Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases
Abstract
:1. Introduction
1.1. Aging Associated Disease
1.2. Free Radical Species
1.3. Bio Active Small Molecules
1.4. Systemic Drug Delivery and Prodrugs
1.5. Smart Polymers
2. History of Polyoxalate and Copolyoxalate
2.1. Polyoxalate Based Drug Delivery for Inflammation
2.1.1. Polyoxalate Formulations
2.1.2. First Generation Copolyoxalate Formulation (Gen1 CPOx)
2.1.3. Second Generation Copolyoxalate Formulation (Gen2 CPOx)
2.1.4. Third Generation Copolyoxalate Nanoformulation (Gen3 CPOx)
3. Bio Compatibility of Polyoxalate and Copolyoxalates
3.1. Gen1 Copolyoxalate
3.2. Gen3 Copolyoxalate
3.2.1. Gen3 Copolyoxalate to Treat Liver Inflammation
3.2.2. Gen3 CPOx to Treat Muscle and Tendon Injuries
3.2.3. Gen3 CPOx to Treat Airway Inflammatory Diseases
3.2.4. Gen3 CPOx to Treat Cardiac Diseases
3.2.5. Gen3 CPOx to Treat Cancer
4. Limitation of the POx and CPOx
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hagen, T.M. Oxidative Stress, Redox Imbalance, and the Aging Process. Antioxid. Redox Signal. 2003, 5, 503–506. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med. 2018, 5, 61. [Google Scholar] [CrossRef] [Green Version]
- Berwin Singh, S.V.; Adam, A.G.; Tripathy, N.; Lee, D.; Khang, G. Reactive Oxygen Species Responsive Naturally Occurring Phenolic-Based Polymeric Prodrug. In Cutting-Edge Enabling Technologies for Regenerative Medicine; Chun, H.J., Park, C.H., Kwon, I.K., Khang, G., Eds.; Springer: Singapore, 2018; pp. 291–301. [Google Scholar]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Verkman, A.S. Aquaporins. Curr. Biol. 2013, 23, R52–R55. [Google Scholar] [CrossRef] [Green Version]
- Bienert, G.P.; Chaumont, F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 2014, 1840, 1596–1604. [Google Scholar] [CrossRef]
- Fidler, I.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003, 3, 453–458. [Google Scholar] [CrossRef]
- Slezak, J.; Tribulova, N.; Pristacova, J.; Uhrik, B.; Thomas, T.; Khaper, N.; Kaul, N.; Singal, P.K. Hydrogen peroxide changes in ischemic and reperfused heart. Cytochemistry and biochemical and X-ray microanalysis. Am. J. Pathol. 1995, 147, 772–781. [Google Scholar]
- Wang, Z.H.; Liu, J.L.; Wu, L.; Yu, Z.; Yang, H.T. Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. Cell Death Dis. 2014, 5, e1297. [Google Scholar] [CrossRef] [Green Version]
- Milton, N.G. Role of hydrogen peroxide in the aetiology of Alzheimer’s disease: Implications for treatment. Drugs Aging 2004, 21, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Lisanti, M.P.; Martinez-Outschoorn, U.E.; Lin, Z.; Pavlides, S.; Whitaker-Menezes, D.; Pestell, R.G.; Howell, A.; Sotgia, F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: The seed and soil also needs “fertilizer”. Cell Cycle 2011, 10, 2440–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.K.; Hamed, A.R.; Soltan, M.M.; Hegazy, U.M.; Elgorashi, E.E.; El-Garf, I.A.; Hussein, A.A. In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of alzheimer disease. BMC Complement. Altern. Med. 2013, 13, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Tharmalingam, N.; Ribeiro, N.Q.; Da Silva, D.L.; Naik, M.T.; Cruz, L.I.; Kim, W.; Shen, S.; Dos Santos, J.D.; Ezikovich, K.; D’Agata, E.M.; et al. Auranofin is an effective agent against clinical isolates of Staphylococcus aureus. Future Med. Chem. 2019, 11, 1417–1425. [Google Scholar] [CrossRef]
- Rajasekar, S.; Krishna, T.P.A.; Tharmalingam, N.; Andivelu, I.; Mylonakis, E. Metal-Free C-H Thiomethylation of Quinones Using Iodine and DMSO and Study of Antibacterial Activity. ChemistrySelect 2019, 4, 2281–2287. [Google Scholar] [CrossRef]
