M. William Harvey Research Conference on PDE inhibitors: Drugs with an expanding range of therapeutic uses. Expert Opin. Investig. Drugs 2000, 9, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Liebenberg, N.; Harvey, B.H.; Brand, L.; Brink, C.B. Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression. Behav. Pharmacol. 2010, 21, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-T.; Huang, Y.; Masood, A.; Stolinski, L.R.; Li, Y.; Zhang, L.; Dlaboga, D.; Jin, S.-L.C.; Conti, M.; O’Donnell, J.M. Anxiogenic-Like Behavioral Phenotype of Mice Deficient in Phosphodiesterase 4B (PDE4B). Neuropsychopharmacology 2007, 33, 1611–1623. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.M.; Gurney, M.E.; Dietrich, W.D.; Atkins, C.M. Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury. PLoS ONE 2017, 12, e0178013. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.M. Antidepressant-like effects of rolipram and other inhibitors of cyclic adenosine monophosphate phosphodiesterase on behavior maintained by differential reinforcement of low response rate. J. Pharmacol. Exp. Ther. 1993, 264, 1168–1178. [Google Scholar] [PubMed]
- O’Donnell, J.M.; Frith, S.A. Behavioral Effects of Family-Selective Inhibitors of Cyclic Nucleotide Phosphodiesterases. Pharmacol. Biochem. Behav. 1999, 63, 185–192. [Google Scholar] [CrossRef]
- Wang, Z.-Z.; Zhang, Y.; Zhang, H.-T.; Li, Y.-F. Phosphodiesterase: An Interface Connecting Cognitive Deficits to Neuropsychiatric and Neurodegenerative Diseases. Curr. Pharm. Des. 2014, 21, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Crissman, A.M.; Dorairaj, N.R.; Chandler, L.J.; O’Donnell, J.M. Inhibition of Cyclic AMP Phosphodiesterase (PDE4) Reverses Memory Deficits Associated with NMDA Receptor Antagonism. Neuropsychopharmacology 2000, 23, 198–204. [Google Scholar] [CrossRef]
- Fusco, F.; Giampa, C. Phosphodiesterases as Therapeutic Targets for Huntington’s Disease. Curr. Pharm. Des. 2014, 21, 365–377. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.-F.; Xu, Y.; Fu, H.-R.; Wang, X.-D.; Wang, L.; Chen, W.; Xu, X.-Y.; Gao, Y.-F.; Zhang, J.-G.; et al. The Phosphodiesterase-4 Inhibitor Roflumilast, a Potential Treatment for the Comorbidity of Memory Loss and Depression in Alzheimer’s Disease: A Preclinical Study in APP/PS1 Transgenic Mice. Int. J. Neuropsychopharmacol. 2020, 23, 700–711. [Google Scholar] [CrossRef]
- Ramirez, A.D.; Smith, S.M. Regulation of dopamine signaling in the striatum by phosphodiesterase inhibitors: Novel therapeutics to treat neurological and psychiatric disorders. Cent. Nerv. Syst. Agents Med. Chem. 2015, 14, 72–82. [Google Scholar] [CrossRef]
- Snyder, G.L.; Vanover, K.E. PDE Inhibitors for the Treatment of Schizophrenia. Adv. Neurobiol. 2017, 17, 385–409. [Google Scholar] [CrossRef]
- Janes, A.C.; Kantak, K.M.; Cherry, J.A. The involvement of type IV phosphodiesterases in cocaine-induced sensitization and subsequent pERK expression in the mouse nucleus accumbens. Psychopharmacology 2009, 206, 177–185. [Google Scholar] [CrossRef]
- Knapp, C.M.; Foye, M.M.; Ciraulo, D.A.; Kornetsky, C. The type IV phosphodiesterase inhibitors, Ro 20-1724 and rolipram, block the initiation of cocaine self-administration. Pharmacol. Biochem. Behav. 1999, 62, 151–158. [Google Scholar] [CrossRef]
- Snider, S.E.; Hendrick, E.S.; Beardsley, P.M. Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur. J. Pharmacol. 2013, 701, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Snider, S.E.; Vunck, S.A.; Oord, E.J.V.D.; Adkins, D.E.; McClay, J.L.; Beardsley, P.M. The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. Eur. J. Pharmacol. 2012, 679, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.E.; Sachs, B.D.; Kantak, K.M.; Cherry, J.A. The Type IV phosphodiesterase inhibitor rolipram interferes with drug-induced conditioned place preference but not immediate early gene induction in mice. Eur. J. Neurosci. 2004, 19, 2561–2568. [Google Scholar] [CrossRef] [PubMed]
