Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell
Abstract
:1. Introduction
2. Results
2.1. Experiment 1: Effects of AIE Treatment on the Neurochemical Response to EtOH within the Mesolimbic Dopamine System
2.2. Taqman Array Assessment of DA and Acetylcholine Receptors in the AcbSh Following AIE Treatment
2.3. Effects of AIE Treatment on Dendritic Spine Morphology in the AcbSh
2.4. Effects of Administration of Trichostatin on AIE-Induced Enhancement of EtOH Microinjected into the Posterior VTA on Dopamine and Glutamate Levels in the AcbSh
2.5. Effects of Administration of Trichostatin a on AIE-Induced Enhancement of EtOH Reward in the Posterior VTA
3. Discussion
4. Methods
4.1. Subjects
4.2. Adolescent Intermittent EtOH (AIE) Protocol
4.3. Microinjection-Microdialysis Protocol
4.4. Intracranial Self-Administration (ICSA) Apparatus
4.5. ICSA Procedure
4.6. Effects of AIE Treatment on the Neurochemical Response to EtOH within the Mesolimbic Dopamine System
4.7. Taqman Array Assessment of DA and Acetylcholine Receptors in the AcbSh Following AIE Treatment
4.8. Effects of AIE Treatment on Dendritic Spine Morphology in the AcbSh
4.9. Effects of Administration of Trichostatin a on AIE-Induced Enhancement of EtOH Microinjected into the Posterior VTA on Dopamine and Glutamate Levels in the AcbSh
4.10. Effects of Administration of Trichostatin a on AIE-Induced Enhancement of EtOH Reward in the Posterior VTA
4.11. Histologies
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Substance Abuse and Mental Health Services Administration (SAMHSA). 2018 National Survey on Drug Use and Health. Table 7.16A—Alcohol Use in Lifetime, Past Year, and Past Month among Persons Aged 12 to 20, by Gender: Numbers in Thousands, 2002–2018; SAMSA: Rockville, MD, USA, 2018. [Google Scholar]
- Patrick, M.E.; Terry-McElrath, Y.M.; Miech, R.A.; Schulenberg, J.E.; O’Malley, P.M.; Johnston, L.D. Age-specific prevalence of binge and high-intensity drinking among US young adults: Changes from 2005 to 2015. Alcohol Clin. Exp. Res. 2017, 41, 1319–1328. [Google Scholar] [CrossRef]
- Jager, J.; Keyes, K.M.; Schulenberg, J.E. Historical variation in young adult binge drinking trajectories and its link to historical variations in social roles and minimum legal drinking age. Dev. Psych. 2015, 51, 962–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick, M.E.; Terry-McElrath, Y.M. High-intensity drinking by underage young adults in the United States. Addictions 2016, 112, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Terry-McElrath, Y.M.; Patrick, M.E. Intoxication and binge and high-intensity drinking among US young adults in their mid-twenties. Subst. Abus. 2016, I37, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechsler, H.; Lee, J.E.; Kuo, M.; Lee, H. College binge drinking in the 1990s: A continuing problem results of the Harvard School of Public Health 1999 college alcohol study. J. Am. Coll. Health 2000, 48, 199–210. [Google Scholar] [CrossRef]
- Hingson, R.W.; Heeren, T.; Edwards, E.M. Age at drinking onset, alcohol dependence, and their relation to drug use and dependence, driving under the influence of drugs and motor-vehicle crash involvement because of drugs. J. Stud. Alcohol Drugs 2008, 69, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.P.; Pickering, R.P. Early onset of drinking as a risk factor for lifetime alcohol-related problems. Br. J. Addict. 1992, 87, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.A.; Goldstein, R.B.; Chou, S.P.; Ruan, W.J.; Grant, B.F. Age at first drink and the first indicence of adult-onset DSM-IV alcohol use disorder. Alcohol Clin. Exp. Res. 2008, 32, 2149–2160. [Google Scholar] [CrossRef] [PubMed]
