Achievements in Thermosensitive Gelling Systems for Rectal Administration
Abstract
:1. Introduction
1.1. Oral Route and Its Limitations
- convenient—can be self-administered, pain-free, easy to take;
- absorption—occurs along the entire length of the gastrointestinal tract (GIT);
1.2. Rectal Route
- rapid absorption of several drugs with low molecular weight;
- partial prevention of the first-pass metabolism, the potential for absorption into the lymphatic system;
- the retention of higher drug quantities;
- minimal first-pass drug metabolism given that the suppository is administered at an acceptable distance in the rectum [29];
- avoidance of exposure of gastric mucosa to irritant drugs such as non-steroidal anti-inflammatory drugs;
- forms a gel at a body temperature;
- has the required gel strength to prevent leaking out of the anus after administration;
1.3. Polymers and Their Properties Used in the Fabrication of Thermosensitive Liquid Suppositories
- they are easy to administer to the anus as they remain liquid at lower temperatures,
- act as mucoadhesive to the rectal tissues preventing leakage after administration,
- do not cause any harm on mucosal layers,
- gelation temperature: the temperature at which the liquid phase is transformed to the gel phase. The gelation temperature range that would be appropriate for rectal administration is 30–36.5 °C;
- viscosity: viscosity of the thermosensitive liquid suppository at 36.5 °C is known as gel strength; liquid suppository with optimal gel strength (10–50 s) will remain in the upper part of the rectum and will not leak out from the anus;
- gelation time and gel strength: thermosensitive liquid suppository with a relatively faster gelation time and optimal gel strength will remain in the upper part of the rectum and will not leak out from the anus. Gelation time means the time taken for the thermosensitive liquid suppository to achieve a viscosity of approximately 4000 mPa·s at 36.5 °C. Gelation time varies according to suppository composition, but is usually 2–8 min;
- mucoadhesive force: the force by which the thermosensitive liquid suppository binds to the mucous membranes of the rectal.
2. Application of Thermosensitive Liquid Suppositories as Innovative Systems for Delivering Various Drugs
2.1. Analgesic Drugs
2.2. Anticancer Drugs
2.3. Antiemetic Drugs
2.4. Antihypertensive Drugs
2.5. Psychiatric Drugs
2.6. Insulin
2.7. Antiallergic Drugs
2.8. Anaesthetic Drugs
2.9. Antimalarial Drugs
3. Conclusions and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
AAc | Acrylic acid |
ACE | Angiotensin-converting–enzyme |
AUC | Area under the curve |
CBZ | Carbamazepine |
CEs | Cellulose ethers |
CMC | Carboxymethylcellulose |
CP | Chloroquine phosphate |
DCT | Docetaxel |
DRTN | Double reverse thermosensitive nanocarrier system |
Epi | Epirubicin |
GIT | Gastrointestinal tract |
HEC | Hydroxyethyl cellulose |
HP-β-CD | Hydroxypropyl-β-cyclodextrin |
HPC | Hydroxypropyl cellulose |
HPMC | Hydroxypropyl methylcellulose |
KP | Ketoprofen |
KT | Ketorolac tromethamine |
LCTS | Lower critical solution temperature |
MC | Methylcellulose |
MET | Metoclopramide |
MRT | Mean residence time |
NM | Nimesulide |
NSAID | Nonsteroidal anti-inflammatory drug |
P188 | Poloxamer 188, Pluronic F 68 |
P407 | Poloxamer 407, Pluronic F 127 |
PAA | Polyacrylic acid |
PCP | Polycarbophyl |
PEG | Poly(ethylene glycol) |
PEO | Polyethylene oxide |
Plu | Pluronic, P407, Poloxamer 407 |
PMZ | Promethazine |
Polyox WSR-301 | Polyethylene oxide |
PPO | Polypropylene oxide |
PVP | Polyvinylpyrrolidone |
RDDSs | Rectal drug delivery systems |
SLN | Solid lipid nanoparticles |
SMEDDSs | Self-microemulsifying drug delivery systems |
Tmax | Time to reach the max plasma concentration |
TMC | N-trimethyl Chitosan Chloride |
tmOLS | Thermosensitive–mucoadhesive ondansetron liquid suppository |
Tsol-gel | The transition sol-gel temperature |
TS | Tolmetin sodium |
TS-LS | Tolmetin liquid suppository |
UCTS | Upper critical solution temperature |
References
- Verma, P.; Thakur, A.S.; Deshmukh, K.; Jha, D.A.K.; Verma, S. Routes of drug administration. Int. J. Pharm. Sci. Res. 2010, 1, 54–59. [Google Scholar]
- Desai, P.; Date, A.A.; Patravale, V.B. Overcoming poor oral bioavailability using nanoparticle formulations—Opportunities and limitations. Drug Discov. Today Technol. 2012, 9, e87–e95. [Google Scholar] [CrossRef] [PubMed]
- Dumortier, G.; Grossiord, J.L.; Zuber, M.; Couarraze, G.; Chaumeil, J.C. Rheological study of a thermoreversible morphine gel: Drug development and industrial pharmacy. Drug Dev. Ind. Pharm. 1991, 17, 1255–1265. [Google Scholar] [CrossRef]
- Klueglich, M.; Ring, A.; Scheuerer, S.; Trommeshauser, D.; Schuijt, C.; Liepold, B.; Berndl, G. Ibuprofen extrudate, a novel, rapidly dissolving ibuprofen formulation: Relative bioavailability compared to ibuprofen lysinate and regular ibuprofen, and food effect on all formulations. J. Clin. Pharmacol. 2005, 45, 1055–1061. [Google Scholar] [CrossRef]
