Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments
Abstract
:1. Introduction
2. Pathophysiology and Diagnosis of Knee Osteoarthritis
3. Biochemistry of Osteoarthritis
4. Transcriptomics of Knee Osteoarthritis
- small noncoding RNAs are <200 nucleotides (nt) in length and include small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), microRNAs (miRNAs), transfer RNAs (tRNAs), tRNA-derived fragments (tRFs), small nuclear RNAs (snRNAs) or small nucleolar RNAs (snoRNAs), snoRNA-derived small RNAs (sdRNAs) and small Cajal body-specific RNAs (scaRNAs)
- long noncoding RNAs are longer than 200 nt and may comprise thousands of nucleotides, like ribosomal RNAs (rRNA).
4.1. MicroRNAs in Knee OA
4.2. tRNA-Derived Fragments in Knee OA
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Osteoarthritis Research Society International (OARSI). Osteoarthritis: A Serious Disease; Osteoarthritis Research Society International (OARSI): Mt. Laurel, NJ, USA, 2016; Available online: https://oarsi.org/sites/default/files/library/2018/pdf/oarsi_white_paper_oa_serious_disease121416_1.pdf (accessed on 29 April 2021).
- Department of Economic and Social Affairs, Population Division, UN. World Population to 2300; United Nations: New York, NY, USA, 2004; pp. 4–9. [Google Scholar]
- The Burden of Musculoskeletal Diseases Bone and Joint Decade. Available online: https://www.boneandjointburden.org/ (accessed on 29 April 2021).
- Maetzel, A.; Li, L.C.; Pencharz, J.; Tomlinson, G.; Bombardier, C. Community Hypertension and Arthritis Project Study Team. The economic burden associated with osteoarthritis, rheumatoid arthritis, and hypertension: A comparative study. Ann. Rheum. Dis. 2004, 63, 395–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, K.; Valdes, A.M. Genetic factors in OA pathogenesis. Bone 2012, 51, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Yu, F.; Wen, Y.; Li, P.; Cheng, B.; Ma, M.; Cheng, S.; Zhang, L.; Liang, C.; Liu, L.; et al. Integration of transcriptome-wide association study and messenger RNA expression profile to identify genes associated with osteoarthritis. Bone Jt. Res. 2020, 9, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Pemmari, A.; Leppänen, T.; Hämäläinen, M.; Moilanen, T.; Vuolteenaho, K.; Moilanen, E. Widespread regulation of gene expression by glucocorticoids in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. Arthritis Res. Ther. 2020, 22, 271. [Google Scholar] [CrossRef]
- Soul, J.; Barter, M.J.; Little, C.B.; Young, D.A. OATargets: A knowledge base of genes associated with osteoarthritis joint damage in animals. Ann. Rheum. Dis. 2020, 80, 376–383. [Google Scholar] [CrossRef]
- Tchetina, E.V.; Glemba, K.E.; Markova, G.A.; Naryshkin, E.A.; Taskina, E.A.; Makarov, M.A.; Lila, A.M. Development of postoperative pain in patients with end-stage knee osteoarthritis is associated with upregulation of genes related to extracellular matrix degradation, inflammation, and apoptosis measured in the peripheral blood before knee surgery. Life 2020, 10, 224. [Google Scholar] [CrossRef]
- Lekka, E.; Hall, J. Noncoding RNAs in disease. FEBS Lett. 2018, 592, 2884–2900. [Google Scholar] [CrossRef] [PubMed]
- Gambari, R.; Brognara, E.; Spandidos, D.A.; Fabbri, E. Targeting OncomiRNAs and mimicking tumor suppressor MiRNAs: Νew trends in the development of MiRNA therapeutic strategies in oncology (Review). Int. J. Oncol. 2016, 49, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Keller, A.; Meese, E. Can circulating MiRNAs live up to the promise of being minimal invasive biomarkers in clinical settings? Wiley Interdiscip. Rev. RNA 2016, 7, 148–156. [Google Scholar] [CrossRef]
- Cristodero, M.; Polacek, N. The multifaceted regulatory potential of tRNA-derived fragments. Non-Coding RNA Investig. 2017, 1, 7. [Google Scholar] [CrossRef]
- Keam, S.P.; Hutvagner, G. TRNA-Derived Fragments (TRFs): Emerging new roles for an ancient RNA in the regulation of gene expression. Life 2015, 5, 1638–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Anuvat, K.; John, L.; Davis, M. Scientific American pain management—Arthritis of the knee. Decker: Pain related disease states. 2017. Available online: https://scholar.google.com/scholar_lookup?title=Scientific+American+Pain+Management+-+Arthritis+of+the+knee&author=V+Sharma&author=K+Anuvat&author=L+John&author=M+Davis&publication_year=2017& (accessed on 29 April 2021).