- Vetreno, R.P.; Broadwater, M.; Liu, W.; Spear, L.P.; Crews, F.T. Adolescent, butnot adult, binge ethanol exposure leads to per-sistent global reductions of choline acetyltransferase expression neurons in brain. PLoS ONE 2014, 18, e113421. [Google Scholar]
- Giedd, J.N. Structural magnetic resonance imaging of the adolescent brain. Ann. N. Y. Acad. Sci. 2004, 1021, 77–85. [Google Scholar] [CrossRef]
- Hauser, S.R.; Knight, C.P.; Truitt, W.A.; Waeiss, R.A.; Holt, I.S.; Caravajal, G.B.; Bell, R.L.; Rodd, Z.A. Adolescent intermittent ethanol (AIE) increases the sensitivity to the reinforcing properties of ethanol and the expression of select cholinergic and dopaminergic genes within the posterior ventral tegmental area. Alcohol Clin. Exp. Res. 2019, 43, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Spear, L.P.; Swartzwelder, H.S. Adolescent alcohol exposure and persistence of adolescent-typical phenotypes into adulthood: A mini-review. Neurosci. Biobehav. Rev. 2014, 45, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulholland, P.J.; Teppen, T.L.; Miller, K.M.; Seton, H.G.; Pandey, S.C.; Swartwelder, H.S. Donepezil reverses dendritic spine morphology adaptations and Fmr1 epigenetic modifications in hippocampus of adult rats after adolescent alcohol exposure. Alcohol Clin. Exp. Res. 2018, 42, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Vetreno, R.P.; Bohnsack, J.P.; Kusumo, H.; Liu, W.; Pandey, S.C.; Crews, F.T. Neuroimmune and epigenetic involvement in ad-olescent binge ethanol-induced loss of basal forebrain cholinergic neurons: Restoration with voluntary exercise. Addict. Biol. 2019, 25, e12731. [Google Scholar]
- Peters, K.; Oleson, E.B.; Cheer, J.F. A brain on cannabinoids: The role of dopamine release in reward seeking and addiction. Cold Spring Harb. Perspect. Med. 2010, 11, a039305. [Google Scholar] [CrossRef]
- Cortés, M.R.; Grace, A. Adaptations in reward-related behaviors and mesolimbic dopamine function during motherhood and the postpartum period. Front. Neuroendocr. 2020, 57, 100839. [Google Scholar] [CrossRef]
- Sahr, A.E.; Thielen, R.J.; Lumeng, L.; Li, T.-K.; McBride, W.J. Long-lasting alterations of the mesolimbic dopamine system after periadolescent ethanol drinking by alcohol-preferring rats. Alcohol Clin. Exp. Res. 2004, 28, 702–711. [Google Scholar] [CrossRef]
- Badanich, K.A.; Maldonado, A.M.; Kierstein, C.L. Chronic ethanol exposure during adolescence increases basal dopamine in the nucleus accumbens septi during adulthood. Alcohol Clin. Exp. Res. 2007, 31, 895–900. [Google Scholar] [CrossRef]
- Pascual, M.; Blanco, A.M.; Cauli, O.; Minarro, J.; Guerri, C. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioral alterations in adolescent rats. Eur. J. Neurosci. 2007, 25, 541–550. [Google Scholar] [CrossRef]
- Pascual, M.; Boix, J.; Fellip, V.; Guerri, C. Repeated administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J. Neurochem. 2009, 108, 920–931. [Google Scholar] [CrossRef]
