Extinction vs. Abstinence: A Review of the Molecular and Circuit Consequences of Different Post-Cocaine Experiences
Abstract
:1. Introduction
2. Neurocircuitry Mediating Cocaine Relapse
3. Molecular Alterations Produced by Post-Cocaine Abstinence Regimens
4. Differences in Relapse Attenuation by Pharmacological Strategies Following Different Post-Cocaine Regimens
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Venniro, M.; Zhang, M.; Shaham, Y.; Caprioli, D. Incubation of methamphetamine but not heroin craving after voluntary abstinence in male and female rats. Neuropsychopharmacology 2017, 42, 1126–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickens, C.L.; Airavaara, M.; Theberge, F.; Fanous, S.; Hope, B.T.; Shaham, Y. Neurobiology of the incubation of drug craving. Trends Neurosci. 2011, 34, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawa, A.B.; Valenta, A.C.; Kennedy, R.T.; Robinson, T.E. Incentive and dopamine sensitization produced by intermittent but not long access cocaine self-administration. Eur. J. Neurosci. 2019, 50, 2663–2682. [Google Scholar] [CrossRef]
- Carr, C.C.; Ferrario, C.R.; Robinson, T.E. Intermittent access cocaine self-administration produces psychomotor sensitization: Effects of withdrawal, sex and cross-sensitization. Psychopharmacology 2020, 237, 1795–1812. [Google Scholar] [CrossRef] [PubMed]
- Stennett, B.A.; Padovan-Hernandez, Y.; Knackstedt, L.A. Sequential cocaine-alcohol self-administration produces adaptations in rat nucleus accumbens core glutamate homeostasis that are distinct from those produced by cocaine self-administration alone. Neuropsychopharmacology 2020, 45, 441–450. [Google Scholar] [CrossRef]
- Stennett, B.A.; Knackstedt, L.A. A Rat Model of Cocaine-Alcohol Polysubstance Use Reveals Altered Cocaine Seeking and Glutamate Levels in the Nucleus Accumbens. Front. Neurosci. 2020, 14, 877. [Google Scholar] [CrossRef] [PubMed]
- Calipari, E.S.; Ferris, M.J.; Zimmer, B.A.; Roberts, D.C.S.; Jones, S.R. Temporal pattern of cocaine intake determines tolerance vs. sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 2013, 38, 2385–2392. [Google Scholar] [CrossRef] [PubMed]
- Kawa, A.B.; Bentzley, B.S.; Robinson, T.E. Less is more: Prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology 2016, 233, 3587–3602. [Google Scholar] [CrossRef]
- Liu, Y.; Williamson, V.; Setlow, B.; Cottler, L.B.; Knackstedt, L.A. The importance of considering polysubstance use: Lessons from cocaine research. Drug Alcohol Depend. 2018, 192, 16–28. [Google Scholar] [CrossRef]
- McLaughlin, J.; See, R.E. Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 2003, 168, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, R.A.; Evans, K.A.; Parker, M.C.; See, R.E. Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 2004, 176, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, R.A.; Branham, R.K.; See, R.E. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: A critical role for the dorsolateral caudate-putamen. J. Neurosci. 2006, 26, 3584–3588. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.A.; Evans, K.A.; Ledford, C.C.; Parker, M.P.; Case, J.M.; Mehta, R.H.; See, R.E. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 2005, 30, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Rebec, G.V. Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. J. Neurosci. 2003, 23, 10258–10264. [Google Scholar] [CrossRef] [Green Version]