- Richebé, P.; Capdevila, X.; Rivat, C. Persistent postsurgical pain: Pathophysiology and preventative pharmacologic considerations. Anesthesiology 2018, 129, 590–607. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of osteo-arthrosis. Ann. Rheum. Dis 1957, 16, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Mora, J.C.; Przkora, R.; Cruz-Almeida, Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. J. Pain Res. 2018, 11, 2189–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulay, G.S.; Cooper, C.; Dennison, E.M. Knee pain, knee injury, knee osteoarthritis & work. Best Pract. Res. Clin. Rheumatol. 2015, 29, 454–461. [Google Scholar] [CrossRef]
- National Clinical Guideline Centre (UK). Osteoarthritis: Care and Management in Adults, 1st ed.; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- Bhosale, A.M.; Richardson, J.B. Articular cartilage: Structure, injuries and review of management. Br. Med. Bull. 2008, 87, 77–95. [Google Scholar] [CrossRef]
- Charlier, E.; Relic, B.; Deroyer, C.; Malaise, O.; Neuville, S.; Collée, J.; Malaise, M.G.; De Seny, D. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int. J. Mol. Sci. 2016, 17, 2146. [Google Scholar] [CrossRef] [Green Version]
- Linkermann, A.; Green, D.R. Necroptosis. N. Engl. J. Med. 2014, 370, 455–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumeci, G.; Castrogiovanni, P.; Trovato, F.M.; Weinberg, A.M.; Al-Wasiyah, M.K.; Alqahtani, M.H.; Mobasheri, A. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int. J. Mol. Sci. 2015, 16, 20560–20575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riegger, J.; Brenner, R.E. Pathomechanisms of posttraumatic osteoarthritis: Chondrocyte behavior and fate in a precarious environment. Int. J. Mol. Sci. 2020, 21, 1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel-Pelletier, J.; Alaaeddine, N.; Pelletier, J.P. Cytokines and their role in the pathophysiology of osteoarthritis. Front. Biosci. 1999, 4, 694–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef]
- Stöve, J.; Huch, K.; Günther, K.P.; Scharf, H.P. Interleukin-1beta induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology 2000, 68, 144–149. [Google Scholar] [CrossRef]
- Chadjichristos, C.; Ghayor, C.; Kypriotou, M.; Martin, G.; Renard, E.; Ala-Kokko, L.; Suske, G.; de Crombrugghe, B.; Pujol, J.P.; Galéra, P. Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J. Biol. Chem. 2003, 278, 39762–39772. [Google Scholar] [CrossRef] [Green Version]
- Bowles, R.D.; Mata, B.A.; Bell, R.D.; Mwangi, T.K.; Huebner, J.L.; Kraus, V.B.; Setton, L.A. In vivo luminescence imaging of NF-κB activity and serum cytokine levels predict pain sensitivities in a rodent model of osteoarthritis. Arthritis Rheumatol. 2014, 66, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Carson, D.A.; Lotz, M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J. Immunol. 1990, 144, 499–505. [Google Scholar]
- Bender, S.; Haubeck, H.D.; Van de Leur, E.; Dufhues, G.; Schiel, X.; Lauwerijns, J.; Greiling, H.; Heinrich, P.C. Interleukin-1 beta induces synthesis and secretion of interleukin-6 in human chondrocytes. FEBS Lett. 1990, 263, 321–324. [Google Scholar] [CrossRef] [Green Version]
- Porée, B.; Kypriotou, M.; Chadjichristos, C.; Beauchef, G.; Renard, E.; Legendre, F.; Melin, M.; Gueret, S.; Hartmann, D.J.; Malléin-Gerin, F. Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J. Biol. Chem. 2008, 283, 4850–4865. [Google Scholar] [CrossRef] [Green Version]
- Mabey, T.; Honsawek, S. Cytokines as biochemical markers for knee osteoarthritis. World J. Orthop. 2015, 6, 95–105. [Google Scholar] [CrossRef]
- Westacott, C.I.; Urban, J.P.G.; Goldring, M.B.; Elson, C.J. The effects of pressure on chondrocyte tumour necrosis factor receptor expression. Biorheology 2002, 39, 125–132. [Google Scholar] [PubMed]
- Whittaker, M.; Floyd, C.D.; Brown, P.; Gearing, A.J. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem. Rev. 1999, 99, 2735–2776. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Ecker, M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int. J. Mol. Sci. 2021, 22, 1742. [Google Scholar] [CrossRef] [PubMed]
- Stanton, H.; Rogerson, F.M.; East, C.J.; Golub, S.B.; Lawlor, K.E.; Meeker, C.T. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005, 434, 648–652. [Google Scholar] [CrossRef]