- Blednov, Y.A.; Benavidez, J.M.; Eblack, M.; Eharris, R.A. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front. Neurosci. 2014, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Lu, T.; Chen, A.; Huang, Y.; Hansen, R.; Chandler, L.J.; Zhang, H.-T. Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology 2011, 218, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Wen, R.-T.; Zhang, M.; Qin, W.-J.; Liu, Q.; Wang, W.-P.; Lawrence, A.J.; Zhang, H.-T.; Liang, J.-H.; Qing, W.-J. The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring Fawn-Hooded rats. Alcohol. Clin. Exp. Res. 2012, 36, 2157–2167. [Google Scholar] [CrossRef] [Green Version]
- Ozburn, A.R.; Metten, P.; Potretzke, S.; Townsley, K.G.; Blednov, Y.A.; Crabbe, J.C. Effects of Pharmacologically Targeting Neuroimmune Pathways on Alcohol Drinking in Mice Selectively Bred to Drink to Intoxication. Alcohol. Clin. Exp. Res. 2019, 44, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Lopez, M.F.; Cui, C.; Egli, M.; Johnson, K.W.; Franklin, K.M.; Becker, H.C. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict. Biol. 2015, 20, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, L.A.; Bujarski, S.; Shoptaw, S.; Roche, D.J.; Heinzerling, K.; Miotto, K. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology 2017, 42, 1776–1788. [Google Scholar] [CrossRef] [Green Version]
- Burnette, E.M.; Baskerville, W.-A.; Grodin, E.N.; Ray, L.A. Ibudilast for alcohol use disorder: Study protocol for a phase II randomized clinical trial. Trials 2020, 21, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.R.; Tomiyama, A.J.; Ray, L.A. Does the Neuroimmune Modulator Ibudilast Alter Food Craving? Results in a Sample With Alcohol Use Disorder. J. Addict. Med. 2018, 12, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Deyoung, D.Z.; Heinzerling, K.G.; Swanson, A.-N.; Tsuang, J.; Furst, B.A.; Yi, Y.; Wu, Y.N.; Moody, D.E.; Andrenyak, D.M.; Shoptaw, S.J. Safety of Intravenous Methamphetamine Administration During Ibudilast Treatment. J. Clin. Psychopharmacol. 2016, 36, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinzerling, K.G.; Briones, M.; Thames, A.D.; Hinkin, C.H.; Zhu, T.; Wu, Y.N.; Shoptaw, S.J. Randomized, Placebo-Controlled Trial of Targeting Neuroinflammation with Ibudilast to Treat Methamphetamine Use Disorder. J. Neuroimmune Pharmacol. 2019, 15, 238–248. [Google Scholar] [CrossRef]
- Li, M.J.; Briones, M.S.; Heinzerling, K.G.; Kalmin, M.M.; Shoptaw, S.J. Ibudilast attenuates peripheral inflammatory effects of methamphetamine in patients with methamphetamine use disorder. Drug Alcohol Depend. 2020, 206, 107776. [Google Scholar] [CrossRef]
- Metz, V.E.; Jones, J.D.; Manubay, J.; Sullivan, M.A.; Mogali, S.; Segoshi, A.; Madera, G.; Johnson, K.W.; Comer, S.D. Effects of Ibudilast on the Subjective, Reinforcing, and Analgesic Effects of Oxycodone in Recently Detoxified Adults with Opioid Dependence. Neuropsychopharmacology 2017, 42, 1825–1832. [Google Scholar] [CrossRef]
- Worley, M.J.; Heinzerling, K.G.; Roche, D.J.; Shoptaw, S. Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug Alcohol Depend. 2016, 162, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Houslay, M.D.; Schafer, P.; Zhang, K.Y. Keynote review: Phosphodiesterase-4 as a therapeutic target. Drug Discov. Today 2005, 10, 1503–1519. [Google Scholar] [CrossRef]
- Mori, F.; Pérez-Torres, S.; De Caro, R.; Porzionato, A.; Macchi, V.; Beleta, J.; Gavaldà, A.; Palacios, J.; Mengod, G. The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J. Chem. Neuroanat. 2010, 40, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.A.; Davis, R.L. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J. Comp. Neurol. 1999, 407, 287–301. [Google Scholar] [CrossRef]
- Iona, S.; Cuomo, M.; Bushnik, T.; Naro, F.; Sette, C.; Hess, M.; Shelton, E.R.; Conti, M. Characterization of the Rolipram-Sensitive, Cyclic AMP-Specific Phosphodiesterases: Identification and Differential Expression of Immunologically Distinct Forms in the Rat Brain. Mol. Pharmacol. 1998, 53, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, R.T.; Conti, M.; Zhang, H.-T. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology 2014, 231, 2941–2954. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.P. Does phosphodiesterase 11A (PDE11A) hold promise as a future therapeutic target? Curr. Pharm. Des. 2015, 21, 389–416. [Google Scholar] [CrossRef] [PubMed]
