Factors Involved in Morphogenesis in the Muscle–Tendon–Bone Complex
Abstract
:1. Introduction
2. Elucidating the Process of Musculoskeletal System Morphogenesis
3. Trends in Research on Musculoskeletal System Morphogenesis
3.1. Development of the Musculotendinous Junction
3.2. Development of the Enthesis
4. Toward Elucidating the Mechanism of Structural Maintenance of the Muscle–Tendon–Bone Complex
4.1. Tendon Development and Molecular Mechanisms: Involvement of Mkx
4.2. Characterization of Lifetime Musculotendinous Junction Structure Maintenance by Myostatin
4.3. Role of Sox9 in the “Muscle–Tendon–Bone Complex” in the Elderly
4.4. Connection at the Muscle–Tendon Junction
5. Muscle Tonus Load on the Enthesis and Aging of the Muscle–Tendon Junction
5.1. Muscle Fiber Paths and Muscle Tonus
5.2. Muscle Tonus Stimulation and Changes to Muscle Contraction Protein in the Enthesis
5.3. Functional Differences Related to Muscle Type
6. Mkx, Myostatin and Sox9 Are Expressed during the Musculoskeletal Development
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Auer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, I.H. Summary comments: Epidemiological and methodological problem in determining nutritional status of older persons. Am. J. Clin. Nutr. 1989, 50, 1231–1233. [Google Scholar] [CrossRef]
- Yamamoto, M.; Abe, S. Mechanism of muscle-tendon-bone complex development in the head. Anat. Sci. Int. 2020, 95, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Abe, H.; Hirouchi, H.; Sato, M.; Murakami, G.; Rodríguez-Vázquez, J.F.; Abe, S. Development of the cartilaginous connecting apparatuses in the fetal sphenoid, with a focus on the alar process. PLoS ONE 2021. In press. [Google Scholar]
- Abe, S.; Rhee, S.; Osonoi, M.; Nakamura, T.; Cho, B.; Murakami, G.; Ide, Y. Expression of intermediate filaments at muscle insertions in human fetuses. J. Anat. 2010, 217, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Cho, H.; Yamamoto, M.; Hirouchi, H.; Murakami, G.; Hayashi, S.; Abe, S. Examination of the topographical anatomy and fetal development of the tendinous annulus of Zinn for a common origin of the extraocular recti. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4564–4573. [Google Scholar] [CrossRef] [Green Version]
- Nara, M.; Kitamura, K.; Yamamoto, M.; Nagakura, R.; Mitomo, K.; Matsunaga, S.; Abe, S. Developmental mechanism of muscletendon-bone complex in the fetal soft palate. Arch. Oral Biol. 2017, 82, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Nagakura, R.; Yamamoto, M.; Jeong, J.; Hinata, N.; Katori, Y.; Chang, W.J.; Abe, S. Switching of Sox9 expression during musculoskeletal system development. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Takada, H.; Ishizuka, S.; Kitamura, K.; Jeong, J.; Sato, M.; Hinata, N.; Abe, S. Morphological association between the muscles and bones in the craniofacial region. PLoS ONE 2020, 15, e0227301. [Google Scholar] [CrossRef]
- Benjamin, M.; Ralphs, R. The cell and developmental biology of tendons and ligaments. Int. Rev. Cytol. 2000, 196, 85–130. [Google Scholar]
- Abe, S.; Takasaki, I.; Ichikawa, K.; Ide, Y. Investigations of the run and the attachment of the lateral pterygoid muscle. Bull. Tokyo Dent. Coll. 1993, 34, 135–139. [Google Scholar] [PubMed]
- Lu, H.H.; Thomopoulos, S. Functional attachment of soft tissues to bone: Development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 2013, 15, 201–226. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Schilling, F. Tendon development and musculoskeletal assembly: Emerging roles for the extracellular matrix. Development 2015, 142, 4191–4204. [Google Scholar] [CrossRef] [Green Version]
- Curzi, D.; Salucci, S.; Marini, M.; Esposito, F.; Aqnello, L.; Veicsteinas, A.; Burattini, S.; Falcieri, E. How physical exercise changes rat myotendinous junctions: An ultrastructural study. Eur. J. Histochem. 2012, 56, e19. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Shinomiya, T.; Kishi, A.; Yamane, S.; Umezawa, T.; Ide, Y.; Abe, S. Desmin and nerve terminal expression during embryonic development of the lateral pterygoid muscle in mice. Arch. Oral Biol. 2014, 59, 871–879. [Google Scholar] [CrossRef]