- Chengjie, L.; Xudong, W.; Xianjian, Q.; Zizhao, W.; Bo, G.; Lei, L.; Guoyan, L.; Hang, Z.; Xiaoming, Y.; Yan, P.; et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction. Bone Res. 2019, 7, 8. [Google Scholar]
- Mohammad, Y.A.; Tariq, M.H. Interleukin-1β induced stress granules sequester COX-2 mRNA and regulates its stability and translation in human OA chondrocytes. Sci. Rep. 2016, 6, 27611. [Google Scholar] [CrossRef] [Green Version]
- Mattick, J.S.; Makunin, I.V. Non-Coding RNA. Hum. Mol. Genet. 2006, 15, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Mayr, B.; Müller, E.E.; Schäfer, C.; Droese, S.; Schönfelder, M.; Niebauer, J. Exercise-Induced changes in miRNA expression in coronary artery disease. Clin. Chem. Lab. Med. 2021. [Google Scholar] [CrossRef]
- Luo, J.; Xie, M.; Hou, Y.; Ma, W.; Jin, Y.; Chen, J.; Li, C.; Zhao, K.; Chen, N.; Xu, L.; et al. A novel epigenetic mechanism unravels hsa-miR-148a-3p-mediated CYP2B6 downregulation in alcoholic hepatitis disease. Biochem. Pharmacol. 2021, 188, 114582. [Google Scholar] [CrossRef]
- Shen, L.; Wang, C.; Chen, L.; Wong, G. Dysregulation of MicroRNAs and PIWI-Interacting RNAs in a Caenorhabditis elegans Parkinson’s disease model overexpressing human alpha-synuclein and influence of tdp-1. Front. Neurosci. 2021, 15, 600462. [Google Scholar] [CrossRef]
- Foers, A.D.; Garnham, A.L.; Smyth, G.K.; Proudman, S.M.; Cheng, L.; Hill, A.F.; Pang, K.C.; Wicks, I.P. Circulating small noncoding RNA biomarkers of response to triple disease-modifying antirheumatic drug therapy in white women with early rheumatoid arthritis. J. Rheumatol. 2020, 47, 1746–1751. [Google Scholar] [CrossRef]
- Dubois, C.; Kong, G.; Tran, H.; Li, S.; Pang, T.Y.; Hannan, A.J.; Renoir, T. Small non-coding RNAs are dysregulated in huntington’s disease transgenic mice independently of the therapeutic effects of an environmental intervention. Mol. Neurobiol. 2021. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, C.H.; Yang, J.J.; Xu, P.P.; Yi, P.J.; Hu, M.L.; Peng, W.J. Genome-Wide analysis of hippocampal transfer RNA-derived small RNAs identifies new potential therapeutic targets of Bushen Tiansui formula against Alzheimer’s disease. J. Integr. Med. 2021, 19, 135–143. [Google Scholar] [CrossRef]
- Improta-Caria, A.C.; Nonaka, C.K.V.; Cavalcante, B.R.R.; De Sousa, R.A.L.; Aras Júnior, R.; Souza, B.S.F. Modulation of MicroRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease. Int. J. Mol. Sci. 2020, 21, 4977. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; et al. The nuclear RNase III drosha initiates MicroRNA processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Medvid, R.; Melton, C.; Jaenisch, R.; Blelloch, R. DGCR8 is essential for MicroRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 2007, 39, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Morlando, M.; Ballarino, M.; Gromak, N.; Pagano, F.; Bozzoni, I.; Proudfoot, N.J. Primary MicroRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 2008, 15, 902–909. [Google Scholar] [CrossRef]
- Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17, 3011–3016. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366. [Google Scholar] [CrossRef]
- Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Ørom, U.A.; Nielsen, F.C.; Lund, A.H. MicroRNA-10a binds the 5′UTR of ribosomal protein MRNAs and enhances their translation. Mol. Cell 2008, 30, 460–471. [Google Scholar] [CrossRef]
- Friedman, R.C.; Farh, K.K.-H.; Burge, C.B.; Bartel, D.P. Most mammalian MRNAs are conserved targets of MicroRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browse miRBase by Species (271 Organisms). Available online: http://www.mirbase.org/cgi-bin/browse.pl?org=hsa (accessed on 28 April 2021).
- Ghafouri-Fard, S.; Shoorei, H.; Taheri, M. miRNA profile in ovarian cancer. Exp. Mol. Pathol. 2020, 113, 104381. [Google Scholar] [CrossRef]
- Fridrichova, I.; Zmetakova, I. MicroRNAs contribute to breast cancer invasiveness. Cells 2019, 8, 1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, A.; Fujita, Y.; Otsuka, K.; Sasaki, A.; Suzuki, H.; Matsumoto, T.; Sugai, T. Differential expression of microRNAs in colorectal cancer: Different patterns between isolated cancer gland and stromal cells. Pathol. Int. 2020, 70, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Benz, F.; Roy, S.; Trautwein, C. Circulating MicroRNAs as biomarkers for sepsis. Int. J. Mol. Sci. 2016, 17, 78. [Google Scholar] [CrossRef] [Green Version]