- Toalston, J.E.; Deehan, G.A., Jr.; Hauser, S.R.; Engleman, E.A.; Bell, R.L.; Murphy, J.M.; Truitt, W.A.; McBride, W.J.; Rodd, Z.A. Rein-forcing properties and neurochemical response of ethanol within the posterior ventral tegmental area are enhanced in adult-hood by periadolescent ethanol consumption. J. Pharmacol. Exp. Ther. 2014, 351, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasrallah, N.A.; Clark, J.J.; Collins, A.L.; Akers, C.A.; Phillips, P.E.; Bernstein, I.L. Long-term reisk preference and suboptimal decision making following adolescent alcohol use. Proc. Natl. Acad. Sci. USA 2011, 106, 17600–17604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodd-Henricks, Z.A.; Bell, R.L.; Kuc, K.A.; Murphy, J.M.; McBride, W.J.; Lumeng, L.; Li, T.-K. Effects of ethanol exposure on subsequent acquisition and extinction of ethanol self-administration and expression of alcohol-seeking behavior in adult alcohol-preferring (P) rats: I. Periadolescent exposure. Alcohol Clin. Exp. Res. 2002, 26, 1632–1641. [Google Scholar] [CrossRef] [PubMed]
- Rodd-Henricks, Z.A.; Bell, R.L.; Kuc, K.A.; Murphy, J.M.; McBride, W.J.; Lumeng, L.; Li, T.-K. Effects of ethanol exposure on subsequent acquisition and extinction of ethanol self-administration and expression of alcohol-seeking behavior in adult alcohol-preferring (P) rats: II. Adult exposure. Alcohol. Clin. Exp. Res. 2002, 26. [Google Scholar] [CrossRef]
- Toalston, J.E.; Deehan, G.A., Jr.; Hauser, S.R.; Engleman, E.A.; Bell, R.L.; Murphy, J.M.; McBride, W.J.; Rodd, Z.A. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats. Alcohol 2015, 49, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varlinskaya, E.; Hosová, D.; Towner, T.; Werner, D.F.; Spear, L.P. Effects of chronic intermittent ethanol exposure during early and late adolescence on anxiety-like behaviors and behavioral flexibility in adulthood. Behav. Brain Res. 2020, 378, 112292. [Google Scholar] [CrossRef] [PubMed]
- Dannenhoffer, C.A.; Kim, E.U.; Saalfield, J.; Werner, D.F.; Varlinskaya, E.; Spear, L.P. Oxytocin and vasopressin modulation of social anxiety following adolescent intermittent ethanol exposure. Psychopharmacology 2018, 235, 3065–3077. [Google Scholar] [CrossRef]
- Maldonado-Devincci, A.M.; Makdisi, J.G.; Hill, A.M.; Waters, R.C.; Hall, N.I.; Shobande, M.J.; Kumari, A. Adolescent intermittent ethanol exposure induces sex-dependent divergent changes in ethanol drinking and motor activity in adulthood in C57BL/6J mice. J. Neurosci. Res. 2021. [Google Scholar] [CrossRef]
- Przybysz, K.R.; Gamble, M.E.; Diaz, M.R. Moderate adolescent chronic intermittent ethanol exposure sex-dependently disrupts synaptic transmission and kappa opioid receptor function in the basolateral amygdala of adult rats. Neuropharmacology 2021, 188, 108512. [Google Scholar] [CrossRef]
- Rodd, Z.A.; Hauser, S.R.; Swartzwelder, H.S.; Waeiss, R.A.; Lahiri, D.K.; Bell, R.L. Regulation of the deleterious effects of binge-like exposure to alcohol during adolescence by α7 nicotinic acetylcholine receptor agents: Prevention by pretreatment with a α7 negative allosteric modulator and emulation by a α7 agonist in alcohol-preferring (P) male and female rats [published online ahead of print, 2020 Jun 30]. Psychopharmacology 2020, 237, 2601–2611. [Google Scholar]
- Hagstrom, H.; Andreasson, A. Is teenage heavy drinking more hazardous than we thought. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 603–605. [Google Scholar] [CrossRef]