- Koya, E.; Uejima, J.L.; Wihbey, K.A.; Bossert, J.M.; Hope, B.T.; Shaham, Y. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 2009, 56, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Szumlinski, K.K.; Wroten, M.G.; Miller, B.W.; Sacramento, A.D.; Cohen, M.; Ben-Shahar, O.; Kippin, T.E. Cocaine self-administration elevates GluN2B within dmPFC mediating heightened cue-elicited operant responding. J. Drug Abuse 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Augur, I.F.; Wyckoff, A.R.; Aston-Jones, G.; Kalivas, P.W.; Peters, J. Chemogenetic activation of an extinction neural circuit reduces cue-induced reinstatement of cocaine seeking. J. Neurosci. 2016, 36, 10174–10180. [Google Scholar] [CrossRef] [Green Version]
- Müller Ewald, V.A.; De Corte, B.J.; Gupta, S.C.; Lillis, K.V.; Narayanan, N.S.; Wemmie, J.A.; LaLumiere, R.T. Attenuation of cocaine seeking in rats via enhancement of infralimbic cortical activity using stable step-function opsins. Psychopharmacology 2019, 236, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.M.; Murugan, M.; Choi, J.Y.; Engel, E.A.; Witten, I.B. Increased cocaine motivation is associated with degraded spatial and temporal representations in IL-NAc Neurons. Neuron 2019, 103, 80–91.e7. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Lee, B.R.; Wang, X.; Guo, C.; Liu, L.; Cui, R.; Lan, Y.; Balcita-Pedicino, J.J.; Wolf, M.E.; Sesack, S.R.; et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 2014, 83, 1453–1467. [Google Scholar] [CrossRef] [Green Version]
- McGlinchey, E.M.; James, M.H.; Mahler, S.V.; Pantazis, C.; Aston-Jones, G. Prelimbic to accumbens core pathway is recruited in a dopamine-dependent manner to drive cued reinstatement of cocaine seeking. J. Neurosci. 2016, 36, 8700–8711. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; LaLumiere, R.T.; Kalivas, P.W. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J. Neurosci. 2008, 28, 6046–6053. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.A.; Ramirez, D.R.; Bell, G.H. Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology 2008, 200, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Conrad, K.L.; Tseng, K.Y.; Uejima, J.L.; Reimers, J.M.; Heng, L.-J.; Shaham, Y.; Marinelli, M.; Wolf, M.E. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008, 454, 118–121. [Google Scholar] [CrossRef]
- See, R.E.; Elliott, J.C.; Feltenstein, M.W. The role of dorsal vs. ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology 2007, 194, 321–331. [Google Scholar] [CrossRef]
- Knackstedt, L.A.; Trantham-Davidson, H.L.; Schwendt, M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning. Addict. Biol. 2014, 19, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacchioni, A.M.; Gabriele, A.; See, R.E. Dorsal striatum mediation of cocaine-seeking after withdrawal from short or long daily access cocaine self-administration in rats. Behav. Brain Res. 2011, 218, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantak, K.M.; Black, Y.; Valencia, E.; Green-Jordan, K.; Eichenbaum, H.B. Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J. Neurosci. 2002, 22, 1126–1136. [Google Scholar] [CrossRef]
- Pelloux, Y.; Minier-Toribio, A.; Hoots, J.K.; Bossert, J.M.; Shaham, Y. Opposite Effects of basolateral amygdala inactivation on context-induced relapse to cocaine seeking after extinction versus punishment. J. Neurosci. 2018, 38, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Lasseter, H.C.; Xie, X.; Ramirez, D.R.; Fuchs, R.A. Sub-region specific contribution of the ventral hippocampus to drug context-induced reinstatement of cocaine-seeking behavior in rats. Neuroscience 2010, 171, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Mahler, S.V.; Smith, R.J.; Aston-Jones, G. Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 2013, 226, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, R.; Dalley, J.W.; Howes, S.R.; Robbins, T.W.; Everitt, B.J. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci. 2000, 20, 7489–7495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guercio, L.A.; Schmidt, H.D.; Pierce, R.C. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats. Behav. Brain Res. 2015, 281, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Gabriele, A.; See, R.E. Lesions and reversible inactivation of the dorsolateral caudate-putamen impair cocaine-primed reinstatement to cocaine-seeking in rats. Brain Res. 2011, 1417, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriele, A.; Pacchioni, A.M.; See, R.E. Dopamine and glutamate release in the dorsolateral caudate putamen following withdrawal from cocaine self-administration in rats. Pharmacol. Biochem. Behav. 2012, 103, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Ito, R.; Dalley, J.W.; Robbins, T.W.; Everitt, B.J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 2002, 22, 6247–6253. [Google Scholar] [CrossRef] [Green Version]
- Vanderschuren, L.J.M.J.; Di Ciano, P.; Everitt, B.J. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci. 2005, 25, 8665–8670. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.A.; Eaddy, J.L.; Su, Z.-I.; Bell, G.H. Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats. Eur. J. Neurosci. 2007, 26, 487–498. [Google Scholar] [CrossRef]
- Mahler, S.V.; Vazey, E.M.; Beckley, J.T.; Keistler, C.R.; McGlinchey, E.M.; Kaufling, J.; Wilson, S.P.; Deisseroth, K.; Woodward, J.J.; Aston-Jones, G. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat. Neurosci. 2014, 17, 577–585. [Google Scholar] [CrossRef]
- Johnson, A.R.; Thibeault, K.C.; Lopez, A.J.; Peck, E.G.; Sands, L.P.; Sanders, C.M.; Kutlu, M.G.; Calipari, E.S. Cues play a critical role in estrous cycle-dependent enhancement of cocaine reinforcement. Neuropsychopharmacology 2019, 44, 1189–1197. [Google Scholar] [CrossRef]
- Kilts, C.D.; Gross, R.E.; Ely, T.D.; Drexler, K.P.G. The neural correlates of cue-induced craving in cocaine-dependent women. Am. J. Psychiatry 2004, 161, 233–241. [Google Scholar] [CrossRef]
- Lee, B.R.; Ma, Y.-Y.; Huang, Y.H.; Wang, X.; Otaka, M.; Ishikawa, M.; Neumann, P.A.; Graziane, N.M.; Brown, T.E.; Suska, A.; et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat. Neurosci. 2013, 16, 1644–1651. [Google Scholar] [CrossRef] [Green Version]
- Luís, C.; Cannella, N.; Spanagel, R.; Köhr, G. Persistent strengthening of the prefrontal cortex - nucleus accumbens pathway during incubation of cocaine-seeking behavior. Neurobiol. Learn. Mem. 2017, 138, 281–290. [Google Scholar] [CrossRef]
- Farrell, M.R.; Ruiz, C.M.; Castillo, E.; Faget, L.; Khanbijian, C.; Liu, S.; Schoch, H.; Rojas, G.; Huerta, M.Y.; Hnasko, T.S.; et al. Ventral pallidum is essential for cocaine relapse after voluntary abstinence in rats. Neuropsychopharmacology 2019, 44, 2174–2185. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.W.; Scofield, M.D.; Heinsbroek, J.A.; Gipson, C.D.; Neuhofer, D.; Roberts-Wolfe, D.J.; Spencer, S.; Garcia-Keller, C.; Stankeviciute, N.M.; Smith, R.J.; et al. Accumbens nNOS Interneurons Regulate Cocaine Relapse. J. Neurosci. 2017, 37, 742–756. [Google Scholar] [CrossRef] [PubMed]