- Trachana, V.; Ntoumou, E.; Anastasopoulou, L.; Tsezou, A. Studying MicroRNAs in osteoarthritis: Critical overview of different analytical approaches. Mech. Ageing Dev. 2018, 171, 15–23. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, J.; Jing, W.; Yan, S.; Wang, X.; Xiao, C.; Ma, B. Role of MiR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. Int. J. Mol. Med. 2014, 34, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Zhang, Z.; Chen, W.; Huang, G.; He, A.; Hou, C.; Long, Y.; Yang, Z.; Zhang, Z.; Liao, W. MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthr. Cartil. 2016, 24, 932–941. [Google Scholar] [CrossRef]
- Li, S.; Stöckl, S.; Lukas, C.; Götz, J.; Herrmann, M.; Federlin, M.; Grässel, S. hBMSC-Derived extracellular vesicles attenuate IL-1beta-induced catabolic effects on OA-chondrocytes by regulating pro-inflammatory signaling pathways. Front. Bioeng. Biotechnol. 2020, 8, 603598. [Google Scholar] [CrossRef]
- Oliviero, A.; Della Porta, G.; Peretti, G.M.; Maffulli, N. Corrigendum to: MicroRNA in osteoarthritis: Physiopathology, diagnosis and therapeutic challenge. Br. Med. Bull. 2019. [Google Scholar] [CrossRef]
- Boehme, K.A.; Rolauffs, B. Onset and progression of human osteoarthritis-can growth factors, inflammatory cytokines, or differential MiRNA expression concomitantly induce proliferation, ECM degradation, and inflammation in articular cartilage? Int. J. Mol. Sci. 2018, 19, 2282. [Google Scholar] [CrossRef] [Green Version]
- Malemud, C.J. MicroRNAs and osteoarthritis. Cells 2018, 7, 92. [Google Scholar] [CrossRef]
- Borgonio Cuadra, V.M.; González-Huerta, N.C.; Romero-Córdoba, S.; Hidalgo-Miranda, A.; Miranda-Duarte, A. Altered expression of circulating MicroRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS ONE 2014, 9, e97690. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, J.; Yang, S.; Liu, X.; Ye, S.; Tian, H. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp. Mol. Med. 2014, 46, e79. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.W.; Watkins, G.; Le Good, N.; Roberts, S.; Murphy, C.L.; Brockbank, S.M.V.; Needham, M.R.C.; Read, S.J.; Newham, P. The identification of differentially expressed MicroRNA in osteoarthritic tissue that modulate the production of TNF-Alpha and MMP13. Osteoarthr. Cartil. 2009, 17, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-H.; Tavallaee, G.; Tokar, T.; Nakamura, A.; Sundararajan, K.; Weston, A.; Sharma, A.; Mahomed, N.N.; Gandhi, R.; Jurisica, I.; et al. Identification of Synovial Fluid MicroRNA Signature in Knee Osteoarthritis: Differentiating Early- and Late-Stage Knee Osteoarthritis. Osteoarthr. Cartil. 2016, 24, 1577–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Li, Q.; Wang, J.; Jin, S.; Zheng, H.; Lin, J.; He, F.; Zhang, H.; Ma, S.; Mei, J.; et al. MiR-29b-3p promotes chondrocyte apoptosis and facilitates the occurrence and development of osteoarthritis by targeting PGRN. J. Cell. Mol. Med. 2017, 21, 3347–3359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostopoulou, F.; Malizos, K.N.; Papathanasiou, I.; Tsezou, A. MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes. Arthritis Res. Ther. 2015, 17, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, W.-S.; Ko, J.-Y.; Wu, R.-W.; Sun, Y.-C.; Chen, Y.-S.; Wu, S.-L.; Weng, L.-H.; Jahr, H.; Wang, F.-S. MicroRNA-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12. Cell Death Dis. 2018, 9, 919. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Jiang, D. HOTAIR-Induced apoptosis is mediated by sponging MiR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis. Cell Biol. Int. 2020, 44, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hassan, M.Q.; Volinia, S.; van Wijnen, A.J.; Stein, J.L.; Croce, C.M.; Lian, J.B.; Stein, G.S. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc. Natl. Acad. Sci. USA 2008, 105, 13906–13911. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Zhao, X.; Wang, C.; Geng, Y.; Zhao, J.; Xu, J.; Zuo, B.; Zhao, C.; Wang, C.; Zhang, X. MicroRNA-145 attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4. Cell Death Dis. 2017, 8, e3140. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Dai, L.; Yu, D.; Chen, Q.; Zhang, X.; Dai, K. MiR-146a, an IL-1β responsive MiRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res. Ther. 2012, 14, R75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.H.; Shih, K.S.; Wu, Y.W.; Wang, A.W.; Yang, C.R. Histone deacetylase inhibitors increase MicroRNA-146a expression and enhance negative regulation of interleukin-1β signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthr. Cartil. 