- Enstad, F.; Evans-Whipp, T.; Kjeldsen, A.; Toumbourou, J.W.; von Soest, T. Predicting hazardous drinking in later adoles-cence/young adulthood from early and excessive adolescent drinking–A longitudinal cross-national study of Norwegian and Australian adolescents. BMC Public Health 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Boutros, N.; Der-Avakian, A.; Kesby, J.P.; Lee, S.; Markou, A.; Semenova, S. Effects of adolescent alcohol exposure on stress-induced reward deficits, brain CRF, monoamines and glutamate in adult rats. Psychopharmacology 2018, 235, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Vetreno, R.P.; Crews, F.T. Adolescent binge ethanol-induced loss of basal forebrain cholinergic neurons and neuroimmune activation are prevented by exercise andindomethacin. PLoS ONE 2018, 13, e0204500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenk, G.L.; O’Leary, M.; Nemerogg, C.B.; Bissette, G.; Moser, H.; Naidu, S. Neurochemical alterations in Rett syndrome. Brain Res. Dev. Brain Res. 1993, 74, 67–72. [Google Scholar] [CrossRef]
- Waeiss, R.A.; Knight, C.P.; Carvajal, G.B.; Engleman, E.A.; McBride, W.J.; Hauser, S.R.; Rodd, Z. A, Peri-adolescent alcohol con-sumption increases sensitivity and dopaminergic response to nicotine during adulthood in female alcohol-preferring (P) rats: Alterations to α7 nicotinic acetylcholine receptor expression. Behav. Brain Res. 2019, 376, 112190. [Google Scholar] [CrossRef] [PubMed]
- Waeiss, R.A.; Knight, C.P.; Engleman, E.A.; Hauser, S.R.; Rodd, Z.A. Co-administration of ethanol and nicotine heightens sen-sitivity to ethanol reward within the nucleus accumbens (NAc) shell and increasing NAc shell BDNF is sufficient to enhance ethanol reward in naïve Wistar rats. J. Neurochem. 2020, 152, 556–569. [Google Scholar] [CrossRef]
- Barrie, E.S.; Hartmann, K.; Lee, S.H.; Frater, J.T.; Seweryn, M.; Wang, D.; Sadee, W. The CHRNA5/CHRNA3/CHRNB4 Nicotinic Receptor Regulome: Genomic Archi-tecture, Regulatory Variants, and Clinical Associations. Hum. Mutat. 2017, 38, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Mansvelder, H.D.; De Rover, M.; McGehee, D.; Brussard, S. Cholinergic modulation of dopamine reward areas: Upstream and downstream targets of nicotine addiction. Eur. J. Pharm. 2003, 480, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Kabbani, N.; Nichols, R.A. Beyond the channel: Metabotropic signaling by nicotinic receptors. Trends Pharmacol. Sci. 2018, 39, 354–366. [Google Scholar] [CrossRef]
- Mansvelder, H.D.; McGehee, D.S. Long-term potentiation of excitatory inputs to brain rewards areas by nicotine. Neurons 2000, 27, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Hansen, H.H.; Timmermann, D.B.; Peters, D.; Walters, C.; Damaj, M.I.; Mikkelsen, J.D. Alpha-7 nicotinic acetylcholine receptor agonists selectively activate limbic regions of the rat forebrain: An effect similar to antipsychotics. J. Neurosci. Res. 2007, 85, 1810–1818. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Hay-Schmidt, A.; Hansen, H.H.; Mikkelsen, J.D. Distinct neural pathways mediate α7 nicotinic acetylcholine receptor–dependent activation of the forebrain. Cereb. Cortex 2010, 20, 2092–2102. [Google Scholar] [CrossRef] [Green Version]
