ABE8e with Polycistronic tRNA-gRNA Expression Cassette Sig-Nificantly Improves Adenine Base Editing Efficiency in Nicotiana benthamiana
Abstract
:1. Introduction
2. Results
2.1. ABE8e Induced Higher A-to-G Conversion than ABE7.10
2.2. SgRNA Expression Cassettes Significantly Affected Editing Efficiencies of ABE8e
2.3. ABE8e Induced Higher A-to-G Conversion than ABE7.10 in Transgenic Plantlets
2.4. Off-Target Analysis
3. Discussion
4. Materials and Methods
4.1. Plasmid Construction
4.2. Transient Expression Assay in N. benthamiana
4.3. Deep Amplicon Sequencing and Data Analysis
4.4. PCR Product Cloning and Sanger Sequencing
4.5. Agrobacterium-Mediated Stable Transformation in N. benthamiana
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henikoff, S.; Comai, L. Single-Nucleotide Mutations for Plant Functional Genomics. Annu. Rev. Plant Biol. 2003, 54, 375–401. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Salsman, J.; Dellaire, G. Precision genome editing in the CRISPR era. Biochem. Cell Biol. 2017, 95, 187–201. [Google Scholar] [CrossRef]
- Bharat, S.S.; Li, S.; Li, J.; Yan, L.; Xia, L. Base editing in plants: Current status and challenges. Crop J. 2020, 8, 384–395. [Google Scholar] [CrossRef]
- Hua, K.; Tao, X.; Zhu, J.K. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol. J. 2019, 17, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Kuang, Y.; Ren, B.; Wang, J.; Zhang, D.; Lin, H.; Yang, B.; Zhou, X.; Zhou, H. Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Mol. Plant 2018, 11, 631–634. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S. Precision genome engineering through adenine and cytosine base editing. Nat. Plants 2018, 4, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Negishi, K.; Kaya, H.; Abe, K.; Hara, N.; Saika, H.; Toki, S. An adenine base editor with expanded targeting scope using SpCas9-NGv1 in rice. Plant Biotechnol. J. 2019, 17, 1476–1478. [Google Scholar] [CrossRef]
- Hua, K.; Tao, X.; Liang, W.; Zhang, Z.; Gou, R.; Zhu, J.K. Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnol. J. 2020, 18, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zong, Y.; Wang, Y.; Jin, S.; Zhang, D.; Song, Q.; Zhang, R. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018, 19, 59. [Google Scholar] [CrossRef] [Green Version]
- Hua, K.; Tao, X.; Yuan, F.; Wang, D.; Zhu, J.-K. Precise A·T to G·C Base Editing in the Rice Genome. Mol. Plant 2018, 11, 627–630. [Google Scholar] [CrossRef] [Green Version]
- Lapinaite, A.; Knott, G.J.; Palumbo, C.M.; Lin-Shiao, E.; Richter, M.F.; Zhao, K.T.; Beal, P.A.; Liu, D.R.; Doudna, J.A. DNA capture by a CRISPR-Cas9-guided adenine base editor. Science 2020, 369, 566–571. [Google Scholar] [CrossRef]
- Richter, M.F.; Zhao, K.T.; Eton, E.; Lapinaite, A.; Newby, G.A.; Thuronyi, B.W.; Wilson, C.; Koblan, L.W.; Zeng, J.; Bauer, D.E.; et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 2020, 38, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Ren, B.; Liu, L.; Yan, F.; Li, S.; Wang, G.; Sun, W.; Zhou, X.; Zhou, H. High-efficiency and multiplex adenine base editing in plants using new TadA variants. Mol. Plant 2021, 14, 722–731. [Google Scholar] [CrossRef]
- Li, J.; Xu, R.; Qin, R.; Liu, X.; Kong, F.; Wei, P. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol. Plant 2021, 14, 352–360. [Google Scholar] [CrossRef]
- Xu, Z.; Kuang, Y.; Ren, B.; Yan, D.; Yan, F.; Spetz, C.; Sun, W.; Wang, G.; Zhou, X.; Zhou, H. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 2021, 22, 1–15. [Google Scholar] [CrossRef]
- Kluesner, M.G.; Nedveck, D.A.; Lahr, W.S.; Garbe, J.R.; Abrahante, J.E.; Webber, B.R.; Moriarity, B.S. EditR: A Method to Quantify Base Editing from Sanger Sequencing. CRISPR J. 2018, 1, 239–250. [Google Scholar] [CrossRef]
- Clement, K.; Rees, H.; Canver, M.C.; Gehrke, J.M.; Farouni, R.; Hsu, J.Y.; Cole, M.A.; Liu, D.R.; Joung, J.K.; Bauer, D.E.; et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 2019, 37, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Sretenovic, S.; Liu, S.; Tang, X.; Huang, L.; He, Y.; Liu, L.; Guo, Y.; Zhong, Z.; Liu, G.; et al. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat. Plants 2021, 7, 25–33. [Google Scholar] [CrossRef]