2013, 21, 1987–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheleschi, S.; Gallo, I.; Barbarino, M.; Giannotti, S.; Mondanelli, N.; Giordano, A.; Tenti, S.; Fioravanti, A. MicroRNA mediate visfatin and resistin induction of oxidative stress in human osteoarthritic synovial fibroblasts via NF-ΚB pathway. Int. J. Mol. Sci. 2019, 20, 5200. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Rampersaud, Y.R.; Sharma, A.; Lewis, S.J.; Wu, B.; Datta, P.; Sundararajan, K.; Endisha, H.; Rossomacha, E.; Rockel, J.S.; et al. Identification of MicroRNA-181a-5p and MicroRNA-4454 as mediators of facet cartilage degeneration. JCI Insight 2016, 1, e86820. [Google Scholar] [CrossRef]
- Song, J.; Lee, M.; Kim, D.; Han, J.; Chun, C.-H.; Jin, E.-J. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem. Biophys. Res. Commun. 2013, 431, 210–214. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Xie, Y.; Wang, L.; Wang, J.; Lei, L.; Huang, M.; Zhang, C. Prediction of MicroRNA and gene target in synovium-associated pain of knee osteoarthritis based on canonical correlation analysis. Biomed. Res. Int. 2019, 2019, 4506876. [Google Scholar] [CrossRef]
- Lu, J.; Ji, M.-L.; Zhang, X.-J.; Shi, P.-L.; Wu, H.; Wang, C.; Im, H.-J. MicroRNA-218-5p as a potential target for the treatment of human osteoarthritis. Mol. Ther. 2017, 25, 2676–2688. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Guan, Y.; Tian, S.; Wang, Y.; Sun, K.; Chen, Q. Mechanical and IL-1beta Responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. Int. J. Mol. Sci. 2016, 17, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Sheng, P.; Huang, Z.; Meng, F.; Kang, Y.; Huang, G.; Zhang, Z.; Liao, W.; Zhang, Z. MicroRNA-381 regulates chondrocyte hypertrophy by inhibiting histone deacetylase 4 expression. Int. J. Mol. Sci. 2016, 17, 1377. [Google Scholar] [CrossRef]
- Swingler, T.E.; Wheeler, G.; Carmont, V.; Elliott, H.R.; Barter, M.J.; Abu-Elmagd, M.; Donell, S.T.; Boot-Handford, R.P.; Hajihosseini, M.K.; Münsterberg, A.; et al. The expression and function of MicroRNAs in chondrogenesis and osteoarthritis. Arthritis Rheumatol. 2012, 64, 1909–1919. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Guo, K.; Su, S.; Li, J.; Li, C. MiR-486-5p is upregulated in osteoarthritis and inhibits chondrocyte proliferation and migration by suppressing SMAD2. Mol. Med. Rep. 2018, 18, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Gu, R.; Liu, N.; Luo, S.; Huang, W.; Zha, Z.; Yang, J. MicroRNA-9 regulates the development of knee osteoarthritis through the NF-KappaB1 pathway in chondrocytes. Medicine 2016, 95, e4315. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Z.; Xiu-Song, D.; Zhi-Yan, W.; Zheng-Qi, B.; Jian-Zhong, G. MicroRNA-26a reduces synovial inflammation and cartilage injury in osteoarthritis of knee joints through impairing the NF-κB signaling pathway. Biosci. Rep. 2019, 39, BSR20182025. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Xu, J.; Chen, L.; Wu, H.; Feng, W.; Zheng, Y.; Li, P.; Zhang, H.; Zhang, L.; Chi, G.; et al. MicroRNA-27b targets CBFB to inhibit differentiation of human bone marrow mesenchymal stem cells into hypertrophic chondrocytes. Stem Cell Res. Ther. 2020, 11, 392. [Google Scholar] [CrossRef]
- Rasheed, Z.; Rasheed, N.; Abdulmonem, W.A.; Muhammad, I.K. MicroRNA-125b-5p regulates IL-1β induced inflammatory genes via targeting TRAF6-mediated MAPKs and NF-κB signaling in human osteoarthritic chondrocytes. Sci. Rep. 2019, 9, 6882. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Cheon, E.J.; Lee, M.H.; Kim, H.A. MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1β-induced catabolic effects in human chondrocytes. Arthritis Rheumatol. 2013, 65, 3141–3152. [Google Scholar] [CrossRef]