- Liu, H.; Shukla, S.; Vera-González, N.; Tharmalingam, N.; Mylonakis, E.; Fuchs, B.B.; Shukla, A. Auranofin Releasing Antibacterial and Antibiofilm Polyurethane Intravascular Catheter Coatings. Front. Cell. Infect. Microbiol. 2019, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Tharmalingam, N.; Rajmuthiah, R.; Kim, W.; Fuchs, B.B.; Jeyamani, E.; Kelso, M.J.; Mylonakis, E. Antibacterial Properties of Four Novel Hit Compounds from a Methicillin-Resistant Staphylococcus aureus–Caenorhabditis elegans High-Throughput Screen. Microb. Drug Resist. 2018, 24, 666–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soo, P.L.; Dunne, M.; Liu, J.; Allen, C. Nano-sized Advanced Delivery Systems as Parenteral Formulation Strategies for Hydrophobic Anti-cancer Drugs. In Nanotechnology in Drug Delivery; de Villiers, M.M., Aramwit, P., Kwon, G.S., Eds.; Springer: New York, NY, USA, 2009; pp. 349–383. [Google Scholar]
- Elke, G.; van Zanten, A.R.H.; Lemieux, M.; McCall, M.; Jeejeebhoy, K.N.; Kott, M.; Jiang, X.; Day, A.G.; Heyland, D.K. Enteral versus parenteral nutrition in critically ill patients: An updated systematic review and meta-analysis of randomized controlled trials. Crit. Care 2016, 20, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapalka, G.M. Chapter 2—Pharmacokinetics. In Nutritional and Herbal Therapies for Children and Adolescents; Kapalka, G.M., Ed.; Academic Press: San Diego, CA, USA, 2010; pp. 13–46. [Google Scholar]
- Ayash, L.J.; Wright, J.E.; Tretyakov, O.; Gonin, R.; Elias, A.; Wheeler, C.; Eder, J.P.; Rosowsky, A.; Antman, K.; Frei, E., 3rd. Cyclophosphamide pharmacokinetics: Correlation with cardiac toxicity and tumor response. J. Clin. Oncol. 1992, 10, 995–1000. [Google Scholar] [CrossRef]
- Swift, T.; Swanson, L.; Geoghegan, M.; Rimmer, S. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 2016, 12, 2542–2549. [Google Scholar] [CrossRef] [Green Version]
- Ueda, A.S.; Chatani, Y.; Tadokoro, H. Structural Studies of Polyesters. IV. Molecular and Crystal Structures of Poly(ethylene succinate) and Poly(ethylene oxalate). Polym. J. 1971, 2, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, W.J.D. Poly(alkylene oxalate) Absorbable Coating for sutures. U.S. Patent 4,105,034, 23 February 1982. [Google Scholar]
- Lee, D.; Khaja, S.; Velasquez-Castano, J.C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W.R.; Murthy, N. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 2007, 6, 765–769. [Google Scholar] [CrossRef]
- Kim, S.; Seong, K.; Kim, O.; Kim, S.; Seo, H.; Lee, M.; Khang, G.; Lee, D. Polyoxalate Nanoparticles as a Biodegradable and Biocompatible Drug Delivery Vehicle. Biomacromolecules 2010, 11, 555–560. [Google Scholar] [CrossRef]
- Swami Vetha, B.S.; Kim, E.-M.; Oh, P.-S.; Kim, S.H.; Lim, S.T.; Sohn, M.-H.; Jeong, H.-J. Curcumin Encapsulated Micellar Nanoplatform for Blue Light Emitting Diode Induced Apoptosis as a New Class of Cancer Therapy. Macromol. Res. 2019, 27, 1179–1184. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S.; Seong, K.; Park, H.; Seo, H.; Khang, G.; Lee, D. A Biodegradable and Biocompatible Drug-Delivery System Based on Polyoxalate Microparticles. J. Biomater. Sci. Polym. Ed. 2011, 22, 1683–1694. [Google Scholar] [CrossRef]
- Paustenbach, D.J.; Winans, B.; Novick, R.M.; Green, S.M. The toxicity of crude 4-methylcyclohexanemethanol (MCHM): Review of experimental data and results of predictive models for its constituents and a putative metabolite. Crit. Rev. Toxicol. 2015, 45 (Suppl. 2), 1–55. [Google Scholar] [CrossRef]