- Martinez, M.N.; Amidon, G.L. A Mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J. Clin. Pharmacol. 2002, 42, 620–643. [Google Scholar] [CrossRef] [Green Version]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, M.-A.; Santos, H.A. Improving oral absorption via drug-loaded nanocarriers: Absorption mechanisms, intestinal models and rational fabrication. Curr. Drug Metab. 2013, 14, 28–56. [Google Scholar] [CrossRef]
- Goldberg, M.; Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2003, 2, 289–295. [Google Scholar] [CrossRef]
- Esmaeili, F.; Dinarvand, R.; Ghahremani, M.H.; Amini, M.; Rouhani, H.; Sepehri, N.; Ostad, S.N.; Atyabi, F. Docetaxel-albumin conjugates: Preparation, in vitro evaluation and biodistribution studies. J. Pharm. Sci. 2009, 98, 2718–2730. [Google Scholar] [CrossRef]
- Straubinger, R.M.; Balasubramanian, S.V. Preparation and characterization of taxane-containing liposomes. Methods Enzymol. 2005, 391, 97–117. [Google Scholar] [CrossRef]
- Barakat, N.S. In vitro and in vivo characteristics of a thermogelling rectal delivery system of etodolac. AAPS PharmSciTech 2009, 10, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Ben Reguiga, M.; Bonhomme-Faivre, L.; Farinotti, R. Bioavailability and tissular distribution of docetaxel, a P-glycoprotein substrate, are modified by interferon-α in rats. J. Pharm. Pharmacol. 2010, 59, 401–408. [Google Scholar] [CrossRef]
- Esmaeili, F.; Dinarvand, R.; Ghahremani, M.H.; Ostad, S.N.; Esmaily, H.; Atyabi, F. Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly(lactide-co-glycolide) nanoparticles. Anti-Cancer Drugs 2010, 21, 43–52. [Google Scholar] [CrossRef]
- Jannin, V.; Lemagnen, G.; Gueroult, P.; Larrouture, D.; Tuleu, C. Rectal route in the 21st Century to treat children. Adv. Drug Deliv. Rev. 2014, 73, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, L.; Nishihata, T.; Rytting, J.H.; Higuchi, T. Lymphatic uptake of water-soluble drugs after rectal administration. J. Pharm. Pharmacol. 1982, 34, 520–522. [Google Scholar] [CrossRef]
- Purohit, T.J.; Hanning, S.M.; Wu, Z. Advances in rectal drug delivery systems. Pharm. Dev. Technol. 2018, 23, 942–952. [Google Scholar] [CrossRef]
- Gray, H.; Williams, P.L.; Banister, L.H. Gray’s Anatomy, 38th ed.; Churchill Livingstone: Edinburgh, UK; New York, NY, USA, 1995. [Google Scholar]
- Bar-Shalom, D.; Klaus, R. (Eds.) Pediatric Formulations: A Roadmap; AAPS Advances in the Pharmaceutical Sciences Series; Springer: New York, NY, USA, 2014; ISBN 978-1-4899-8010-6. [Google Scholar]
- Lakshmi, J.P.; Deepthi, B.; Rama, R.N. Rectal Drug Delivery: A promising route for enhancing drug absorption. Asian J. Pharm. Sci. 2012, 2, 143–149. [Google Scholar]
- De Boer, A.G. Rate controlled rectal peptide absorption enhancement. In penetration enhancement for polypeptides through epithelia. Adv. Drug Deliver. Rev. 2012, 2, 143–149. [Google Scholar]
- Moolenaar, F.; Yska, J.P.; Visser, J.; Meijer, D.K.F. Drastic improvement in the rectal absorption profile of morphine in man. Eur. J. Clin. Pharmacol. 1985, 29, 119–121. [Google Scholar] [CrossRef]
- Havaldar, V.D.; Yadav, A.V.; Dias, R.J.; Mali, K.K.; Ghorpade, V.S.; Salunkhe, N.H. Rectal suppository as an effective alternative for oral administration. Res. J. Pharm. Technol. 2015, 8, 759. [Google Scholar] [CrossRef]
- Baviskar, P.; Bedse, A.; Sadique, S.; Kunde, V.; Jaiswal, S. Drug delivery on rectal absorption: Suppositories. Int. J. Pharm. Sci. Rev. Res. 2013, 21, 70–76. [Google Scholar]
- Jain, N.K. Progress in Controlled & Novel Drug Delivery Systems, 1st ed.; CBS Publisher & Distributors P Ltd.: New Delhi, India, 2010; ISBN 978-81-239-1096-3. [Google Scholar]
- Van Hoogdalem, E.J.; De Boer, A.G.; Breimer, D.D. Pharmacokinetics of rectal drug administration, Part I. Clin. Pharmacokinet. 1991, 21, 11–26. [Google Scholar] [CrossRef]
- Van Hoogdalem, E.J.; De Boer, A.G.; Breimer, D.D. Pharmacokinetics of rectal drug administration, Part II. Clin. Pharmacokinet. 1991, 21, 110–128. [Google Scholar] [CrossRef]
- Hosny, E.A.; Al-Shora, H.I.; Elmazar, M.M.A. Relative hypoglycemic effect of insulin suppositories in diabetic beagle dogs: Optimization of various concentrations of sodium salicylate and polyoxyethylene-9-lauryl ether. Biol. Pharm. Bull. 2001, 24, 1294–1297. [Google Scholar] [CrossRef] [Green Version]
- Yun, M.; Choi, H.; Jung, J.; Kim, C. Development of a thermo-reversible insulin liquid suppository with bioavailability enhancement. Int. J. Pharm. 1999, 189, 137–145. [Google Scholar] [CrossRef]
- Bradshaw, E.; Collins, B.; Williams, J. Administering rectal suppositories: Preparation, assessment and insertion. Gastrointest. Nurs. 2009, 7, 24–28. [Google Scholar] [CrossRef]
- Ramadan, E.M.; Borg, T.M.; Elkayal, M.O. Formulation and evaluation of novel mucoadhesive ketorolac tromethamine liquid suppository. AJPP 2009, 3, 124–132. [Google Scholar]
- Özgüney, I.; Kardhiqi, A.; Yıldız, G.; Ertan, G. In vitro–in vivo evaluation of In Situ gelling and thermosensitive ketoprofen liquid suppositories. Eur. J. Drug Metab. Pharmacokinet. 2014, 39, 283–291. [Google Scholar] [CrossRef]
- Rectal and Vaginal Drug Delivery. Available online: https://clinicalgate.com/rectal-and-vaginal-drug-delivery/ (accessed on 23 April 2021).