- Miyaki, S.; Sato, T.; Inoue, A.; Otsuki, S.; Ito, Y.; Yokoyama, S.; Kato, Y.; Takemoto, F.; Nakasa, T.; Yamashita, S.; et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010, 24, 1173–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, H.-B.; Zeng, Y.; Liu, S.-Y.; Zhou, Z.-K.; Chen, Y.-N.; Cheng, J.-Q.; Lu, Y.-R.; Shen, B. Intra-Articular injection of MicroRNA-140 (MiRNA-140) Alleviates Osteoarthritis (OA) progression by modulating Extracellular Matrix (ECM) homeostasis in rats. Osteoarthr. Cartil. 2017, 25, 1698–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyaki, S.; Nakasa, T.; Otsuki, S.; Grogan, S.P.; Higashiyama, R.; Inoue, A.; Kato, Y.; Sato, T.; Lotz, M.K.; Asahara, H. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheumatol. 2009, 60, 2723–2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Zhuang, H.; Wang, G.; Li, Z.; Zhang, H.; Yu, T.; Zhang, B. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells. Inflamm. Res. 2012, 61, 503–509. [Google Scholar] [CrossRef]
- Karlsen, T.A.; Jakobsen, R.B.; Mikkelsen, T.S.; Brinchmann, J.E. MicroRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev. 2014, 23, 290–304. [Google Scholar] [CrossRef] [Green Version]
- Vonk, L.A.; Kragten, A.H.M.; Dhert, W.J.A.; Saris, D.B.F.; Creemers, L.B. Overexpression of Hsa-MiR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthr. Cartil. 2014, 22, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Santini, P.; Politi, L.; Vedova, P.D.; Scandurra, R.; Scotto d’Abusco, A. The inflammatory circuitry of MiR-149 as a pathological mechanism in osteoarthritis. Rheumatol. Int. 2014, 34, 711–716. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, X.; Li, J.; Zhao, G. MiR-210 inhibits NF-ΚB signaling pathway by targeting DR6 in osteoarthritis. Sci. Rep. 2015, 5, 12775. [Google Scholar] [CrossRef]
- Xin, Z.; Feng-Chao, Z.; Yong, P.; Dong-Ya, L.; Sheng-Cheng, Y.; Shao-Song, S.; Kai-Jin, G. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway. J. Mol. Med. 2017, 95, 615–627. [Google Scholar] [CrossRef]
- Song, J.; Kim, D.; Lee, C.H.; Lee, M.S.; Chun, C.-H.; Jin, E.-J. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. J. Biomed. Sci. 2013, 20, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.J.; Cheon, E.J.; Kim, H.A. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1β-induced catabolic effects in human articular chondrocytes. Osteoarthr. Cartil. 2013, 21, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kuscu, C.; Dutta, A. Biogenesis and function of Transfer RNA-related Fragments (tRFs). Trends Biochem. Sci. 2016, 41, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Mleczko, A.M.; Celichowski, P.; Bąkowska-Żywicka, K. Ex-Translational function of tRNAs and their fragments in cancer. Acta Biochim. Pol. 2014, 61, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebetsberger, J.; Polacek, N. Slicing TRNAs to boost functional NcRNA diversity. RNA Biol. 2013, 10, 1798–1806. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S.; Ivanov, P.; Hu, G.-F.; Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell. Biol. 2009, 185, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Cole, C.; Sobala, A.; Lu, C.; Thatcher, S.R.; Bowman, A.; Brown, J.W.S.; Green, P.J.; Barton, G.J.; Hutvagner, G. Filtering of deep sequencing data reveals the existence of abundant dicer-dependent small RNAs derived from TRNAs. RNA 2009, 15, 2147–2160. [Google Scholar] [CrossRef] [Green Version]
- Babiarz, J.E.; Ruby, J.G.; Wang, Y.; Bartel, D.P.; Blelloch, R. Mouse ES cells express endogenous ShRNAs, SiRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev. 2008, 22, 2773–2785. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, J.M.; Seila, A.C.; Yeo, G.W.; Sharp, P.A. RNA sequence analysis defines dicer’s role in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 2007, 104, 18097–18102. [Google Scholar] [CrossRef] [Green Version]
- Maute, R.L.; Schneider, C.; Sumazin, P.; Holmes, A.; Califano, A.; Basso, K.; Dalla-Favera, R. TRNA-Derived MicroRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, P.; Emara, M.M.; Villen, J.; Gygi, S.P.; Anderson, P. Angiogenin-Induced TRNA fragments inhibit translation initiation. Mol. Cell 2011, 43, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebetsberger, J.; Wyss, L.; Mleczko, A.M.; Reuther, J.; Polacek, N. A TRNA-derived fragment competes with MRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017, 14, 1364–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mleczko, A.M.; Celichowski, P.; Bąkowska-Żywicka, K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases. Biochim. Biophys. Acta Gene Regul. Mech. 2018, 1861, 647–656. [Google Scholar] [CrossRef]