- Solinas, M.; Scherma, M.; Fattore, L.; Stroik, J.; Wertheim, C.; Tanda, G.; Fratta, W.; Goldberg, S.R. Nicotinic 7 receptors as a new target for treatment of cannabis abuse. J. Neurosci. 2007, 27, 5615–5620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, J.C.; Petronis, K.R. Early-onset drug use and risk of later drug problems. Drug Alcohol Depend. 1995, 40, 9–15. [Google Scholar] [CrossRef]
- Bobo, J.K.; Husten, C. Sociocultural influences on smoking and drinking. Alcohol Res. Health J. Natl. Inst. Alcohol Abus. Alcohol. 2000, 24, 225–232. [Google Scholar]
- Corley, R.P.; Zeiger, J.S.; Crowley, T.; Ehringer, M.A.; Hewitt, J.K.; Hopfer, C.J.; Lessem, J.; McQueen, M.B.; Rhee, S.H.; Smolen, A.; et al. Association of candidate genes with antisocial drug dependence in adolescents. Drug Alcohol Depend. 2008, 96, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Rodd, Z.A.; Kimpel, M.W.; Edenberg, H.J.; Bell, R.L.; Strother, W.N.; McClintick, J.N.; Carr, L.G.; Liang, T.; McBride, W.J. Differential gene expression in the nucleus accumbens with ethanol self-administration in inbred alcohol-preferring rats. Pharmacol. Biochem. Behav. 2008, 89, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Rodd, Z.A.; Bertsch, B.A.; Strother, W.N.; Le-Niculescu, H.; Balaraman, Y.; Hayden, E.; E Jerome, R.; Lumeng, L.; Nurnberger, J.I.; Edenberg, H.; et al. Candidate genes, pathways and mechanisms for alcoholism: An expanded convergent functional genomics approach. Pharm. J. 2006, 7, 222–256. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, Y.; Li, G.P.; Yang, D.; Yue, Y.; Wang, L.; Yu, H. Trichostatin A improved epigenetic modifications of transfected cells but did not improve subsequent cloned embryo development. Anim. Biotechnol. 2008, 19, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Polgar, Z.; Liu, J.; Dinnyes, A. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells. 2009, 11, 203–208. [Google Scholar] [CrossRef]
- Shen, Y.; Ha, W.; Zeng, W.; Queen, D.; Liu, L. Exome sequencing identifies novel mutation signatures of UV radiation and trichostatin A in primary human keratinocytes. Sci. Rep. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Pandey, S.C.; Sakharkar, A.J.; Tang, L.; Zhang, H. Potential role of adolescent alcohol exposure-induced amygdaloid histone modifications in anxiety and alcohol intake during adulthood. Neurobiol. Dis. 2015, 82, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Sakharkar, A.J.; Vetreno, R.P.; Zhang, H.; Kokare, D.M.; Crews, F.; Pandey, S.C. A role for histone acetylation mechanisms in adolescent alcohol exposure-induced deficits in hippocampal brain-derived neurotrophic factor expression and neurogenesis markers in adulthood. Brain Struct. Funct. 2016, 221, 4691–4703. [Google Scholar] [CrossRef] [Green Version]
- Olaharski, A.J.; Ji, Z.; Woo, J.Y.; Lim, S.; Hubbard, A.E.; Zhang, L.; Smith, M.T. The histone deacetylase inhibitor trichostatin a has genotoxic effects in human lym-phoblasts in vitro. Toxicol. Sci. 2006, 93, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Crews, F.T.; Robinson, D.L.; Chandler, L.J.; Ehlers, C.L.; Mulholland, P.J.; Pandey, S.C.; Rodd, Z.A.; Spear, L.P.; Swartzwelder, H.S.; Vetreno, R.P. (Mechanisms of persistent neurobiological changes following adolescent alcohol exposure: NADIA Consortium findings. Alcohol Clin. Exp. Res. 2019, 43, 1806–1822. [Google Scholar] [CrossRef] [Green Version]