- Shukunami, C.; Takimoto, A.; Oro, M.; Hiraki, Y. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev. Biol. 2006, 298, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Blitz, E.; Sharir, A.; Akiyama, H.; Zelzer, E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 2013, 140, 2680–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, Y.; Takimoto, A.; Watanabe, H.; Hiraki, Y.; Kondoh, G.; Shukunami, C. Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci. Rep. 2017, 7, 45010. [Google Scholar] [CrossRef] [Green Version]
- Furumatsu, T.; Shukunami, C.; Amemiya-Kudo, M.; Shimano, H.; Ozaki, T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int. J. Biochem. Cell Biol. 2010, 42, 148–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blitz, E.; Viukov, S.; Sharir, A.; Shwartz, Y.; Galloway, L.; Pryce, A.; Johnson, L.; Tabin, J.; Schweitzer, R.; Zelzer, E. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev. Cell 2009, 17, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Toriuchi, M.; Yoshitaka, T.; Ueno-Kudoh, H.; Sato, T.; Yokoyama, S.; Nishida, K.; Akimoto, T.; Takahashi, M.; Miyaki, S.; et al. The Mohowk homeobox gene is a critical regulator of tendon differentiation. Proc. Natl. Acad. Sci. USA 2010, 107, 10538–10542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendias, C.L.; Lynch, E.B.; Gumucio, J.P.; Flood, M.D.; Rittman, D.S.; Pelt, D.W.; Roche, S.M.; Davis, C.S. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. J. Physiol. 2015, 593, 2037–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, H.; Abe, S.; Ishida, R.; Watanabe, Y.; Iwanuma, O.; Sakiyama, K.; Ide, Y. Expression of HGF and IGF-1 during regeneration of masseter muscle in mdx mice. J. Muscle Res. Cell Motil. 2010, 32, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Abe, S.; Hiroki, E.; Honda, H.; Iwanuma, O.; Yanagisawa, N.; Ide, Y. Activation of caspase 3, 9, 12 and Bax in masseter muscle of mdx mice during necrosis. J. Muscle Res. Cell Motil. 2007, 29, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Hiroki, E.; Abe, S.; Iwanuma, O.; Sakiyama, K.; Yanagisawa, N.; Shiozaki, K.; Ide, Y. A comparative study of myostatin, follistatin and decorin expression in different muscle origin. Anat. Sci. Int. 2011, 86, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Hosoyama, T.; Yamanouchi, K.; Nishihara, M. Role of serum myostatin during the lactation period. J. Reprod. Dev. 2006, 52, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCroskery, S.; Thomas, M.; Platt, L.; Hennebry, A.; Nishimura, T.; McLeay, L.; Sharma, M.; Kambadur, R. Improved muscle healing through enhanced fibrosis in myostatin-null mice. J. Cell Sci. 2005, 118, 3531–3541. [Google Scholar] [CrossRef] [Green Version]
- Kocams, H.; Gulmez, N.; Aslan, S.; Nazli, M. Follistatin alters myostatin gene expression in C2C12 muscle cells. Acta Vet. Hung. 2004, 52, 135–141. [Google Scholar] [CrossRef]
- Miura, T.; Kishioka, Y.; Wakamatsu, J.; Hattori, A.; Hennebry, A.; Berry, C.J.; Sharma, M.; Kambadur, R.; Nishimura, T. Decorin binds myostatin and modulates its activity to muscle cells. Biochem. Biophys. Res. Commun. 2005, 340. [Google Scholar] [CrossRef]
- Suzuki, H.; Ito, Y.; Shinohara, M.; Yamashita, S.; Ichinose, S.; Kishida, A.; Oyaizu, T.; Kayama, T.; Nakamichi, R.; Koda, N.; et al. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via faied tenogenesis. Proc. Natl. Acad. Sci. USA 2016, 113. [Google Scholar] [CrossRef] [Green Version]
- Ideo, K.; Tokunaga, T.; Shukunami, C.; Takimoto, A.; Yoshimoto, Y.; Yonemitsu, R.; Karasugi, T.; Mizuta, H.; Hiraki, Y.; Miyamoto, T. Role of Scx+/Sox9+ cells as potential progenitor cells for postnatal supraspinatus enthesis formation and healing after injury in mice. PLoS ONE 2020, 15, e0242286. [Google Scholar] [CrossRef]
- Brukner, P.; Cook, J.L.; Purdam, C.R. Does the intramuscular tendon act like a free tendon? Br. J. Sports Med. 2018, 52, 1227–1228. [Google Scholar] [CrossRef] [PubMed]
- Eggleston, L.; McMeniman, M.; Engstrom, C. High-grade intramuscular tendon disruption in acute hamstring injury and return to play in Australian Football players. Scand. J. Med. Sci. Sports 2020, 30, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H. The fine structure of myotendimous junctions in some mammalian skeletal muscles. Arch. Histol. Jap. 1965, 25, 275–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, R.L.; Bodine-Fowler, S.C. Skeletal muscle mechanics: Implications for rehabilitation. Physiology 1993, 73, 844–856. [Google Scholar] [CrossRef]