- Mitchell, T.; Kumar, P.; Reddy, T.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Dietary oxalate and kidney stone formation. Am. J. Physiol. Ren. Physiol. 2019, 316, F409–F413. [Google Scholar] [CrossRef]
- Palmieri, F.; Estoppey, A.; House, G.L.; Lohberger, A.; Bindschedler, S.; Chain, P.S.G.; Junier, P. Chapter Two—Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. In Advances in Applied Microbiology; Gadd, G.M., Sariaslani, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 106, pp. 49–77. [Google Scholar]
- Berwin Singh, S.V.; Park, H.; Khang, G.; Lee, D. Hydrogen peroxide-responsive engineered polyoxalate nanoparticles for enhanced wound healing. Macromol. Res. 2018, 26, 40–47. [Google Scholar] [CrossRef]
- Bae, S.; Park, M.; Kang, C.; Dilmen, S.; Kang, T.H.; Kang, D.G.; Ke, Q.; Lee, S.U.; Lee, D.; Kang, P.M. Hydrogen Peroxide-Responsive Nanoparticle Reduces Myocardial Ischemia/Reperfusion Injury. J. Am. Heart Assoc. 2016, 5, e003697. [Google Scholar] [CrossRef]
- Li, R.; Rhee, S.J.; Bae, S.; Su, S.; Kang, C.S.; Ke, Q.; Koo, Y.E.; Ryu, C.; Song, C.G.; Lee, D.; et al. H2O2-Responsive Antioxidant Nanoparticle Attenuates Whole Body Ischemia/Reperfusion-Induced Multi-Organ Damages. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 279–288. [Google Scholar] [CrossRef]
- Erdmann, L.; Uhrich, K.E. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters). Biomaterials 2000, 21, 1941–1946. [Google Scholar] [CrossRef]
- Park, H.; Kim, S.; Kim, S.; Song, Y.; Seung, K.; Hong, D.; Khang, G.; Lee, D. Antioxidant and Anti-Inflammatory Activities of Hydroxybenzyl Alcohol Releasing Biodegradable Polyoxalate Nanoparticles. Biomacromolecules 2010, 11, 2103–2108. [Google Scholar] [CrossRef] [PubMed]
- Jung Lee, C.; Kim, S.Y.; Gu Lee, H.; Yang, J.; Young Park, J.; Rom Cha, S.; Lim, D.-K.; Lee, D.; Khang, G. Preparation and Release Behavior of Atorvastatin Calcuim—Encapsulated Polyoxalate Microspheres. Polym. Korea 2014, 38, 656–663. [Google Scholar]
- Seong, K.; Seo, H.; Ahn, W.; Yoo, D.; Cho, S.; Khang, G.; Lee, D. Enhanced cytosolic drug delivery using fully biodegradable poly(amino oxalate) particles. J. Control. Release 2011, 152, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; Izzo, V.; Corbi, G.; Russomanno, G.; Manzo, V.; De Lise, F.; Di Donato, A.; Filippelli, A. Antioxidant Supplementation in the Treatment of Aging-Associated Diseases. Front. Pharmacol. 2016, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Kim, J.; Park, S.; Khang, G.; Kang, P.M.; Lee, D. Inflammation-Responsive Antioxidant Nanoparticles Based on a Polymeric Prodrug of Vanillin. Biomacromolecules 2013, 14, 1618–1626. [Google Scholar] [CrossRef]
- Berwin Singh, S.V.; Jung, E.; Noh, J.; Yoo, D.; Kang, C.; Hyeon, H.; Kim, G.-W.; Khang, G.; Lee, D. Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 45–55. [Google Scholar] [CrossRef]
- Doria, E.; Buonocore, D.; Focarelli, A.; Marzatico, F. Relationship between human aging muscle and oxidative system pathway. Oxid. Med. Cell Longev. 2012, 2012, 830257. [Google Scholar] [CrossRef] [Green Version]
- Sakellariou, G.K.; Pearson, T.; Lightfoot, A.P.; Nye, G.A.; Wells, N.; Giakoumaki, I.I.; Vasilaki, A.; Griffiths, R.D.; Jackson, M.J.; McArdle, A. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci. Rep. 2016, 6, 33944. [Google Scholar] [CrossRef] [Green Version]