- How to Use Rectal Suppositories Properly. American Society of Health-System Pharmacists. Available online: http://www.safemedication.com/safemed/MedicationTipsTools/HowtoAdminister/HowtoUseRectalSuppositoriesProperly (accessed on 13 December 2020).
- Jones, D.S. Pharmaceutics—Dosage Form and Design; Pharmaceutical Press: London, UK, 2008. [Google Scholar]
- Nishihata, T.; Kato, J.; Kim, K.; Kobayashi, M.; Kitagawa, I.; Kamada, A. Formation and hydrolysis of enamine in aqueous solution. Chem. Pharm. Bull. 1984, 32, 4545–4550. [Google Scholar] [CrossRef] [Green Version]
- Chih, H.C.; Tadakazu, T.; Yoshiharu, M.; Tsuneji, N. Formulation of double-layered suppository for prolonged stay in lower rectum. JPST 1987, 47, 42–48. [Google Scholar]
- Choi, H.-G.; Lee, M.-K.; Kim, M.-H.; Kim, C.-K. Effect of additives on the physicochemical properties of liquid suppository bases. Int. J. Pharm. 1999, 190, 13–19. [Google Scholar] [CrossRef]
- Soon, Y.C.; Young-Kwon, C.; Yong, C.S.; Byung-Joo, P.; Qi-Zhe, Q.; Jong-Dai, R.; Chong-Kook, K.; Han-Gon, C. Physicochemical characterization and in vivo evaluation of thermosensitive diclofenac liquid suppository. Arch. Pharm. Res. 2003, 26, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Wisher, D. Martindale: The Complete Drug Reference. 37th ed. J. Med. Libr. Assoc. 2012, 100, 75–76. [Google Scholar] [CrossRef]
- Özgüney, I.; Kardhiqi, A. Properties of bioadhesive ketoprofen liquid suppositories: Preparation, determination of gelation temperature, viscosity studies and evaluation of mechanical properties using texture analyzer by 4 × 4 factorial design. Pharm. Dev. Technol. 2013, 19, 968–975. [Google Scholar] [CrossRef]
- Pasztor, E.; Makó, A.; Csóka, G.; Fenyvesi, Z.; Benko, R.; Prosszer, M.; Marton, S.; Antal, I.; Klebovich, I. New formulation of in situ gelling Metolose-based liquid suppository. Drug Dev. Ind. Pharm. 2010, 37, 1–7. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, J.H.; Robinson, J.R. Bioadhesive-based dosage forms: The next generation. J. Pharm. Sci. 2000, 89, 850–866. [Google Scholar] [CrossRef]
- Koffi, A.; Agnely, F.; Ponchel, G.; Grossiord, J. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur. J. Pharm. Sci. 2006, 27, 328–335. [Google Scholar] [CrossRef]
- Seo, Y.G.; Kim, D.-W.; Yeo, W.H.; Ramasamy, T.; Oh, Y.-K.; Park, Y.-J.; Kim, J.-A.; Oh, D.H.; Ku, S.K.; Kim, J.K.; et al. Docetaxel-loaded thermosensitive and bioadhesive nanomicelles as a rectal drug delivery system for enhanced chemotherapeutic effect. Pharm. Res. 2013, 30, 1860–1870. [Google Scholar] [CrossRef]
- Kim, J.O.; Kim, D.-W.; Ramasamy, T.; Choi, J.Y.; Kim, J.; Yong, C.S.; Choi, H.-G. The influence of bile salt on the chemotherapeutic response of docetaxel-loaded thermosensitive nanomicelles. Int. J. Nanomed. 2014, 9, 3815–3824. [Google Scholar] [CrossRef] [Green Version]
- Kassab, H.J.; Khalil, Y.I. 5-Fluorouracil mucoadhesive liquid formulation and evaluation. World J. Pharm. Res. 2014, 3, 119–135. [Google Scholar]
- Sagrado, F.G.; Guzman, M.; Molpeceres, J.; Aberturas, M. Pluronic copolymer—characteristics, properties and pharmaceutical applications: Part I. Pharm. Technol. Eur. 1994, 6, 46–56. [Google Scholar]
- Escobar-Chávez, J.; López-Cervantes, M.; Naïk, A.; Kalia, Y.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 2006, 9, 339–358. [Google Scholar]
- Henry, R.L. Burn wound coverings and the use of poloxamer preparations. Crit. Rev. Biocompat. 1989, 5, 207–220. [Google Scholar]
- Morishita, M.; Barichello, J.M.; Takayama, K.; Chiba, Y.; Tokiwa, S.; Nagai, T. Pluronic® F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int. J. Pharm. 2001, 212, 289–293. [Google Scholar] [CrossRef]
- Edsman, K.; Carlfors, J.; Petersson, R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm. Sci. 1998, 6, 105–112. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, R.; Li, L.; Li, B.; Zhang, X.; Su, J. Mechanical, rheological and release behaviors of a poloxamer 407/poloxamer 188/carbopol 940 thermosensitive composite hydrogel. Molecules 2013, 18, 12415–12425. [Google Scholar] [CrossRef]
- Wei, G.; Xu, H.; Ding, P.T.; Li, S.M.; Zheng, J.M. Thermosetting gels with modulated gelation temperature for ophthalmic use: The rheological and gamma scintigraphic studies. J. Control. Release 2002, 83, 65–74. [Google Scholar] [CrossRef]
- Ruel-Gariépy, E.; Leroux, J.-C. In situ-forming hydrogels—Review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426. [Google Scholar] [CrossRef]