- Kuscu, C.; Kumar, P.; Kiran, M.; Su, Z.; Malik, A.; Dutta, A. TRNA Fragments (TRFs) guide ago to regulate gene expression post-transcriptionally in a dicer-independent manner. RNA 2018, 24, 1093. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mudunuri, S.B.; Anaya, J.; Dutta, A. TRFdb: A database for transfer RNA fragments. Nucleic Acids Res. 2015, 43, D141–D145. [Google Scholar] [CrossRef]
- Sacitharan, P.K.; Vincent, T.L. Cellular ageing mechanisms in osteoarthritis. Mamm. Genome 2016, 27, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaskas, P.; Green, J.A.; Haqqi, T.M.; Dyer, P.; Kharaz, Y.A.; Fang, Y.; Liu, X.; Welting, T.J.M.; Peffers, M.J. Small non-coding RNAome of ageing chondrocytes. Int. J. Mol. Sci. 2020, 21, 5675. [Google Scholar] [CrossRef]
- Green, J.A.; Ansari, M.Y.; Ball, H.C.; Haqqi, T.M. tRNA-Derived Fragments (tRFs) regulate post-transcriptional gene expression via AGO-dependent mechanism in IL-1β stimulated chondrocytes. Osteoarthr. Cartil. 2020, 28, 1102–1110. [Google Scholar] [CrossRef]
- Haiser, H.J.; Karginov, F.V.; Hannon, G.J.; Elliot, M.A. Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res. 2008, 36, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Reifur, L.; Garcia-Silva, M.R.; Poubel, S.B.; Alves, L.R.; Arauco, P.; Buiar, D.K.; Goldenberg, S.; Cayota, A.; Dallagiovanna, B. Distinct subcellular localization of tRNA-derived fragments in the infective metacyclic forms of Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz 2012, 107, 816–819. [Google Scholar] [CrossRef] [Green Version]
microRNA | Functional Effect of Increased/Decreased miRNA Expression | Ref. |
---|---|---|
miR-16 ↑ | inhibition of FGFR by targeting SMAD3, altered proliferation and increased apoptosis, TGF-β signaling pathway affected | [71] |
miR-21 ↑ | inhibition of GDF-5 expression | [72] |
miR-23a ↑ | inhibition of FGFR by targeting SMAD3, altered proliferation and increased apoptosis, TGF-β signaling pathway affected | [71] |
miR-25 ↑ | WFA-induced upregulation of COX-2 expression, mediation of inflammatory responses in chondrocytes | [73] |
miR-27b ↑ | suppression of RC3H1 and QKI in OA synovium | [74] |
miR-29b ↑ | induction of chondrocyte apoptosis by targeting progranulin | [75] |
miR-30b ↑ | cartilage matrix degradation by targeting SOX9, ADAMTS-5 and ERG | [71] |
miR-30c ↑ | cartilage matrix degradation by targeting SOX9, ADAMTS-5 and ERG | [71] |
miR-33a ↑ | upregulation of MMP-13 and ECM degradation, regulation of cholesterol synthesis in TGF-β1/Akt/SREBP-2 pathway and cholesterol efflux-related ApoA1 and ABCA1 | [76] |
miR-34b ↑ | modulation of OA chondrocyte proliferation by targeting CYR61, which inhibits ADAMTS-4 induced aggrecan degradation in cartilage | [73] |
miR-104 ↑ | unknown | [73] |
miR-122a ↑ | unknown | [73] |
miR-126 ↑ | unknown | [71] |
miR-128a ↑ | repression of chondrocyte autophagy by targeting Atg12 | [77] |
miR-130a ↑ | sponging effect by aberrantly highly expressed HOTAIR lncRNA, massive apoptosis events, suppression of autophagy in chondrocytes | [78] |
miR-133a ↑ | inhibition of synovium pain-related genes, especially DST and TBXAS1 | [79] |
miR-135a ↑ | unknown | [73] |
miR-135b ↑ | unknown | [73] |
miR-139 ↑ | inhibition of MCPIP1, activation of IL-6 and apoptosis | [73] |
miR-144 ↑ | unknown | [73] |
miR-145 ↑ | attenuation of TNF-α-driven cartilage matrix degradation by direct suppression of MKK4 | [80] |
miR-146a ↑ | targeting SMAD4 disturbing TGF-β pathway, increased apoptosis, upregulation of VEGF | [81,82,83] |
miR-147 ↑ | unknown | [74] |
miR-181a ↑ | inhibition of chondrocytes proliferation and induction of apoptosis by targeting PTEN | [84] |
miR-181b ↑ | articular cartilage degeneration, destruction of lumbar facet joint cartilage | [85] |
miR-184 ↑ | unknown | [71] |
miR-186 ↑ | unknown | [71] |
miR-200a ↑ | unknown | [73] |
miR-211 ↑ | unknown | [73] |
miR-215 ↑ | inhibition of synovium pain-related genes, especially DST and TBXAS1 | [86] |
miR-218 ↑ | inhibition the PI3K/Akt/mTOR signaling pathway, cartilage destruction | [87] |
miR-224 ↑ | inhibition of synovium pain-related genes, especially DST and TBXAS1 | [86] |
miR-299 ↑ | unknown | [73] |
miR-335 ↑ | inhibition of synovium pain-related genes, especially DST and TBXAS1 | [86] |
miR-345 ↑ | unknown | [71] |
miR-365 ↑ | upregulated expression of catabolic COL10A1 and MMP-13 by targeting HDAC4, activation of IL-6 and apoptosis | [88] |
miR-381 ↑ | upregulation of MMP13 and RUNX2 expression via targeting of HDAC4 cartilage degeneration | [89] |