- Siuciak, J.A.; McCarthy, S.A.; Chapin, D.S.; Martin, A.N. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology 2007, 197, 115–126. [Google Scholar] [CrossRef]
- Naganuma, K.; Omura, A.; Maekawara, N.; Saitoh, M.; Ohkawa, N.; Kubota, T.; Nagumo, H.; Kodama, T.; Takemura, M.; Ohtsuka, Y.; et al. Discovery of selective PDE4B inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 3174–3176. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Zhang, H.-T.; Gurney, M.E.; O’Donnell, J.M. Comparison of the Pharmacological Profiles of Selective PDE4B and PDE4D Inhibitors in the Central Nervous System. Sci. Rep. 2017, 7, 40115. [Google Scholar] [CrossRef] [Green Version]
- Fox, D., 3rd; Burgin, A.B.; Gurney, M.E. Structural basis for the design of selective phosphodiesterase 4b inhibitors. Cell Signal. 2014, 26, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Hagen, T.J.; Mo, X.; Burgin, A.B.; Fox, D., 3rd; Zhang, Z.; Gurney, M.E. Discovery of triazines as selective pde4b versus pde4d inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 4031–4034. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, A.; Savoie, C.; Stamatiou, P.B.; Lachance, N.; Jolicoeur, P.; Rasori, R.; Chan, C.C. Assessing the emetic potential of PDE4 inhibitors in rats. Br. J. Pharmacol. 2002, 135, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Burkovetskaya, M.E.; Liu, Q.; Vadukoot, A.K.; Gautam, N.; Alnouti, Y.; Kumar, S.; Miczek, K.; Buch, S.; Hopkins, C.R.; Guo, M. KVA-D-88, a Novel Preferable Phosphodiesterase 4B Inhibitor, Decreases Cocaine-Mediated Reward Propertiesin Vivo. ACS Chem. Neurosci. 2020, 11, 2231–2242. [Google Scholar] [CrossRef]
- Bryant, C.D.; Zhang, N.N.; Sokoloff, G.; Fanselow, M.S.; Ennes, H.S.; Palmer, A.A.; McRoberts, J.A. Behavioral Differences among C57BL/6 Substrains: Implications for Transgenic and Knockout Studies. J. Neurogenet. 2008, 22, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.D.; Bagdas, D.; Goldberg, L.R.; Khalefa, T.; Reed, E.R.; Kirkpatrick, S.L.; Kelliher, J.C.; Chen, M.M.; Johnson, W.E.; Mulligan, M.K.; et al. C57BL/6 substrain differences in inflammatory and neuropathic nociception and genetic mapping of a major quantitative trait locus underlying acute thermal nociception. Mol. Pain 2019, 15, 1744806918825046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, S.L.; Bryant, C.D. Behavioral architecture of opioid reward and aversion in C57BL/6 substrains. Front. Behav. Neurosci. 2015, 8, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Kim, K.; Joseph, C.; Kourrich, S.; Yoo, S.-H.; Huang, H.C.; Vitaterna, M.H.; De Villena, F.P.-M.; Churchill, G.; Bonci, A.; et al. C57BL/6N Mutation in Cytoplasmic FMRP interacting protein 2 Regulates Cocaine Response. Science 2013, 342, 1508–1512. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, N.; Takao, K.; Nakanishi, K.; Yamasaki, N.; Tanda, K.; Miyakawa, T. Behavioral profiles of three C57BL/6 substrains. Front. Behav. Neurosci. 2010, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, S.L.; Goldberg, L.R.; Yazdani, N.; Babbs, R.K.; Wu, J.; Reed, E.R.; Jenkins, D.F.; Bolgioni, A.F.; Landaverde, K.I.; Luttik, K.P.; et al. Cytoplasmic FMR1-Interacting Protein 2 Is a Major Genetic Factor Underlying Binge Eating. Biol. Psychiatry 2017, 81, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Warden, A.S.; Dacosta, A.; Mason, S.; Blednov, Y.A.; Mayfield, R.D.; Harris, R.A. Inbred Substrain Differences Influence Neuroimmune Response and Drinking Behavior. Alcohol. Clin. Exp. Res. 2020, 44, 1760–1768. [Google Scholar] [CrossRef]
- Yoshimoto, K.; Komura, S. Reexamination of the relationship between alcohol preference and brain monoamines in inbred strains of mice including senescence-accelerated mice. Pharmacol. Biochem. Behav. 1987, 27, 317–322. [Google Scholar] [CrossRef]
- Hartmann, M.C. Characterization of Ethanol-Related Phenotypic Differences between C57BL/6J and C57BL/6NJ Substrains: Role of Cyfip2? Available online: https://digitalcommons.library.umaine.edu/etd/2977/ (accessed on 12 February 2021).