- LaCrosse, A.L.; Hill, K.; Knackstedt, L.A. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression. Eur. Neuropsychopharmacol. 2016, 26, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechard, A.R.; Logan, C.N.; Mesa, J.; Padovan-Hernandez, Y.; Blount, H.; Hodges, V.L.; Knackstedt, L.A. Role of prefrontal cortex projections to the nucleus accumbens core in mediating the effects of ceftriaxone on cue-induced cocaine seeking. Addict. Biol. 2020, 26, e12928. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Moussawi, K.; Knackstedt, L.; Shen, H.; Kalivas, P.W. Role of mGluR5 neurotransmission in reinstated cocaine-seeking. Addict. Biol. 2013, 18, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keith, D.; El-Husseini, A. Excitation Control: Balancing PSD-95 Function at the Synapse. Front. Mol. Neurosci. 2008, 1, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dosemeci, A.; Makusky, A.J.; Jankowska-Stephens, E.; Yang, X.; Slotta, D.J.; Markey, S.P. Composition of the synaptic PSD-95 complex. Mol. Cell. Proteom. 2007, 6, 1749–1760. [Google Scholar] [CrossRef] [Green Version]
- Andrásfalvy, B.K.; Magee, J.C. Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones. J. Physiol. 2004, 559, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Hopf, C.; Reddy, R.; Cho, R.W.; Guo, L.; Lanahan, A.; Petralia, R.S.; Wenthold, R.J.; O’Brien, R.J.; Worley, P. Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 2003, 39, 513–528. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi-Yamaguchi, Y.; Furuichi, T. The Homer family proteins. Genome Biol. 2007, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- LaCrosse, A.L.; O’Donovan, S.M.; Sepulveda-Orengo, M.T.; McCullumsmith, R.E.; Reissner, K.J.; Schwendt, M.; Knackstedt, L.A. Contrasting the Role of xCT and GLT-1 Upregulation in the Ability of Ceftriaxone to Attenuate the Cue-Induced Reinstatement of Cocaine Seeking and Normalize AMPA Receptor Subunit Expression. J. Neurosci. 2017, 37, 5809–5821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrario, C.R.; Loweth, J.A.; Milovanovic, M.; Ford, K.A.; Galiñanes, G.L.; Heng, L.-J.; Tseng, K.Y.; Wolf, M.E. Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca2+-permeable AMPA receptors during the incubation of cocaine craving. Neuropharmacology 2011, 61, 1141–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knackstedt, L.A.; Moussawi, K.; Lalumiere, R.; Schwendt, M.; Klugmann, M.; Kalivas, P.W. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J. Neurosci. 2010, 30, 7984–7992. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.E. The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci. 2010, 33, 391–398. [Google Scholar] [CrossRef] [Green Version]
- White, S.L.; Ortinski, P.I.; Friedman, S.H.; Zhang, L.; Neve, R.L.; Kalb, R.G.; Schmidt, H.D.; Pierce, R.C. A critical role for the glua1 accessory protein, SAP97, in cocaine seeking. Neuropsychopharmacology 2016, 41, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Purgianto, A.; Scheyer, A.; A Loweth, J.; A Ford, K.; Tseng, K.Y.; E Wolf, M. Different adaptations in AMPA receptor transmission in the nucleus accumbens after short vs long access cocaine self-administration regimens. Neuropsychopharmacology 2013, 38, 1789–1797. [Google Scholar] [CrossRef] [Green Version]
- Loweth, J.A.; Scheyer, A.; Milovanovic, M.; Lacrosse, A.L.; Flores-Barrera, E.; Werner, C.T.; Li, X.; Ford, K.A.; Le, T.; Olive, F.; et al. Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat. Neurosci. 2014, 17, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Smaga, I.; Wydra, K.; Frankowska, M.; Fumagalli, F.; Sanak, M.; Filip, M. Cocaine Self-Administration and Abstinence Modulate NMDA Receptor Subunits and Active Zone Proteins in the Rat Nucleus Accumbens. Molecules 2020, 25, 3480. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.B.; Vasudevan, P.; Mueller, C.R.; Seubert, C.; Mantsch, J.R. Region-specific alterations in glutamate receptor expression and subcellular distribution following extinction of cocaine self-administration. Brain Res. 2009, 1267, 89–102. [Google Scholar] [CrossRef]