- Brodie, M.S.; Pesold, C.; Appel, S.B. Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin. Exp. Res. 1992, 23, 1848–1852. [Google Scholar] [CrossRef]
- You, C.; Vandegrift, B.; Brodie, M.S. Ethanol actions on the ventral tegmental area: Novel potential targets on reward pathway neurons. Psychopharmacology 2018, 235, 1711–1726. [Google Scholar] [CrossRef] [Green Version]
- You, C.; Savarese, A.; Vandegrift, B.J.; He, D.; Pandey, S.C.; Lasek, A.W.; Brodie, M.S. Ethanol acts on KCNK13 potassium channels in the ventral tegmental area to increase firing rate and modulate binge–like drinking. Neuropharmacology 2019, 144, 29–36. [Google Scholar] [CrossRef]
- Doyon, W.M.; Thomas, A.M.; Ostroumov, A.; Dong, Y.; Dani, J.A. Potential substrates for nicotine and alcohol interactions: A focus on the mesocorticolimbic dopamine system. Biochem. Pharmacol. 2013, 86, 1181–1193. [Google Scholar] [CrossRef] [Green Version]
- Crews, F.T.; Fisher, R.; Deason, C.; Vetreno, R.P. Loss of basal forebrain cholinergic neurons following adolescent binge ethanol exposure: Recovery with the cholinesterase inhibitor galantamine. Front. Behav. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Takada-Takatori, Y.; Kume, T.; Ohgi, Y.; Fugii, T.; Niidome, T.; Sugimoto, H.; Akaike., A. Mechanisms of alpha7-nicotinic receptor up-regulation and sensitization to donepezil induced by chronic donepezil induced by chronic donepezil treatment. Eur. J. Pharmacol. 2008, 590, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Kisialiou, A.; Moroni, R.; Prinzi., G.; Fini, M. Effect of genetic polymorphisms (SNPs) in CHRNA7 gene on response to acetylcholinesterase inhibitors (AChEI) in patients with Alzheimer’s disease. Curr. Drug Targets 2017, 18, 1179–1190. [Google Scholar] [CrossRef]
- Deehan, G.A.; Hauser, S.R.; Getachew, B.; Waeiss, R.A.; Engleman, E.A.; Knight, C.P.; McBride, W.J.; Truitt, W.A.; Bell, R.L.; Rodd, Z.A. Selective breeding for high alcohol consumption and response to nicotine: Locomotor activity, dopaminergic in the mesolimbic system, and innate genetic differences in male and female alcohol-preferring, non-preferring, and replicated lines of high-alcohol drinking and low-alcohol drinking rats. Psychopharmacology 2018, 235, 2755–2769. [Google Scholar]
- Abreu-Villaça, Y.; Cavina, C.C.; Ribeiro-Carvalho, A.; Correa-Santos, M.; Naiff, V.F.; Filgueiras, C.C.; Manhães, A.C. Combined exposure to tobacco smoke and ethanol during adolescence leads to short- and long-term modulation of anxiety-like behavior. Drug Alcohol Depend. 2013, 133, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu-Villaça, Y.; de Carvalho Graça, A.C.; Ribeiro-Carvalho, A.; Naiff, V.F.; Manhães, A.C.; Filgueiras, C.C. Combined Ex-posure to Tobacco Smoke and Ethanol in Adolescent Mice Elicits Memory and Learning Deficits Both During Exposure and Withdrawal. Nicotine Tob. Res. 2013, 15, 1211–1221. [Google Scholar] [CrossRef]
- Ding, Z.-M.; Rodd, Z.A.; Engleman, E.A.; McBride, W.J. Sensitization of Ventral Tegmental Area Dopamine Neurons to the Stimulating Effects of Ethanol. Alcohol. Clin. Exp. Res. 2009, 33, 1571–1581. [Google Scholar] [CrossRef] [Green Version]