- Blum, K.; Briggs, A.H.; DeLallo, L.; Elston, S.F.A.; Ochoa, R. Whole brain methionine-enkephalin of ethanol-avoiding and ethanol-preferring C57BL mice. Cell Mol. Life Sci. 1982, 38, 1469–1470. [Google Scholar] [CrossRef]
- Mulligan, M.K.; Ponomarev, I.; Boehm, S.L.; Owen, J.A.; Levin, P.S.; Berman, A.E.; Blednov, Y.A.; Crabbe, J.C.; Williams, R.W.; Miles, M.F.; et al. Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav. 2008, 7, 677–689. [Google Scholar] [CrossRef]
- Erickson, E.K.; Grantham, E.; Warden, A.S.; Harris, R. Neuroimmune signaling in alcohol use disorder. Pharmacol. Biochem. Behav. 2019, 177, 34–60. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.A.; Blednov, Y.A. Neuroimmune genes and alcohol drinking behavior. In Neural-Immune Interactions in Brain Function and Alcohol Related Disorders; Cui, C., Grandison, L., Noronha, A., Eds.; Springer: Boston, MA, USA, 2013; pp. 425–440. [Google Scholar]
- Mayfield, J.; Ferguson, L.; Harris, R.A. Neuroimmune signaling: A key component of alcohol abuse. Curr. Opin. Neurobiol. 2013, 23, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, A.; Ray, B.; Mahalakshmi, A.M.; Tuladhar, S.; Nandakumar, D.; Srinivasan, M.; Essa, M.M.; Chidambaram, S.B.; Guillemin, G.J.; Sakharkar, M.K. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol. Res. 2020, 160, 105078. [Google Scholar] [CrossRef] [PubMed]
- Schafer, P.; Parton, A.; Capone, L.; Cedzik, D.; Brady, H.; Evans, J.; Man, H.-W.; Muller, G.; Stirling, D.; Chopra, R. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal. 2014, 26, 2016–2029. [Google Scholar] [CrossRef] [Green Version]
- Blednov, Y.A.; Borghese, C.M.; Dugan, M.P.; Pradhan, S.; Thodati, T.M.; Kichili, N.R.; Harris, R.A.; Messing, R.O. Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling. Neuropharmacology 2020, 178, 108220. [Google Scholar] [CrossRef]
- Griebel, G.; Misslin, R.; Vogel, E.; Bourguignon, J.-J. Behavioral effects of rolipram and structurally related compounds in mice: Behavioral sedation of cAMP phosphodiesterase inhibitors. Pharmacol. Biochem. Behav. 1991, 39, 321–323. [Google Scholar] [CrossRef]
- Smith, D.F. Effects of Lithium and Rolipram Enantiomers on Locomotor Activity in Inbred Mice. Pharmacol. Toxicol. 1990, 66, 142–145. [Google Scholar] [CrossRef]
- Wachtel, H. Species differences in behavioural effects of rolipram and other adenosine cyclic 3h, 5h-monophosphate phosphodiesterase inhibitors. J. Neural Transm. 1983, 56, 139–152. [Google Scholar] [CrossRef]
- Baliño, P.; Ledesma, J.C.; Aragon, C.M. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis. Neuropharmacology 2016, 101, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Blednov, Y.A.; Da Costa, A.J.; Harris, R.A.; Messing, R.O. Apremilast Alters Behavioral Responses to Ethanol in Mice: II. Increased Sedation, Intoxication, and Reduced Acute Functional Tolerance. Alcohol. Clin. Exp. Res. 2018, 42, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Quadir, S.; Dos Santos, J.R.B.; Campbell, R.R.; Wroten, M.G.; Singh, N.; Holloway, J.J.; Bal, S.K.; Camarini, R.; Szumlinski, K.K. Homer2 regulates alcohol and stress cross-sensitization. Addict. Biol. 2015, 21, 613–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fultz, E.K.; Coelho, M.A.; Lieberman, D.; Jimenez-Chavez, C.L.; Bryant, C.D.; Szumlinski, K.K. Hnrnph1 is a novel regulator of alcohol reward. Drug Alcohol Depend. 2021, 220, 108518. [Google Scholar] [CrossRef] [PubMed]