- Pomierny-Chamiolo, L.; Miszkiel, J.; Frankowska, M.; Pomierny, B.; Niedzielska, E.; Smaga, I.; Fumagalli, F.; Filip, M. Withdrawal from cocaine self-administration and yoked cocaine delivery dysregulates glutamatergic mGlu5 and NMDA receptors in the rat brain. Neurotox. Res. 2015, 27, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Hemby, S.E.; Tang, W.; Muly, E.C.; Kuhar, M.J.; Howell, L.; Mash, D.C. Cocaine-induced alterations in nucleus accumbens ionotropic glutamate receptor subunits in human and non-human primates. J. Neurochem. 2005, 95, 1785–1793. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.B.; Vasudevan, P.; Mueller, C.; Seubert, C.; Mantsch, J.R. Neuroadaptations in the cellular and postsynaptic group 1 metabotropic glutamate receptor mGluR5 and Homer proteins following extinction of cocaine self-administration. Neurosci. Lett. 2009, 452, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Bechard, A.R.; Hamor, P.U.; Schwendt, M.; Knackstedt, L.A. The effects of ceftriaxone on cue-primed reinstatement of cocaine-seeking in male and female rats: Estrous cycle effects on behavior and protein expression in the nucleus accumbens. Psychopharmacology 2018, 235, 837–848. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shahar, O.; Obara, I.; Ary, A.W.; Ma, N.; Mangiardi, M.A.; Medina, R.L.; Szumlinski, K.K. Extended daily access to cocaine results in distinct alterations in Homer 1b/c and NMDA receptor subunit expression within the medial prefrontal cortex. Synapse 2009, 63, 598–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugeto, Ø.; Ullensvang, K.; Levy, L.M.; Chaudhry, F.A.; Honoré, T.; Nielsen, M.; Lehre, K.P.; Danbolt, N.C. Brain glutamate transporter proteins form homomultimers. J. Biol. Chem. 1996, 271, 27715–27722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.A.; Xi, Z.-X.; Shen, H.; Swanson, C.J.; Kalivas, P.W. The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 2002, 22, 9134–9141. [Google Scholar] [CrossRef] [Green Version]
- Knackstedt, L.A.; Melendez, R.I.; Kalivas, P.W. Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol. Psychiatry 2010, 67, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwendt, M.; Shallcross, J.; Hadad, N.A.; Namba, M.D.; Hiller, H.; Wu, L.; Krause, E.G.; Knackstedt, L.A. A novel rat model of comorbid PTSD and addiction reveals intersections between stress susceptibility and enhanced cocaine seeking with a role for mGlu5 receptors. Transl. Psychiatry 2018, 8, 209. [Google Scholar] [CrossRef] [PubMed]
- Reissner, K.J.; Gipson, C.D.; Tran, P.K.; Knackstedt, L.A.; Scofield, M.D.; Kalivas, P.W. Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict. Biol. 2015, 20, 316–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer-Smith, K.D.; Houston, A.C.W.; Rebec, G.V. Differential effects of cocaine access and withdrawal on glutamate type 1 transporter expression in rat nucleus accumbens core and shell. Neuroscience 2012, 210, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Lutgen, V.; Kong, L.; Kau, K.S.; Madayag, A.; Mantsch, J.R.; Baker, D.A. Time course of cocaine-induced behavioral and neurochemical plasticity. Addict. Biol. 2014, 19, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.A.; McFarland, K.; Lake, R.W.; Shen, H.; Tang, X.-C.; Toda, S.; Kalivas, P.W. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat. Neurosci. 2003, 6, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Martinez, D.; Slifstein, M.; Nabulsi, N.; Grassetti, A.; Urban, N.B.L.; Perez, A.; Liu, F.; Lin, S.-F.; Ropchan, J.; Mao, X.; et al. Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [(11)C]ABP688 and magnetic resonance spectroscopy. Biol. Psychiatry 2014, 75, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Milella, M.S.; Marengo, L.; Larcher, K.; Fotros, A.; Dagher, A.; Rosa-Neto, P.; Benkelfat, C.; Leyton, M. Limbic system mGluR5 availability in cocaine dependent subjects: A high-resolution PET [(11)C]ABP688 study. Neuroimage 2014, 98, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Logan, C.N.; Bechard, A.R.; Hamor, P.U.; Wu, L.; Schwendt, M.; Knackstedt, L.A. Ceftriaxone and mGlu2/3 interactions in the nucleus accumbens core affect the reinstatement of cocaine-seeking in male and female rats. Psychopharmacology 2020, 237, 2007–2018. [Google Scholar] [CrossRef]
- Knackstedt, L.A.; Schwendt, M. mGlu5 Receptors and Relapse to Cocaine-Seeking: The Role of Receptor Trafficking in Postrelapse Extinction Learning Deficits. Neural Plast. 2016, 2016, 9312508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trantham-Davidson, H.; LaLumiere, R.T.; Reissner, K.J.; Kalivas, P.W.; Knackstedt, L.A. Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J. Neurosci. 2012, 32, 12406–12410. [Google Scholar] [CrossRef] [PubMed]
- Reichel, C.M.; Moussawi, K.; Do, P.H.; Kalivas, P.W.; See, R.E. Chronic N-acetylcysteine during abstinence or extinction after cocaine self-administration produces enduring reductions in drug seeking. J. Pharmacol. Exp. Ther. 2011, 337, 487–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prisciandaro, J.J.; Myrick, H.; Henderson, S.; McRae-Clark, A.L.; Santa Ana, E.J.; Saladin, M.E.; Brady, K.T. Impact of DCS-facilitated cue exposure therapy on brain activation to cocaine cues in cocaine dependence. Drug Alcohol Depend. 2013, 132, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Santa Ana, E.J.; Prisciandaro, J.J.; Saladin, M.E.; McRae-Clark, A.L.; Shaftman, S.R.; Nietert, P.J.; Brady, K.T. D-cycloserine combined with cue exposure therapy fails to attenuate subjective and physiological craving in cocaine dependence. Am. J. Addict. 2015, 24, 217–224. [Google Scholar] [CrossRef]
- Torregrossa, M.M.; Sanchez, H.; Taylor, J.R. D-cycloserine reduces the context specificity of pavlovian extinction of cocaine cues through actions in the nucleus accumbens. J. Neurosci. 2010, 30, 10526–10533. [Google Scholar] [CrossRef]
- Gobin, C.; Schwendt, M. The cognitive cost of reducing relapse to cocaine-seeking with mGlu5 allosteric modulators. Psychopharmacology 2019, 237, 115–125. [Google Scholar] [CrossRef]
- Parvaz, M.A.; Moeller, S.J.; d’Oleire Uquillas, F.; Pflumm, A.; Maloney, T.; Alia-Klein, N.; Goldstein, R.Z. Prefrontal gray matter volume recovery in treatment-seeking cocaine-addicted individuals: A longitudinal study. Addict. Biol. 2017, 22, 1391–1401. [Google Scholar] [CrossRef]
- He, Q.; Huang, X.; Turel, O.; Schulte, M.; Huang, D.; Thames, A.; Bechara, A.; Hser, Y.-I. Presumed structural and functional neural recovery after long-term abstinence from cocaine in male military veterans. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Garavan, H.; Pankiewicz, J.; Bloom, A.; Cho, J.K.; Sperry, L.; Ross, T.J.; Salmeron, B.J.; Risinger, R.; Kelley, D.; Stein, E.A. Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli. Am. J. Psychiatry 2000, 157, 1789. [Google Scholar] [CrossRef] [Green Version]