- Qi, Y. Plant Genome Editing with CRISPR Systems; Springer: New York, NY, USA, 2019; Volume 1917, ISBN 978-1-4939-8990-4. [Google Scholar]
- Carretero-Paulet, L.; Librado, P.; Chang, T.H.; Ibarra-Laclette, E.; Herrera-Estrella, L.; Rozas, J.; Albert, V.A. High gene family turnover rates and gene space adaptation in the compact genome of the carnivorous plant utricularia gibba. Mol. Biol. Evol. 2015, 32, 1284–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, L.; Li, J.; Wang, Q.; Xu, Z.; Sun, L.; Alariqi, M.; Manghwar, H.; Wang, G.; Li, B.; Ding, X.; et al. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol. J. 2020, 18, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Chon, C.; Chon, G.; Matsui, Y.; Zeng, H.; Lai, Z.C.; Liu, A. Efficient multiplexed genome engineering with a polycistronic tRNA and CRISPR guide-RNA reveals an important role of detonator in reproduction of Drosophila melanogaster. PLoS ONE 2021, 16, e0245454. [Google Scholar]
- Wang, Z.; Wang, S.; Li, D.; Zhang, Q.; Li, L.; Zhong, C.; Liu, Y.; Huang, H. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol. J. 2018, 16, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.L.; et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef]
Base Editor | Targets | The Number of Transgenic Plants | The Number of Plants with A-to-G Conversion | A-to-G Editing Efficiency | Heterozygous/Homozygous |
---|---|---|---|---|---|
PTG-ABE7.10 | T1 | 48 | 10 | 20.83% | 10/0 |
T2 | 32 | 5 | 15.63% | 5/0 | |
PTG-ABE8e | T1 | 42 | 13 | 30.95% | 11/2 |
T2 | 46 | 28 | 60.87% | 21/7 |
Target | Off-Target Sites | Putative Off-Target Sequences | Chromosome | Start | End | Strand | The Number of Transgenic Plants | Number of Lines with Off-Targets |
---|---|---|---|---|---|---|---|---|
T1 | 1 | TAGGTTCTGAAAATTGAGTTTGG | Niben101Scf08162Ctg007 | 54182 | 54204 | + | 42 | 0 |
2 | AAATTATTGCAAATTGATTTTGG | Niben101Scf08857Ctg003 | 22514 | 22536 | + | 42 | 0 | |
3 | AAGTTAATGAAAAATGAGTTAGG | Niben101Scf04437Ctg038 | 6532 | 6554 | − | 42 | 0 | |
4 | GTACTACTGCAAATTAAGTTAGG | Niben101Scf09870Ctg011 | 8274 | 8296 | − | 42 | 0 | |
T2 | 5 | TACAAGTTGAACTGGGAGTGGGG | Niben101Scf00726Ctg021 | 5225 | 5247 | + | 46 | 0 |
6 | GGCAAATTGAAATGGGAATGTGG | Niben101Scf01483Ctg019 | 9485 | 9507 | + | 46 | 0 | |
7 | TGCAAAATGTGTTGGAATTGGGG | Niben101Scf04386Ctg039 | 16421 | 16443 | − | 46 | 0 | |
8 | TGCAAAACGTGTTGGGATTGGGG | Niben101Scf04636Ctg023 | 11108 | 11130 | + | 46 | 0 | |
9 | TGCAAAATGTGTTGGAATTGGGG | Niben101Scf05346Ctg037 | 7311 | 7333 | − | 46 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, X.; Xie, X.; Deng, L.; Zheng, H.; Pan, H.; Li, D.; Li, L.; Zhong, C. ABE8e with Polycistronic tRNA-gRNA Expression Cassette Sig-Nificantly Improves Adenine Base Editing Efficiency in Nicotiana benthamiana. Int. J. Mol. Sci. 2021, 22, 5663. https://doi.org/10.3390/ijms22115663
Wang Z, Liu X, Xie X, Deng L, Zheng H, Pan H, Li D, Li L, Zhong C. ABE8e with Polycistronic tRNA-gRNA Expression Cassette Sig-Nificantly Improves Adenine Base Editing Efficiency in Nicotiana benthamiana. International Journal of Molecular Sciences. 2021; 22(11):5663. https://doi.org/10.3390/ijms22115663
Chicago/Turabian StyleWang, Zupeng, Xiaoying Liu, Xiaodong Xie, Lei Deng, Hao Zheng, Hui Pan, Dawei Li, Li Li, and Caihong Zhong. 2021. "ABE8e with Polycistronic tRNA-gRNA Expression Cassette Sig-Nificantly Improves Adenine Base Editing Efficiency in Nicotiana benthamiana" International Journal of Molecular Sciences 22, no. 11: 5663. https://doi.org/10.3390/ijms22115663
APA StyleWang, Z., Liu, X., Xie, X., Deng, L., Zheng, H., Pan, H., Li, D., Li, L., & Zhong, C. (2021). ABE8e with Polycistronic tRNA-gRNA Expression Cassette Sig-Nificantly Improves Adenine Base Editing Efficiency in Nicotiana benthamiana. International Journal of Molecular Sciences, 22(11), 5663. https://doi.org/10.3390/ijms22115663