- Lieber, R.L.; Jacobson, M.D.; Fazeli, B.M.; Abrams, R.A.; Botte, M.J.; Bodine-Fowler, S.C. Architecture of selected muscles of the arm and forearm: Anatomy and implications for tendon transfer. J. Hand Surg Am. 1992, 17, 787–798. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, M.; Cho, K.H.; Murakami, G.; Cho, B.H.; Ide, Y. CD-34-positive developing vessels and other structures in human fetuses: An immunohistochemical study. Surg. Radiol. Anat. 2011, 33, 919–927. [Google Scholar] [CrossRef]
- Gojyo, K.; Abe, S.; Ide, Y. Characteristics of myofibres in the masseter muscle of mice during postnatal growth period. Anat. Histol. Enbyo. 2002, 31, 105–112. [Google Scholar] [CrossRef]
- Usami, A.; Abe, S.; Ide, Y. Myosin heavy chain isoforms of the murine masseter muscle during pre and postnatal development. Anat. Histol. Enbyo. 2003, 32, 244–248. [Google Scholar] [CrossRef]
- Doi, T.; Abe, S.; Ide, Y. Masticatory function and properties of masseter muscles fibers in microphthalmic (mi/mi) mice during postnatal development. Ann. Anat. 2003, 185, 435–440. [Google Scholar] [CrossRef]
- Shida, T.; Abe, S.; Sakiyama, K.; Agematsu, H.; Mitarashi, S.; Tamatsu, Y.; Ide, Y. Superficial and deep layer muscle-fiber properties of the mouse masseter before and after weaning. Arch. Oral. Biol. 2005, 50, 65–71. [Google Scholar] [CrossRef]
- Abe, S.; Maejima, M.; Watanabe, H.; Shibahara, T.; Agamatsu, H.; Doi, T.; Sakiyama, K.; Usami, A.; Gojyo, K.; Hashimoto, M.; et al. Musclefiber characteristics in adult mouse-tongue muscles. Anat. Sci. Int. 2002, 77, 145–148. [Google Scholar] [CrossRef]
- Lee, W.H.; Abe, S.; Kim, H.J.; Usami, A.; Honda, A.; Sakiyama, K.; Ide, Y. Characteristics of muscle fibers reconstituted in the regeneration process of masseter muscle in an mdx mouse model of muscular dystrophy. J. Muscle Rec. Cell Motil. 2006, 27, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Tomancak, P.; Beaton, A.; Weiszmann, R.; Kwan, E.; Shu, S.; Lewis, S.E.; Richards, S.; Ashburner, M.; Hartenstein, V.; Celniker, S.E.; et al. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 2002, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.M.; Arredondo, J.; Hahn, K.; Valente, G.; Martin, J.F.; Wilson-Rawls, J.; Rawls, A. Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev. Dyn. 2006, 235, 792–801. [Google Scholar] [CrossRef]
- Manceau, M.; Gros, J.; Savage, K.; Thomé, V.; McPherron, A.; Paterson, B.; Marcelle, C. Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev. 2008, 22, 668–681. [Google Scholar] [CrossRef] [Green Version]
- Mendias, C.L.; Bakhurin, K.I.; Faulkner, J.A. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc. Natl. Acad. Sci. USA 2008, 105, 388–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassoon, A.A.; Ozasa, Y.; Chikenji, T.; Sun, Y.L.; Larson, D.R.; Maas, M.L.; Zhao, C.; Jen, J.; Amadio, P.C. Skeletal muscle and bone marrow derived stromal cells: A comparison of tenocyte differentiation capabilities. J. Orthop. Res. 2012, 30, 1710–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uemura, K.; Hayashi, M.; Itsubo, T.; Oishi, A.; Iwakawa, H.; Komatsu, M.; Uchiyama, S.; Kato, H. Myostatin promotes tenogenic differentiation of C2C12 myoblast cells through Smad3. FEBS Open Bio 2017, 7, 522–532. [Google Scholar] [CrossRef]
- Elkasrawy, M.; Fulzele, S.; Bowser, M.; Wenger, K.; Hamrick, M. Myostatin (GDF-8) inhibits chondrogenesis and chondrocyte proliferation in vitro by suppressing Sox-9 expression. Growth Factors 2011, 29, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, S.; Yamamoto, M. Factors Involved in Morphogenesis in the Muscle–Tendon–Bone Complex. Int. J. Mol. Sci. 2021, 22, 6365. https://doi.org/10.3390/ijms22126365
Abe S, Yamamoto M. Factors Involved in Morphogenesis in the Muscle–Tendon–Bone Complex. International Journal of Molecular Sciences. 2021; 22(12):6365. https://doi.org/10.3390/ijms22126365
Chicago/Turabian StyleAbe, Shinichi, and Masahito Yamamoto. 2021. "Factors Involved in Morphogenesis in the Muscle–Tendon–Bone Complex" International Journal of Molecular Sciences 22, no. 12: 6365. https://doi.org/10.3390/ijms22126365
APA StyleAbe, S., & Yamamoto, M. (2021). Factors Involved in Morphogenesis in the Muscle–Tendon–Bone Complex. International Journal of Molecular Sciences, 22(12), 6365. https://doi.org/10.3390/ijms22126365