- Engleman, E.A.; Keen, E.J.; Tilford, S.S.; Thielen, R.J.; Morzorati, E.L. Ethanol drinking reduces extracellular dopamine levels in the posterior ventral tegmental area of nondependent alcohol-preferring rats. Alcohol 2011, 45, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Rodd, Z.A.; Bell, R.L.; Zhang, Y.; Murphy, J.M.; Goldstein, A.; Zaffaroni, A.; Li, T.K.; McBride, W.J. Regional heterogeneity for the intracranial self-adminstration of ethanol and acetaldehyde within the ventral tegmental area of alcohol-preferring (P) rats: Involvement of dopamine and serotonin. Neuropsychopharmacology 2005, 30, 330–338. [Google Scholar] [CrossRef]
- Rodd, Z.A.; Bell, R.L.; Melendez, R.I.; Kuc, K.A.; Lumeng, L.; Li, T.-K.; Murphy, J.M.; McBride, W.J. Comparison of intracranial self-administration of ethanol within the posterior ventral tegmental area between alcohol-preferring and Wistar rats. Alcohol Clin. Exp. Res. 2004, 28, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Rodd-Henricks, Z.A.; McKinzie, D.L.; Crile, R.S.; Murphy, J.M.; McBride, W.J. Regional heterogeneity for the intracranial self-administration of ethanol within the ventral tegmental area of female Wistar rats. Psychopharmacology 2000, 149, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Truitt, W.A.; Hauser, S.R.; Deehan, G.A., Jr.; Toalston, J.E.; Wilden, J.A.; Bell, R.L.; McBride, W.J.; Rodd, Z.A. Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: Evidence of synergy and differential gene activation in the nucleus accumbens shell. Psychopharmacology 2015, 232, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, I.W.; Wonnacott, S. Precise localization of α7 nicotinic acetylcholine receptors on glutamatergic axons terminals in the rat ventral tegmental area. J. Neurosci. 2004, 24, 11244–11252. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.B.; Yakel, J.L. The 5-HT3 receptor channel. Ann. Rev. Physiol. 1995, 57, 447–468. [Google Scholar] [CrossRef] [PubMed]
- Breitinger, H.-G.A.; Geetha, N.; Hess, G.P. Inhibition of the serotonin 5-HT3 receptor by nicotine, cocaine and fluoxetine investigated by rapid chemical kinetic techniques. Biochemistry 2001, 40, 8419–8429. [Google Scholar] [CrossRef]
- Gurley, D.A.; Lanthorn, T.H. Nicotinic agonists competitively antagonize serotonin at mouse 5-HT3 receptors expressed in Xenopus oocytes. Neurosci. Lett. 1998, 247, 107–110. [Google Scholar] [CrossRef]
- Morales, M.; Margolis, E.B. Ventral tegmental area: Cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 2017, 18, 73–85. [Google Scholar] [CrossRef]
- Keppel, G.; Zedeck, S. Data Analysis for Research Designs: Analysis of Variance and Multiple Regression/Correlation AP-Proaches; Freeman and Company: New York, NY, USA, 1986. [Google Scholar]
- Rodgers, R.S. Type I errors and their decision basis. BJ Math. Stat. Psych. 1967, 20, 51–62. [Google Scholar] [CrossRef]
- Roberts, M. Simple, powerful statistics: An instantiation of a better ‘mousetrap’. J. Methods Meas. Social. Sci. 2011, 2, 63–79. [Google Scholar] [CrossRef]
Gene | CON-Male | SEM | AIE-Male | SEM | CON-Fem | SEM | AIE-Fem | SEM |
---|---|---|---|---|---|---|---|---|
Ache | −5.20 × 10−18 | 0.01 | −0.06581 | 0.02 | 0.02172742 | 0.02 | 0.008743 | 0.02 |
Chrm1 | −6.01 × 10−17 | 0.02 | −0.27312 | 0.02 | −0.23705888 | 0.01 | −0.0676 | 0.03 |
Chrm2 | −2.24 × 10−16 | 0.1 | 0.171 | 0.036 | 0.2933 | 0.041 | 0.0701 | 0.012 |
Chrm3 | −3.93 × 10−17 | 0.045 | 0.1637 | 0.034 | 0.1069 | 0.056 | 0.019 | 0.037 |
Chrm4 | −1.69 × 10−16 | 0.04 | −0.06339 | 0.03 | −0.06055621 | 0.03 | −0.056317 | 0.02 |