- Mayol, L.; Biondi, M.; Quaglia, F.; Fusco, S.; Borzacchiello, A.; Ambrosio, L.; La Rotonda, M.I. Injectable thermally responsive mucoadhesive gel for sustained protein delivery. Biomacromolecules 2011, 12, 28–33. [Google Scholar] [CrossRef]
- Zahir-Jouzdani, F.; Wolf, J.D.; Atyabi, F.; Bernkop-Schnürch, A. In situ gelling and mucoadhesive polymers: Why do they need each other? Expert Opin. Drug Deliv. 2018, 15, 1007–1019. [Google Scholar] [CrossRef]
- Klouda, L.; Mikos, A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008, 68, 34–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liow, S.S.; Dou, Q.; Kai, D.; Karim, A.A.; Zhang, K.; Xu, F.; Loh, X.J. Thermogels: In Situ Gelling Biomaterial. ACS Biomater. Sci. Eng. 2015, 2, 295–316. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, M.H.; Yoon, Y.I. One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles. Carbohydr. Polym. 2017, 157, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J. Appl. Polym. Sci. 1979, 24, 1073–1087. [Google Scholar] [CrossRef]
- Jain, S.; Sandhu, P.S.; Malvi, R.; Gupta, B. Cellulose derivatives as thermoresponsive polymer: An overview. J. Appl. Pharm. Sci. 2013, 3, 139–144. [Google Scholar] [CrossRef]
- Lü, S.; Liu, M.; Ni, B.; Gao, C. A novel pH- and thermo-sensitive PVP/CMC semi-IPN hydrogel: Swelling, phase behavior, and drug release study. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1749–1756. [Google Scholar] [CrossRef]
- Rowe, R.C. (Ed.) Handbook of Pharmaceutical Excipients, 6th ed.; APhA, Pharmaceutical Press: London, UK, 2009; ISBN 978-0-85369-792-3. [Google Scholar]
- Li, L.; Shan, H.; Yue, C.Y.; Lam, Y.C.; Tam, A.K.C.; Hu, X. Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 2002, 18, 7291–7298. [Google Scholar] [CrossRef]
- Takahashi, M.; Shimazaki, M.; Yamamoto, J. Thermoreversible gelation and phase separation in aqueous methyl aellulose solutions. J. Polym. Sci. B Polym. Phys. 2001, 39, 91–100. [Google Scholar] [CrossRef]
- Ford, J.L. Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: Powders, gels and matrix tablets. Int. J. Pharm. 1999, 179, 209–228. [Google Scholar] [CrossRef]
- Hu, Z.-H.; Omer, A.M.; Ouyang, X.; Yu, D. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2018, 108, 149–157. [Google Scholar] [CrossRef]
- Yu, H.; Xu, X.; Chen, X.; Lu, T.; Zhang, P.; Jing, X. Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J. Appl. Polym. Sci. 2007, 103, 125–133. [Google Scholar] [CrossRef]
- Zheng, M.; Gu, M.; Jin, Y.; Jin, G. Preparation, structure and properties of TiO2–PVP hybrid films. Mater. Sci. Eng. B 2000, 77, 55–59. [Google Scholar] [CrossRef]
- Asane, G.S.; Nirmal, S.A.; Rasal, K.B.; Naik, A.A.; Mahadik, M.S.; Rao, Y.M. Polymers for Mucoadhesive Drug Delivery System: A Current Status. Drug Dev. Ind. Pharm. 2008, 34, 1246–1266. [Google Scholar] [CrossRef] [PubMed]
- Kunisawa, J.; Okudaira, A.; Tsutusmi, Y.; Takahashi, I.; Nakanishi, T.; Kiyono, H.; Mayumi, T. Characterization of mucoadhesive microspheres for the induction of mucosal and systemic immune responses. Vaccine 2000, 19, 589–594. [Google Scholar] [CrossRef]
- Majithiya, R.J.; Ghosh, P.K.; Umrethia, M.L.; Murthy, R.S.R. Thermoreversible-mucoadhesive Gel for nasal delivery of sumatriptan. AAPS PharmSciTech 2006, 7, E80–E86. [Google Scholar] [CrossRef] [Green Version]
- Sasutjarit, R.; Sirivat, A.; Vayumhasuwan, P. Viscoelastic properties of carbopol 940 gels and their relationships to piroxicam diffusion coefficients in gel bases. Pharm. Res. 2005, 22, 2134–2140. [Google Scholar] [CrossRef]
- Fontan, J.; Arnaud, P.; Chaumeil, J. Enhancing properties of surfactants on the release of carbamazepine from suppositories. Int. J. Pharm. 1991, 73, 17–21. [Google Scholar] [CrossRef]
- Hanaee, J.; Javadzadeh, Y.; Taftachi, S.; Farid, D.; Nokhodchi, A. The role of various surfactants on the release of salbutamol from suppositories. Il Farmaco 2004, 59, 903–906. [Google Scholar] [CrossRef]
- Din, F.-U.; Khan, G.M. Development and characterisation of levosulpiride-loaded suppositories with improved bioavailability in vivo. Pharm. Dev. Technol. 2017, 24, 63–69. [Google Scholar] [CrossRef]
- Kintzel, P.E.; Michaud, L.B.; Lange, M.K. Docetaxel-associated epiphora. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2006, 26, 853–867. [Google Scholar] [CrossRef]
- Bhandwalkar, M.J.; Avachat, A.M. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: Formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech 2012, 14, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). Available online: http://www.ncbi.nlm.nih.gov/books/NBK547742/ (accessed on 14 December 2020).