- LaRowe, S.D.; Myrick, H.; Hedden, S.; Mardikian, P.; Saladin, M.; McRae, A.; Brady, K.; Kalivas, P.W.; Malcolm, R. Is cocaine desire reduced by N-acetylcysteine? Am. J. Psychiatry 2007, 164, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- LaRowe, S.D.; Kalivas, P.W.; Nicholas, J.S.; Randall, P.K.; Mardikian, P.N.; Malcolm, R.J. A double-blind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am. J. Addict. 2013, 22, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.E.; Everitt, B.J.; Belin, D. N-Acetylcysteine reduces early- and late-stage cocaine seeking without affecting cocaine taking in rats. Addict. Biol. 2012, 17, 437–440. [Google Scholar] [CrossRef] [PubMed]
- De Pirro, S.; Galati, G.; Pizzamiglio, L.; Badiani, A. The Affective and Neural Correlates of Heroin versus Cocaine Use in Addiction Are Influenced by Environmental Setting But in Opposite Directions. J. Neurosci. 2018, 38, 5182–5195. [Google Scholar] [CrossRef] [PubMed]
Brain Region | Extinction | Abstinence | ||
---|---|---|---|---|
Cue-Primed Reinstatement | Context-Primed Reinstatement | Cue + Context-Primed Relapse | Context-Primed Relapse | |
dmPFC | ↓ [10] | ↓ [13] | ↔ [15] | ↔ [12] |
↓ * [16] | ||||
vmPFC | ↔ [10] | ↔ [13] | ↓ [15] | |
↓ by stimulation [17,18] | ↑ [22] | ↔ [17,18] | ||
NA core | ↓ [11] | ↓ [23] | ↓ * [24] | ↔ [25] |
↓ * [26] | ||||
NA shell | ↔ [11] | ↓ [23] | ↔ [25] | |
d.STR | ↓ [12] | ↓ [12] | ↓ [12,25,27] | |
↓ * [26] | ||||
BLA | ↓ [10,28] | ↓ [13,29] | ↔ [12] | |
dHipp | ↔ [13] | ↓ [13] | ||
vHipp | ↓ [14] | ↓ [30] | ||
VTA | ↓ * [31] | ↓ [25] |
Protein | Extinction (vs. Drug-Naïve Control) | Abstinence (vs. Drug-Naïve Control) | ||||
---|---|---|---|---|---|---|
Change | Fraction | Citation(s) | Change | Fraction | Citation(s) | |
GluA1 | ↔ | H | [62] | ↔ | H | [62] |
↔ | S1 | [54] | ↑ | S1 | [24] | |
↔, ↑ | LP1 | [56,62] | ↔ | LP1 | [56,62] | |
↑ | Surface | [54] | ↑ | Surface | [24,55,59] | |
GluA2 | ↔ | S1 | [54] | ↔ | S1 | [24] |
↔ | LP1 | [56] | ↔ | LP1 | [55,56] | |
↔ | Surface | [54] | ↔ | Surface | [24,55,59] | |
GluN1 | ↔ (6 h IVSA) | H | [62] | ↔ | H | [62] |
↑ (2 h IVSA) | [61] | |||||
↑ | S1 | [63] | ||||
↔ | LP1 | [62] | ↔ | LP1 | [62] | |
mGlu1 | ↓ | S1 | [60] | |||
↔ | LP1 | [56] | ↔ | LP1 | [56] | |
↓ | Surface | [60] | ||||
mGlu5 | ↔ | H | [65] | ↔ | H | |
↔, ↓ (in females) | S1 | [56,66] | ↔, ↔, ↓ | S1 | [56,60,67] | |
↑, ↔ | LP1 | [56,65] | ↔, ↑ | LP1 | [56,65] | |
↓ | Surface | [56] | ↔, ↓ (only at 48 d) | Surface | [56,60] | |
mGlu2 | ↓ | S1 | [78] | |||
↓ | Surface | [78] | ||||
xCT | ↓ | S1 | [54,66,71] | |||
↓ | P2 | [70] | ||||
GLT-1 | ↓ | S1 | [54,66,71] | ↓ | S1 | [73] |
↓ | P2 | [70,72] | ||||
↓ | Surface | [5] | ||||
PSD-95 | ↑ | LP1 | [56] | ↔ | LP1 | [56] |
Narp | ↑ | LP1 | [56] | ↔ | LP1 | [56] |
Homer 1b/c | ↔ | H | [65] | ↔ | H | [65] |
↔ | S1 | [63] | ↔ | S1 | [60,67] | |
↑, ↔ | LP1 | [65] | ↔ | LP1 | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwendt, M.; Knackstedt, L.A. Extinction vs. Abstinence: A Review of the Molecular and Circuit Consequences of Different Post-Cocaine Experiences. Int. J. Mol. Sci. 2021, 22, 6113. https://doi.org/10.3390/ijms22116113
Schwendt M, Knackstedt LA. Extinction vs. Abstinence: A Review of the Molecular and Circuit Consequences of Different Post-Cocaine Experiences. International Journal of Molecular Sciences. 2021; 22(11):6113. https://doi.org/10.3390/ijms22116113
Chicago/Turabian StyleSchwendt, Marek, and Lori A. Knackstedt. 2021. "Extinction vs. Abstinence: A Review of the Molecular and Circuit Consequences of Different Post-Cocaine Experiences" International Journal of Molecular Sciences 22, no. 11: 6113. https://doi.org/10.3390/ijms22116113
APA StyleSchwendt, M., & Knackstedt, L. A. (2021). Extinction vs. Abstinence: A Review of the Molecular and Circuit Consequences of Different Post-Cocaine Experiences. International Journal of Molecular Sciences, 22(11), 6113. https://doi.org/10.3390/ijms22116113