Chrm5 | −3.72 × 10−17 | 0.0213 | −0.29 | 0.056 | 0.0736 | 0.021 | −0.2103 | 0.0568 |
Chrna2 | −1.67 × 10−16 | 0.021 | 0.7713 | 0.214 | −0.9008 | 0.32 | −0.1875 | 0.016 |
Chrna3 | −1.98 × 10−16 | 0.05 | −0.01599 | 0.02 | 0.03186998 | 0.02 | −0.102369 | 0.04 |
Chrna4 | −9.02 × 10−17 | 0.04 | −0.08848 | 0.01 | 0.03209411 | 0.03 | −0.028314 | 0.01 |
Chrna5 | −3.72 × 10−17 | 0.03 | −0.28998 | 0.02 | 0.07362836 | 0.02 | −0.110304 | 0.02 |
Chrna6 | −3.24 × 10−17 | 0.03 | 0.000396 | 0.03 | 0.04061805 | 0.03 | −0.093764 | 0.03 |
Chrna7 | 1.71 × 10−16 | 0.0234 | 0.1797 | 0.0362 | 0.0199 | 0.012 | 0.1959 | 0.025 |
Chrnb1 | 0 | 0.01 | −0.05674 | 0.03 | 0.0560767 | 0.01 | −0.036859 | 0.02 |
Chrnb2 | −6.19 × 10−17 | 0.02 | −0.0506 | 0.02 | 0.02185517 | 0.02 | 0.0028137 | 0.03 |
Chrnb3 | 0 | 0.02 | −0.06387 | 0.01 | 0.04405689 | 0.03 | −0.066709 | 0.02 |
Chrnb4 | −6.01 × 10−17 | 0.0125 | 0.2696 | 0.043 | 0.016 | 0.0102 | 0.2243 | 0.0214 |
Comt | −9.77 × 10−17 | 0.03 | −0.08802 | 0.03 | −0.06186377 | 0.02 | −0.064171 | 0.05 |
Ddc | 0 | 0.02 | −0.01335 | 0.02 | 0.04915982 | 0.03 | −0.07346 | 0.02 |
Drd1 | −1.07 × 10−16 | 0.03 | −0.2645 | 0.053 | −0.1017 | 0.032 | 0.2235 | 0.074 |
Drd2 | 0 | 0.02 | −0.08844 | 0.03 | 0.00745837 | 0.04 | −0.095716 | 0.03 |
Drd3 | −1.01 × 10−16 | 0.0216 | −0.5226 | 0.116 | 0.0341 | 0.012 | 0.0596 | 0.021 |
Drd5 | −1.01 × 10−16 | 0.03 | −0.02727 | 0.01 | 0.00479843 | 0.02 | 0.0753891 | 0.04 |
Htr3a | 5.09 × 10−17 | 0.021 | −0.1575 | 0.042 | −7.61 × 10−03 | 0.0134 | 0.0354 | 0.0125 |
Impact | 4.02 × 10−17 | 0.03 | 0.1457 | 0.0265 | 0.0264 | 0.0113 | 0.1827 | 0.0341 |
Maob | 3.47 × 10−17 | 0.01 | 0.063724 | 0.02 | −5.38 × 10−05 | 0.03 | 0.0202155 | 0.02 |
Oprm1 | −1.25 × 10−16 | 0.02 | 0.043333 | 0.01 | 0.06459679 | 0.01 | 0.0560767 | 0.03 |
Slc22a3 | 9.25 × 10−17 | 0.0164 | 0.15 | 0.037 | −0.0926 | 0.024 | −1.88E−03 | 0.032 |
Slc5a7 | −2.59 × 10−16 | 0.01 | −0.00635 | 0.03 | −0.1726617 | 0.04 | 0.0745436 | 0.03 |
Slc6a3 | 1.50 × 10−17 | 0.02 | 0.053151 | 0.01 | 0.02481664 | 0.03 | −0.126964 | 0.02 |
Tbp | −9.25 × 10−18 | 0.02 | 0.02016 | 0.02 | −0.05185733 | 0.02 | −0.043138 | 0.04 |
Th | 2.31 × 10−17 | 0.01 | −0.01825 | 0.01 | 0.00307981 | 0.02 | −0.116577 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauser, S.R.; Mulholland, P.J.; Truitt, W.A.; Waeiss, R.A.; Engleman, E.A.; Bell, R.L.; Rodd, Z.A. Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell. Int. J. Mol. Sci. 2021, 22, 11733. https://doi.org/10.3390/ijms222111733
Hauser SR, Mulholland PJ, Truitt WA, Waeiss RA, Engleman EA, Bell RL, Rodd ZA. Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell. International Journal of Molecular Sciences. 2021; 22(21):11733. https://doi.org/10.3390/ijms222111733
Chicago/Turabian StyleHauser, Sheketha R., Patrick J. Mulholland, William A. Truitt, R. Aaron Waeiss, Eric A. Engleman, Richard L. Bell, and Zachary A. Rodd. 2021. "Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell" International Journal of Molecular Sciences 22, no. 21: 11733. https://doi.org/10.3390/ijms222111733
APA StyleHauser, S. R., Mulholland, P. J., Truitt, W. A., Waeiss, R. A., Engleman, E. A., Bell, R. L., & Rodd, Z. A. (2021). Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell. International Journal of Molecular Sciences, 22(21), 11733. https://doi.org/10.3390/ijms222111733