- Botting, R.M. Mechanism of action of acetaminophen: Is there a cyclooxygenase 3? Clin. Infect. Dis. 2000, 31, S202–S210. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.-G.; Jung, J.-H.; Ryu, J.-M.; Yoon, S.-J.; Oh, Y.-K.; Kim, C.-K. Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository. Int. J. Pharm. 1998, 165, 33–44. [Google Scholar] [CrossRef]
- Choi, H.-G.; Oh, Y.-K.; Kim, C.-K. In situ gelling and mucoadhesive liquid suppository containing acetaminophen: Enhanced bioavailability. Int. J. Pharm. 1998, 165, 23–32. [Google Scholar] [CrossRef]
- Kim, C.-K.; Lee, S.-W.; Choi, H.-G.; Lee, M.-K.; Gao, Z.-G.; Kim, I.-S.; Park, K.-M. Trials of in situ-gelling and mucoadhesive acetaminophen liquid suppository in human subjects. Int. J. Pharm. 1998, 174, 201–207. [Google Scholar] [CrossRef]
- Bellamy, N. Etodolac in the management of pain: A clinical review of a multipurpose analgesic. Inflammopharmacology 1997, 5, 139–152. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, M.-S.; Park, J.-S.; Kim, C.-K. Thermo-reversible flurbiprofen liquid suppository with HP-β-CD as a solubility enhancer: Improvement of rectal bioavailability. J. Incl. Phenom. Macrocycl. Chem. 2009, 64, 265–272. [Google Scholar] [CrossRef]
- Lomen, P.L.; Turner, L.F.; Lamborn, K.R.; Winblad, M.A.; Sack, R.L.; Brinn, E.L. Flurbiprofen in the treatment of acute gout: A comparison with indomethacin. Am. J. Med. 1986, 80, 134–139. [Google Scholar] [CrossRef]
- Díaz-Reval, M.I.; Ventura-Martínez, R.; Déciga-Campos, M.A.; Terrón, J.; Cabre, F.; López-Muñoz, F.J. Evidence for a central mechanism of action of S-(+)-ketoprofen. Eur. J. Pharmacol. 2004, 483, 241–248. [Google Scholar] [CrossRef]
- Thomas, L.; Khasraghi, A.H.; Saihood, A.H. Preparation and evaluation of lornoxicam in situ gelling liquid suppository. Drug Invent. Today 2018, 10, 1556–1563. [Google Scholar]
- Radhofer-Welte, S.; Rabasseda, X. Lornoxicam, a new potent NSAID with an improved tolerability profile. Drugs Today 2000, 36, 55–76. [Google Scholar] [CrossRef] [PubMed]
- Al-Wiswasi, N.; Al-khedairy, E. Formulation and in vitro evaluation of in-situ gelling liquid suppositories for naproxen. Iraqi J. Pharm. Sci. 2008, 17, 31–38. [Google Scholar]
- Ellsworth, A.J. Mosby’s Medical Drug Reference 2003, 1st ed.; Mosby: St. Louis, MO, USA, 2002; ISBN 978-0-323-02219-4. [Google Scholar]
- Yuan, Y.; Cui, Y.; Zhang, L.; Zhu, H.-P.; Guo, Y.-S.; Zhong, B.; Hu, X.; Zhang, L.; Wang, X.-H.; Chen, L. Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide. Int. J. Pharm. 2012, 430, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.K.; Chawla, M.; Singh, A. Review nimesulide: Some pharmaceutical and pharmacological aspects—An update. J. Pharm. Pharmacol. 2010, 52, 467–486. [Google Scholar] [CrossRef]
- Olsen, J.; Li, C.; Skonberg, C.; Bjørnsdottir, I.; Sidenius, U.; Benet, L.Z.; Hansen, S.H. Studies on the metabolism of tolmetin to the chemically reactive acyl-coenzyme a thioester intermediate in rats. Drug Metab. Dispos. 2007, 35, 758–764. [Google Scholar] [CrossRef]
- Akl, M.A.; Ismael, H.R.; Allah, F.I.A.; Kassem, A.A.; Samy, A.M. Tolmetin sodium-loaded thermosensitive mucoadhesive liquid suppositories for rectal delivery; strategy to overcome oral delivery drawbacks. Drug Dev. Ind. Pharm. 2019, 45, 252–264. [Google Scholar] [CrossRef]
- Hersh, E.V.; Pinto, A.; Moore, P.A. Adverse drug interactions involving common prescription and over-the-counter analgesic agents. Clin. Ther. 2007, 29, 2477–2497. [Google Scholar] [CrossRef]
- Gan, T.J. Diclofenac: An update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 2010, 26, 1715–1731. [Google Scholar] [CrossRef]
- Yong, C.S.; Choi, J.S.; Quan, Q.-Z.; Rhee, J.-D.; Kim, C.-K.; Lim, S.-J.; Kim, K.-M.; Oh, P.-S.; Choi, H.-G. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int. J. Pharm. 2001, 226, 195–205. [Google Scholar] [CrossRef]
- Yong, C.S.; Oh, Y.-K.; Jung, S.H.; Rhee, J.-D.; Kim, H.-D.; Kim, C.-K.; Choi, H.-G. Preparation of ibuprofen-loaded liquid suppository using eutectic mixture system with menthol. Eur. J. Pharm. Sci. 2004, 23, 347–353. [Google Scholar] [CrossRef]
- Ghorab, M.K.; Adeyeye, M.C. Enhancement of Ibuprofen Dissolution via Wet Granulation with β—Cyclodextrin. Pharm. Dev. Technol. 2001, 6, 305–314. [Google Scholar] [CrossRef]
- Carrington, C.; Stone, L.; Koczwara, B.; Searle, C.; Siderov, J.; Stevenson, B.; Michael, M.; Hyde, S.; Booth, A.; Rushton, S. The Clinical Oncological Society of Australia (COSA) guidelines for the safe prescribing, dispensing and administration of cancer chemotherapy: Cancer medication safety guidelines. Asia-Pac. J. Clin. Oncol. 2010, 6, 220–237. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Yeo, W.H.; Ramasamy, T.; Kim, D.-W.; Cho, H.J.; Kim, Y.-I.; Cho, K.H.; Yong, C.S.; Kim, J.O.; Choi, H.-G. Docetaxel-loaded thermosensitive liquid suppository: Optimization of rheological properties. Arch. Pharm. Res. 2013, 36, 1480–1486. [Google Scholar] [CrossRef]