- Sakellariou, G.K.; Pearson, T.; Lightfoot, A.P.; Nye, G.A.; Wells, N.; Giakoumaki, I.I.; Griffiths, R.D.; McArdle, A.; Jackson, M.J. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle. FASEB J. 2016, 30, 3771–3785. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-W.; Kang, C.; Oh, Y.-B.; Ko, M.-H.; Seo, J.-H.; Lee, D. Ultrasonographic Imaging and Anti-inflammatory Therapy of Muscle and Tendon Injuries Using Polymer Nanoparticles. Theranostics 2017, 7, 2463–2476. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Kang, C.; Jung, E.; Yoo, D.; Wu, D.; Lee, D. Porous antioxidant polymer microparticles as therapeutic systems for the airway inflammatory diseases. J. Control. Release 2016, 233, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kang, C.; Park, M.; Samad, M.A.; Kang, T.; Ke, Q.; Lee, D.; Kang, P.M. Abstract 14909: Hydrogen Peroxide-Responsive Nanoparticles Reduce Myocardial Ischemia/Reperfusion Injury. Circulation 2015, 132 (Suppl. 3), A14909. [Google Scholar]
- Kang, C.; Cho, W.; Park, M.; Kim, J.; Park, S.; Shin, D.; Song, C.; Lee, D. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials 2016, 85, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Bae, S.; Hong, D.; Lim, H.; Yoon, J.H.; Hwang, O.; Park, S.; Ke, Q.; Khang, G.; Kang, P.M. H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents. Sci. Rep. 2013, 3, 2233. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.; Kang, C.; Kim, J.; Yoo, D.; Cho, B.-R.; Kang, P.M.; Lee, D. H2O2-responsive antioxidant polymeric nanoparticles as therapeutic agents for peripheral arterial disease. Int. J. Pharm. 2016, 511, 1022–1032. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet. Glob. Health 2016, 4, e609–e616. [Google Scholar] [CrossRef] [Green Version]
- Ożóg, Ł.; Tabarkiewicz, J.; Aebisher, D. Chemiluminescence-driven Dye Excitation for Dark Photodynamic Therapy. Eur. J. Clin. Exp. Med. 2017, 15, 95–98. [Google Scholar] [CrossRef]
- Berwin Singh, S.V.; Kim, J.; Park, H.; Khang, G.; Lee, D. Novel chemi-dynamic nanoparticles as a light-free photodynamic therapeutic system for cancer treatment. Macromol. Res. 2017, 25, 749–755. [Google Scholar] [CrossRef]
- Romanyuk, A.V.; Grozdova, I.D.; Ezhov, A.A.; Melik-Nubarov, N.S. Peroxyoxalate Chemiluminescent Reaction as a Tool for Elimination of Tumour Cells Under Oxidative Stress. Sci. Rep. 2017, 7, 3410. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wu, W.; Ji, S.; Chen, C.; Hu, F.; Kong, D.; Ding, D.; Liu, B. Chemiluminescence-Guided Cancer Therapy Using a Chemiexcited Photosensitizer. Chem 2017, 3, 991–1007. [Google Scholar] [CrossRef] [Green Version]
Generation 0 | Generation 1 | Generation 2 | Generation 3 | |
---|---|---|---|---|
Covalent prodrug incorporation | × | ✓ | ✓ | ✓ |
Redox response | ✓ | ✓ | ✓ | ✓ |
Drug loading capability | ✓ | ✓ | ✓ | ✓ |
Micelle self-assembly incorporation | ✓ | ✓ | ✓ | ✓ |
in vitro evaluations | ✓ | ✓ | ✓ | ✓ |
in vivo evaluations | × | × | ✓ | ✓ |
Systemic drug delivery | × | × | ✓ | ✓ |
Theragnostic applications | × | × | × | ✓ |
✓—present | ×—absent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swami Vetha, B.S.; Adam, A.G.; Aileru, A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. Int. J. Mol. Sci. 2021, 22, 5607. https://doi.org/10.3390/ijms22115607
Swami Vetha BS, Adam AG, Aileru A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. International Journal of Molecular Sciences. 2021; 22(11):5607. https://doi.org/10.3390/ijms22115607
Chicago/Turabian StyleSwami Vetha, Berwin Singh, Angela Guma Adam, and Azeez Aileru. 2021. "Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases" International Journal of Molecular Sciences 22, no. 11: 5607. https://doi.org/10.3390/ijms22115607
APA StyleSwami Vetha, B. S., Adam, A. G., & Aileru, A. (2021). Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. International Journal of Molecular Sciences, 22(11), 5607. https://doi.org/10.3390/ijms22115607