miR-455 ↑ | regulating TGF-β signalling by suppression of the Smad2/3 pathway, targeting ACVR2B, SMAD2, CHRDL1 | [90] |
miR-486 ↑ | inhibition of chondrocyte proliferation and migration by suppressing SMAD2 gene | [91] |
miR-885 ↑ | unknown | [71] |
miR-9 ↓ | increased chondrocytes proliferation and inhibition of cell apoptosis by targeting NF-κB | [92] |
miR-26 ↓ | induction of NF-κB signaling pathway | [93] |
miR-27b ↓ | inhibition of MMP-13 | [94] |
miR-29a ↓ | inhibition of SMAD3, NFκB and WNT signaling pathway, part of ECM remodeling machinery | [71] |
miR-107 ↓ | unknown | [73] |
miR-125b ↓ | ADAMTS-4 - induced aggrecan degradation in cartilage | [95] |
miR-127 ↓ | decreased ECM synthesis by targeting IL-1β induced MMP-13 | [96] |
miR-140 ↓ | targeting IGFR, ADAMTS5, MMP-13, IGFBP5 and RALA cartilage development and homeostasis, development of age-related OA-like changes | [97,98,99,100,101] |
miR-148a ↓ | targeting COL10A1, MMP13 and ADAMTS5, inhibition of hypertrophic differentiation, production and deposition of type II collagen and proteoglycan retention | [102] |
miR-149 ↓ | upregulation of TNFα, IL1β and IL6, activation of inflammation by targeting TNFα | [73,103] |
miR-210 ↓ | inhibition of NF-κB signaling pathway by targeting DR6 increasing inflammation | [104] |
miR-221 ↓ | activation of expression of catabolic genes, degeneration of cartilage tissues by upregulated expression of SDF1 | [105] |
miR-483 ↓ | upregulation of catabolic genes expression, inhibition of TGF-β signaling pathway | [71] |
miR-488 ↓ | upregulation of catabolic genes expression by targeting ZIP8 | [106] |
miR-558 ↓ | inhibition of COX-2 expression, inhibition of IL-1β-stimulated catabolic effect, altered inhibition of inflammatory factors | [107] |
tRNA Isoacceptor | Codon Usage | 5’-tRF | 3’-tRF |
---|---|---|---|
tRNA-Ala-CGA | 18.6 | ↑ | |
tRNA-Ala-CGG | 28.5 | ||
tRNA-Ala-CGU | 16.0 | ||
tRNA-Ala-CGC | 7.6 | ||
tRNA-Arg-GCA | 4.7 | ||
tRNA-Arg-GCG | 10.9 | ||
tRNA-Arg-GCU | 6.3 | ||
tRNA-Arg-GCC | 11.9 | ||
tRNA-Arg-UCU | 11.5 | ||
tRNA-Arg-UCC | 11.4 | ||
tRNA-Asn-UUA | 16.7 | ||
tRNA-Asn-UUG | 19.5 | ↑ | |
tRNA-Asp-CUA | 22.3 | ||
tRNA-Asp-CUG | 26.0 | ↑ | |
tRNA-Cys-ACA | 9.9 | ||
tRNA-Cys-ACG | 12.2 | ↑ | |
tRNA-Gln-CUU | 29.0 | ||
tRNA-Gln-CUC | 40.8 | ↑ | |
tRNA-Glu-GUU | 11.8 | ↓ | ↑ |
tRNA-Glu-GUC | 34.6 | ↓ | |
tRNA-Gly-CCA | 10.8 | ||
tRNA-Gly-CCG | 22.8 | ↓ | ↑ |
tRNA-Gly-CCU | 16.3 | ||
tRNA-Gly-CCC | 16.4 | ↓ | |
tRNA-His-GUA | 10.4 | ||
tRNA-His-GUG | 14.9 | ↑ | |
tRNA-Ile-UAA | 15.7 | ||
tRNA-Ile-UAG | 21.4 | ↑ | |
tRNA-Ile-UAU | 7.1 | ||
tRNA-Leu-AAU | 7.2 | ||
tRNA-Leu-AAC | 12.6 | ||
tRNA-Leu-GAA | 12.8 | ||
tRNA-Leu-GAG | 19.4 | ||
tRNA-Leu-GAU | 6.9 | ||
tRNA-Leu-GAC | 40.3 | ↑ | |
tRNA-Lys-UUU | 24.0 | ↑ | |
tRNA-Lys-UUC | 32.9 | ↑ | |
tRNA-Met-UAC | 22.3 | ||
tRNA-Phe-AAA | 16.9 | ||
tRNA-Phe-AAG | 20.4 | ||
tRNA-Pro-GGA | 17.3 | ||
tRNA-Pro-GGG | 20.0 | ||
tRNA-Pro-GGU | 16.7 | ||
tRNA-Pro-GGC | 7.0 | ↓ | |
tRNA-Ser-AGA | 14.6 | ||
tRNA-Ser-AGG | 17.4 | ||
tRNA-Ser-AGU | 11.7 | ||
tRNA-Ser-AGC | 4.5 | ||
tRNA-Ser-UCA | 11.9 | ||
tRNA-Ser-UCG | 19.4 | ||
tRNA-Thr-UGA | 12.8 | ||
tRNA-Thr-UGG | 19.2 | ||
tRNA-Thr-UGU | 14.8 | ||
tRNA-Thr-UGC | 6.2 | ||
tRNA-Trp-ACC | 12.8 | ||
tRNA-Tyr-AUA | 12.0 | ||
tRNA-Tyr-AUG | 15.6 | ↑ | |
tRNA-Val-CAA | 10.9 | ↓ | |
tRNA-Val-CAG | 14.6 | ||
tRNA-Val-CAU | 7.0 | ↑ | |
tRNA-Val-CAC | 28.9 | ↓ | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacharjasz, J.; Mleczko, A.M.; Bąkowski, P.; Piontek, T.; Bąkowska-Żywicka, K. Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments. Int. J. Mol. Sci. 2021, 22, 5711. https://doi.org/10.3390/ijms22115711
Zacharjasz J, Mleczko AM, Bąkowski P, Piontek T, Bąkowska-Żywicka K. Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments. International Journal of Molecular Sciences. 2021; 22(11):5711. https://doi.org/10.3390/ijms22115711
Chicago/Turabian StyleZacharjasz, Julian, Anna M. Mleczko, Paweł Bąkowski, Tomasz Piontek, and Kamilla Bąkowska-Żywicka. 2021. "Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments" International Journal of Molecular Sciences 22, no. 11: 5711. https://doi.org/10.3390/ijms22115711
APA StyleZacharjasz, J., Mleczko, A. M., Bąkowski, P., Piontek, T., & Bąkowska-Żywicka, K. (2021). Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments. International Journal of Molecular Sciences, 22(11), 5711. https://doi.org/10.3390/ijms22115711