- Cozzoli, D.K.; Courson, J.; Wroten, M.G.; Greentree, D.I.; Lum, E.N.; Campbell, R.R.; Thompson, A.B.; Maliniak, D.; Worley, P.F.; Jonquieres, G.; et al. Binge Alcohol Drinking by Mice Requires Intact Group1 Metabotropic Glutamate Receptor Signaling Within the Central Nucleus of the Amygdale. Neuropsychopharmacology 2013, 39, 435–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, J.S.; Ford, M.M.; Yu, C.H.; Brown, L.L.; Finn, D.A.; Garland, T., Jr.; Crabbe, J.C. Mouse inbred strain differences in ethanol drinking to intoxication. Genes Brain Behav. 2007, 6, 1–18. [Google Scholar] [CrossRef]
- Chavez, C.J.; Coelho, M.; Brewin, L.; Swauncy, I.; Tran, T.; Albanese, T.; Laguna, A.; Gabriela, I.; Szumlinski, K. Incubation of Negative Affect during Protracted Alcohol Withdrawal Is Age-, but Not Sex-Selective. Brain Sci. 2020, 10, 405. [Google Scholar] [CrossRef]
- Lee, K.; Coelho, M.; Sern, K.; Szumlinski, K. Homer2 within the central nucleus of the amygdala modulates withdrawal-induced anxiety in a mouse model of binge-drinking. Neuropharmacology 2018, 128, 448–459. [Google Scholar] [CrossRef]
- Sern, K.R.; Fultz, E.K.; Coelho, M.A.; Bryant, C.D.; Szumlinski, K.K. A prior history of binge-drinking increases sensitivity to the motivational valence of methamphetamine in female C57BL/6J mice. Subst. Abus. Res. Treat. 2020, 14, 1178221819897073. [Google Scholar] [CrossRef] [Green Version]
- Thiele, T.E.; Navarro, M. “Drinking in the dark” (DID) procedures: A model of binge-like ethanol drinking in non-dependent mice. Alcohol 2014, 48, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute on Alcohol Abuse and Alcoholism (NIAAA). NIAAA Council Approves Definition of Binge Drinking; NIAAA Newsletter: Rockville, MD, USA, 2004. [Google Scholar]
- Keane, T.M.; Goodstadt, L.; Danecek, P.; White, M.A.; Wong, K.; Yalcin, B.; Heger, A.; Agam, A.; Slater, G.; Goodson, M.; et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nat. Cell Biol. 2011, 477, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, B.; Wong, K.; Agam, A.; Goodson, M.; Keane, T.M.; Gan, X.; Nellåker, C.; Goodstadt, L.; Nicod, J.; Bhomra, A.; et al. Sequence-based characterization of structural variation in the mouse genome. Nat. Cell Biol. 2011, 477, 326–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovland, D.N.; Cantor, R.M.; Lee, G.S.; Machado, A.F.; Collins, M.D. Identification of a Murine Locus Conveying Susceptibility to Cadmium-Induced Forelimb Malformations. Genomics 2000, 63, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, R.J.; Ray, G.; Bienvenu, L.A.; Rose, R.A.; Howlett, S.E. Sex differences in SR Ca2+ release in murine ventricular myocytes are regulated by the cAMP/PKA pathway. J. Mol. Cell. Cardiol. 2014, 75, 162–173. [Google Scholar] [CrossRef]
- Johansson, E.M.; Sanabra, C.; Mengod, G. Sex-related differences of cAMP-specific PDE4B3 mRNA in oligodendrocytes following systemic inflammation. Glia 2012, 60, 1815–1825. [Google Scholar] [CrossRef] [Green Version]