- Lo, Y.-L.; Lin, Y.; Lin, H.-R. Evaluation of Epirubicin in Thermogelling and Bioadhesive Liquid and Solid Suppository Formulations for Rectal Administration. Int. J. Mol. Sci. 2013, 15, 342–360. [Google Scholar] [CrossRef]
- Plosker, G.L.; Faulds, D. Epirubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cancer chemotherapy. Drugs 1993, 45, 788–856. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.H.; Kim, B.; Choi, H.C.; Kwon, J.H.; Choi, D.R. Phase II study of weekly carboplatin and irinotecan as first-line chemotherapy for patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. 2013, 71, 1591–1597. [Google Scholar] [CrossRef]
- Din, F.U.; Choi, J.Y.; Kim, D.S.; Mustapha, O.; Thapa, R.K.; Ku, S.K.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; Kim, J.O.; et al. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 2017, 24, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Raymond, E.; Faivre, S.; Woynarowski, J.M.; Chaney, S.G. Oxaliplatin: Mechanism of action and antineoplastic activity. Semin. Oncol. 1998, 25, 4–12. [Google Scholar]
- Lin, H.-R.; Tseng, C.-C.; Lin, Y.-J.; Ling, M.-H. A novel in-situ-gelling liquid suppository for site-targeting delivery of anti-colorectal cancer drugs. J. Biomater. Sci. Polym. Ed. 2012, 23, 807–822. [Google Scholar] [CrossRef]
- Kadavakollu, S.S.; Stailey, C.; Kunapareddy, C.S.; White, S. Clotrimazole as a cancer drug: A Short Review. Med. Chem. 2014, 4, 722–724. [Google Scholar] [CrossRef] [Green Version]
- Yong, C.S.; Xuan, J.J.; Paek, S.-H.; Oh, Y.-K.; Woo, J.-S.; Lee, M.H.; Kim, J.-A.; Choi, H.-G. Enhanced anti-tumor activity and alleviated hepatotoxicity of clotrimazole-loaded suppository using poloxamer–propylene glycol gel. Int. J. Pharm. 2006, 321, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Gavini, E.; Rassu, G.; Sanna, V.; Cossu, M.; Giunchedi, P. Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: In-vitro/ex-vivo studies†. J. Pharm. Pharmacol. 2010, 57, 287–294. [Google Scholar] [CrossRef] [PubMed]
- El Razek, A.M.A.; Hasan, A.A.; Sabry, S.A.; Mahdy, M.A.; Hamed, E.E. Metoclopramide hydrochloride thermally sensitive rectal in situ gelling system, a novel out-patient treatment for vomiting in pediatric age. J. Drug Deliv. Sci. Technol. 2019, 50, 9–17. [Google Scholar] [CrossRef]
- El-Sayed, Y.M.; Niazy, E.M.; Khidr, S.H. In vivo evaluation of sustained-release microspheres of metoclopramide hydrochloride in beagle dogs. Int. J. Pharm. 1995, 123, 113–118. [Google Scholar] [CrossRef]
- Ye, J.-H.; Ponnudurai, R.; Schaefer, R. Ondansetron: A selective 5-HT3 receptor antagonist and its applications in cns-related disorders. CNS Drug Rev. 2006, 7, 199–213. [Google Scholar] [CrossRef]
- Ban, E.; Kim, C.-K. Design and evaluation of ondansetron liquid suppository for the treatment of emesis. Arch. Pharm. Res. 2013, 36, 586–592. [Google Scholar] [CrossRef]
- Jadhav, U.G.; Dias, R.; Mali, K.; Havaldar, V. Development of in situ-gelling and mucoadhesive liquid suppository of ondansetron. Int. J. ChemTech. Res. 2009, 1, 953–961. [Google Scholar]
- Wells, T.G. Antihypertensive therapy: Basic pharmacokinetic and pharmacodynamic principles as applied to infants and children. Am. J. Hypertens. 2002, 15, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Basavaraj, B.V.; Devi, S.; Bharath, S.; Deveswaran, R.; Madhavan, V. Design and evaluation of dustained release pro-pranolol hydrochloride suppositories. IJPSR 2013, 22, 5–12. [Google Scholar]
- Swamy, P.V.; Farhana, L.; Ali, Y.; Varma, M.M. Design and evaluation of sustained release suppositories of carvedilol. Adv. Sci. Eng. Med. 2014, 6, 417–420. [Google Scholar] [CrossRef]
- Buckley, G. Martindale: The Extra Pharmacopeia. J. R. Coll. Gen. Pract. 1989, 39, 440. [Google Scholar]
- Chaffman, M.; Brogden, R.N. Diltiazem. A review of its pharmacological properties and therapeutic efficacy. Drugs 1985, 29, 387–454. [Google Scholar] [CrossRef]
- Keny, R.; Lourenco, C.F. Formulation and evaluation of thermoreversible in situ gelling and mucoadhesive diltiazem hydrochloride liquid suppository. Int. J. Pharma. Bio. Sci. 2010, 1, 1–17. [Google Scholar]
- Cid, E.; Mella, F.; Lucchini, L.; Cárcamo, M.; Monasterio, J. Plasma concentrations and bioavailability of propranolol by oral, rectal and intravenous administration in man. Biopharm. Drug Dispos. 1986, 7, 559–566. [Google Scholar] [CrossRef]