- Titus, D.J.; Wilson, N.M.; Freund, J.E.; Carballosa, M.M.; Sikah, K.E.; Furones, C.; Dietrich, W.D.; Gurney, M.E.; Atkins, C.M. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor. J. Neurosci. 2016, 36, 7095–7108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzoli, D.K.; Goulding, S.P.; Zhang, P.W.; Xiao, B.; Hu, J.-H.; Ary, A.W.; Obara, I.; Rahn, A.; Abou-Ziab, H.; Tyrrel, B.; et al. Binge Drinking Upregulates Accumbens mGluR5-Homer2-PI3K Signaling: Functional Implications for Alcoholism. J. Neurosci. 2009, 29, 8655–8668. [Google Scholar] [CrossRef] [Green Version]
- Cozzoli, D.K.; Courson, J.; Caruana, A.L.; Miller, B.W.; Greentree, D.I.; Thompson, A.B.; Wroten, M.G.; Zhang, P.-W.; Xiao, B.; Hu, J.-H.; et al. Nucleus Accumbens mGluR5-Associated Signaling Regulates Binge Alcohol Drinking Under Drinking-in-the-Dark Procedures. Alcohol. Clin. Exp. Res. 2012, 36, 1623–1633. [Google Scholar] [CrossRef]
- Lee, K.M.; Coelho, M.A.; Class, M.A.; Sern, K.R.; Bocz, M.D.; Szumlinski, K.K. mGlu5 Receptor Blockade Within the Nucleus Accumbens Shell Reduces Behavioral Indices of Alcohol Withdrawal-Induced Anxiety in Mice. Front. Pharmacol. 2018, 9, 1306. [Google Scholar] [CrossRef] [Green Version]
- Cozzoli, D.K.; Courson, J.; Rostock, C.; Campbell, R.R.; Wroten, M.G.; McGregor, H.; Caruana, A.L.; Miller, B.W.; Hu, J.-H.; Zhang, P.W.; et al. Protein Kinase C Epsilon Activity in the Nucleus Accumbens and Central Nucleus of the Amygdala Mediates Binge Alcohol Consumption. Biol. Psychiatry 2016, 79, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Quadir, S.G.; Guzelian, E.; Palmer, M.A.; Martin, D.L.; Kim, J.; Szumlinski, K.K. Complex interactions between the subject factors of biological sex and prior histories of binge-drinking and unpredictable stress influence behavioral sensitivity to alcohol and alcohol intake. Physiol. Behav. 2019, 203, 100–112. [Google Scholar] [CrossRef]
- Campbell, R.R.; Domingo, R.D.; Williams, A.R.; Wroten, M.G.; McGregor, H.A.; Waltermire, R.S.; Greentree, D.I.; Goulding, S.P.; Thompson, A.B.; Lee, K.M.; et al. Increased Alcohol-Drinking Induced by Manipulations of mGlu5 Phosphorylation within the Bed Nucleus of the Stria Terminalis. J. Neurosci. 2019, 39, 2745–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinhas, A.; Aviel, M.; Koen, M.; Gurgov, S.; Acosta, V.; Israel, M.; Kakuriev, L.; Guskova, E.; Fuzailov, I.; Touzani, K.; et al. Strain differences in sucrose- and fructose-conditioned flavor preferences in mice. Physiol. Behav. 2012, 105, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez Chavez, C.L.; Bryant, C.D.; Munn-Chernoff, M.A.; Szumlinski, K.K. Selective Inhibition of PDE4B Reduces Binge Drinking in Two C57BL/6 Substrains. Int. J. Mol. Sci. 2021, 22, 5443. https://doi.org/10.3390/ijms22115443
Jimenez Chavez CL, Bryant CD, Munn-Chernoff MA, Szumlinski KK. Selective Inhibition of PDE4B Reduces Binge Drinking in Two C57BL/6 Substrains. International Journal of Molecular Sciences. 2021; 22(11):5443. https://doi.org/10.3390/ijms22115443
Chicago/Turabian StyleJimenez Chavez, C. Leonardo, Camron D. Bryant, Melissa A. Munn-Chernoff, and Karen K. Szumlinski. 2021. "Selective Inhibition of PDE4B Reduces Binge Drinking in Two C57BL/6 Substrains" International Journal of Molecular Sciences 22, no. 11: 5443. https://doi.org/10.3390/ijms22115443
APA StyleJimenez Chavez, C. L., Bryant, C. D., Munn-Chernoff, M. A., & Szumlinski, K. K. (2021). Selective Inhibition of PDE4B Reduces Binge Drinking in Two C57BL/6 Substrains. International Journal of Molecular Sciences, 22(11), 5443. https://doi.org/10.3390/ijms22115443