- Ryu, J.-M.; Chung, S.-J.; Lee, M.-H.; Kim, C.-K.; Shim, C.-K. Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. J. Control. Release 1999, 59, 163–172. [Google Scholar] [CrossRef]
- Patil, S.; Havaldar, V.; Mali, K.; Dias, R. Formulation and characterization of mucoadhesive liquid suppositories containing chitosan based candesartan celixitil loaded microspheres. Int. J. Eng. Res. 2017, 8, 2277–2295. [Google Scholar]
- Inada, Y.; Ojima, M.; Kanagawa, R.; Misumi, Y.; Nishikawa, K.; Naka, T. Pharmacologic properties of candesartan cilexetil—Possible mechanisms of long-acting antihypertensive action. J. Hum. Hypertens. 1999, 13, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Currier, G.W.; Medori, R. Orally versus intramuscularly administered antipsychotic drugs in psychiatric emergencies. J. Psychiatr. Pract. 2006, 12, 30–40. [Google Scholar] [CrossRef]
- Citrome, L.; Zeni, C.M.; Correll, C.U. Patches: Established and emerging transdermal treatments in psychiatry. J. Clin. Psychiatry 2019, 80, 12554. [Google Scholar] [CrossRef]
- Thompson, D.; DiMartini, A. Nonenteral routes of administration for psychiatric medications. A literature review. J. Psychosom. Res. 1999, 40, 185–192. [Google Scholar] [CrossRef]
- Coley, R.M. Book Review: Martindale: The Extra Pharmacopoeia. 31st Edition. Ann. Pharmacother. 1997, 31, 1422. [Google Scholar] [CrossRef]
- El-Kamel, A.; El-Khatib, M. Thermally reversible in situ gelling carbamazepine liquid suppository. Drug Deliv. 2006, 13, 143–148. [Google Scholar] [CrossRef]
- Kim, D.S.; Choi, J.S.; Kim, K.S.; Seo, Y.G.; Cho, K.H.; Kim, J.O.; Yong, C.S.; Youn, Y.S.; Lim, S.-J.; Jin, S.G.; et al. Comparison of solvent wetted and kneaded l-sulpiride loaded solid dispersions: Powder characterization and in vivo evaluation. Int. J. Pharm. 2016, 511, 351–358. [Google Scholar] [CrossRef]
- Hoffman, A.; Ziv, E. Pharmacokinetic considerations of new insulin formulations and routes of administration. Clin. Pharmacokinet. 1997, 33, 285–301. [Google Scholar] [CrossRef]
- He, W.; Du, Y.; Dai, W.; Wu, Y.; Zhang, M. Effects ofN-trimethyl chitosan chloride as an absorption enhancer on properties of insulin liquid suppository in vitro and in vivo. J. Appl. Polym. Sci. 2005, 99, 1140–1146. [Google Scholar] [CrossRef]
- Benedetti, M.S.; Whomsley, R.; Poggesi, I.; Cawello, W.; Mathy, F.-X.; Delporte, M.-L.; Papeleu, P.; Watelet, J.-B. Drug metabolism and pharmacokinetics. Drug Metab. Rev. 2009, 41, 344–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.-H.; Hong, H.-K.; Chong, S.H.; Lee, H.S.; Choe, H. H1 antihistamine drug promethazine directly blocks hERG K+ channel. Pharmacol. Res. 2009, 60, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, I.S. Formulation and in vitro evaluation of in situ liquid gelling suppository of promethazine HCl. World J. Pharm. Res. 2014, 4, 273–286. [Google Scholar]
- Dhamane, S.; Kulkarni, A.; Vaishali, P.; Modase, M. Formulation and evaluation of rectal delivery system for the treatment of hemorrhoids. Pharm. Reason. 2018, 1, 42–50. [Google Scholar]
- Abbas, Z.; Aditya, N.; Swamy, N.G.N. Fabrication and in vitro evaluation of mucoadhesive, thermoreversible, in situ gelling liquid sup-pository of chloroquine phosphate. Indian J. Nov. Drug Deliv. 2013, 5, 60–70. [Google Scholar]
- Raines, D.E.; Chitilian, H.V.; Eckenhoff, R.G. Anesthetic drug development: Novel drugs and new approaches. Surg. Neurol. Int. 2013, 4, 2–10. [Google Scholar] [CrossRef]
- Lauretti, G.R. Mecanismos envolvidos na analgesia da lidocaína por via venosa. Braz. J. Anesthesiol. 2008, 58, 280–286. [Google Scholar] [CrossRef] [Green Version]
- NCBI. Pharmacology of Antimalarial Drugs. Available online: https://www.ncbi.nlm.nih.gov/books/NBK294433/ (accessed on 13 December 2020).
- Eisenhut, M.; Omari, A.A. Intrarectal quinine versus intravenous or intramuscular quinine for treating Plasmodium falciparum malaria. Cochrane Database Syst. Rev. 2009, CD004009. [Google Scholar] [CrossRef]
- Patel, V.A.; Rayasa, M.; Patel, H.V. Formulation and in vitro characterization of ethyl cellulose microspheres containing chloroquine phosphate. J. Indian Pharm. 2006, 5, 82–86. [Google Scholar]
Drug | P407 | P188 | CARBOP. | HPMC | CMC | PVP | HPC | MC | HEC | PCP | Sodium Alginate | Tween | HP-β-CD | NaCl | Menthol | Kinetics/ Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Etodolac 5% | 15% | 20% | 5.0% | 5.0% 10.0% 15.0% | 5.0% 10.0% 15.0% | 5.0% 10.0% 15.0% | Fickian diffusion | [11] | |||||||||
Ketorolac 10 mg | 21% | 9% | 0.2% 0.6% 1.0% | 0.2% 0.6% 1.0% | Fickian diffusion | [30] | |||||||||||
Ketoprofen 2.5% | 4% | 20% | 0.2% 0.4% 0.6% 0.8% 1.6% | 0.2% 0.4% 0.6% 0.8% 1.6% | 0.2% 0.4% 0.6% 0.8% 1.6% | 0.2% 0.4% 0.6% 0.8% 1.6% | Higuchi model, non-Fickian diffusion | [31] | |||||||||
Diclofenac 2.5% | 15% | 15–20% | 0–1% | Un-known | [38] | ||||||||||||
Ketoprofen 2.5% | 44% | 20% | 0.2% 0.4% 0.6% 0.8% | 0.2% 0.4% 0.6% 0.8% | 0.2% 0.4% 0.6% 0.8% | 0.2% 0.4% 0.6% 0.8% | Un-known | [40] | |||||||||
Acetaminophen 2.5% | 12–15% | 15–20% | 1.0% | 1.0% | 1.0% | Un-known | [81] | ||||||||||
Acetaminophen 2.5% | 15% | 15–20% | 0.2% 0.4% 0.8 % | Fickian diffusion | [82] | ||||||||||||
Acetaminophen 5% | 15% | 19% | 0.2% 0.4% 0.6% 0.8% 1.0% | Fickian diffusion | [83] | ||||||||||||
Flurbiprofen 1.25% | 14% | 13% | 0.6% | 20% 22% 25% | Un-known | [86] | |||||||||||
Lornoxicam 0.16% | 15–25% | 7–20% | 1.0% 1.5% | 1.0% 1.5% | 1.0% 1.5% | 1.0% 1.5% | Fickian diffusion | [88] | |||||||||
Naproxen 10% | 26–30% | 0.25–1.0% | 0.25–1.0% | 0.25–1.0% | Un-known | [90] | |||||||||||
Nimesulide 2% | 18% | 5–20% | 0.5% 1.0% 2.0 % | 0.5% 0.8% 1.0% | Anomalous (erosion-diffusion mechanism) | [92] | |||||||||||
Tolmetin 5% | 21% | 9% | 0.5% 1.0% 1.5% | 0.5% 1.0% 1.5% | 0.5% 1.0% 1.5% | 0.6% | T20, T40, T80: 3% | Zero-order release kinetics, first-order release kinetics, Higuchi’s diffusion | [95] | ||||||||
Diclofenac 2.5% | 15% | 15–20% | 0–1% | Un-known | [98] | ||||||||||||
Ibuprofen 2.5% | 15% | 0.25% | Un-known | [99] |
Drug | P407 | P188 | Carbopol | Tween 80 | PAA | Propylene Glycol | Pektin | Kinetics/ Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
5-fluorouracil 1% | 10–20% | 1.0% | 2.0% | Non-Fickian release | [46] | ||||
Docetaxel: 0.15% 0.20% 0.25% | 10–13% | 15% | 5.0% 10.0% 15.0% | Un-known | [103] | ||||
Epirubicin 0.050% | 14% | 0.1875% 0.375% 0.75% | Un-known | [104] | |||||
Irinotekan 1% | 15% | 17% | 4.0% | Un-known | [107] | ||||
Oxaliplatin 6.2 µM 12.3 µM 22.9 µM | 14% | 0.187% 0.375% 0.75% | Un-known | [109] | |||||
Clotrimazole 5% | 50–100% | 0–50% | Zero-order dissolution | [111] |
Drug | P407 | P188 | PVP | HEC | HPMC | Sodium Alginate | MC | Kinetics/ Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
Metoclopramide 2% | 20–25% | 0.5% 1.5% 2.5% | 0.5% 1.5% 2.5% | 0.5% 1.5% 2.5% | Higuchi diffusion | [113] | |||
Ondasetron 0.08% | 18% | 20% | 0.4% 0.8% 1.0% 1.5% | Un-known | [116] | ||||
Ondasetron 0.8% | 18% | 0.8% | 0.8% | 0.8% | Fickian diffusion | [117] |
Drug | P407 | P188 | PVP | HPMC | HPC | Carbopol | Polyox Wsr-301 | PCP | Chitosan | Kinetics/ Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Candesartan 0.2% | 1.8% | 0.2–0.8% | Un-known | [126] | |||||||
Diltiazem 0.018% | 20% | 10% | 0.5–1.0% | 0.5–1.0% | 0.5–1.0% | 0.5–1.0% | 0.5–1.0% | Fickian diffusion (Higuchi model) | [123] | ||
Propranolol 2% | 15% | 15% | 0.6% | 0.6% | 0.6% | 0.6% | First-order release kinetics | [125] |
Drug | P407 | P188 | MC | Carbopol | Tween 80 | Kinetics/ Mechanism | Ref. |
---|---|---|---|---|---|---|---|
Levosulpiride 0.5% 1.0% 1.5% | 15% | 10–20% | 2–5% | Fickian diffusion | [76] | ||
Carbamazepine 10% | 20% | 15% | 1.0% | 0.5% | Fickian diffusion | [132] |
Drug | P407 | P188 | TMC40 | TMC60 | Sodium Salicylate | PCP | Kinetics/ Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|
Insulin 0.38% | 15% | 20% | 10–30% | 0.2–0.6% | Un-known | [28] | ||
Insulin 0.36% | 15% | 20% | 0.05–1.0% | 0.05–1.0% | 10% | Un-known | [135] |
Drug | P407 | P188 | HPMC | Carbopol | PVP | PCP | Kinetics/ Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|
Promethazine 12.5% | 12–20% | 4–12% | 0.5–2.0% | Zero-order, first-order, anomalous (non-Fickian), Fickian diffusion | [138] | |||
Lidocaine 2% | 5–25% | 1–5% | 0.5–1.0% | 0.5–1.5% | Un-known | [139] | ||
Chloroquine phospate 0.15% | 18–24% | 0.3% 0.6% 0.9% | 0.3% 0.6% 0.9% | 0.3% 0.6% 0.9% | Fickian diffusion | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bialik, M.; Kuras, M.; Sobczak, M.; Oledzka, E. Achievements in Thermosensitive Gelling Systems for Rectal Administration. Int. J. Mol. Sci. 2021, 22, 5500. https://doi.org/10.3390/ijms22115500
Bialik M, Kuras M, Sobczak M, Oledzka E. Achievements in Thermosensitive Gelling Systems for Rectal Administration. International Journal of Molecular Sciences. 2021; 22(11):5500. https://doi.org/10.3390/ijms22115500
Chicago/Turabian StyleBialik, Maria, Marzena Kuras, Marcin Sobczak, and Ewa Oledzka. 2021. "Achievements in Thermosensitive Gelling Systems for Rectal Administration" International Journal of Molecular Sciences 22, no. 11: 5500. https://doi.org/10.3390/ijms22115500
APA StyleBialik, M., Kuras, M., Sobczak, M., & Oledzka, E. (2021). Achievements in Thermosensitive Gelling Systems for Rectal Administration. International Journal of Molecular Sciences, 22(11), 5500. https://doi.org/10.3390/ijms22115500