Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences
Abstract
:1. Introduction
2. Results and Discussion
2.1. Haplogroups of the Representative Mitogenomes of PT17
2.2. Approximation Quality of Haplogroup Motifs
2.3. Control Region Sequences
2.4. Examples from the Literature
2.4.1. Haplogrouping Examples
2.4.2. Alignment Examples
3. Materials and Methods
3.1. Database of Vetted Full Mitogenomes
3.2. Revising Haplogroup Motifs
3.3. Haplogroup Estimation and Phylogenetic Alignment
3.4. Evaluation of the Algorithm
4. Conclusions and Relevance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandelt, H.-J.; Van Oven, M.; Salas, A. Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics. Int. J. Leg. Med. 2012, 126, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Hudson, G.; Carelli, V.; Spruijt, L.; Gerards, M.; Mowbray, C.; Achilli, A.; Pyle, A.; Elson, J.; Howell, N.; La Morgia, C.; et al. Clinical Expression of Leber Hereditary Optic Neuropathy Is Affected by the Mitochondrial DNA–Haplogroup Background. Am. J. Hum. Genet. 2007, 81, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodner, M.; Perego, U.A.; Huber, G.; Fendt, L.; Röck, A.W.; Zimmermann, B.; Olivieri, A.; Gómez-Carballa, A.; Lancioni, H.; Angerhofer, N.; et al. Rapid coastal spread of First Americans: Novel insights from South America’s Southern Cone mitochondrial genomes. Genome Res. 2012, 22, 811–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röck, A.W.; Dür, A.; van Oven, M.; Parson, W. Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA). Forensic Sci. Int. Genet. 2013, 7, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torroni, A.; Achilli, A.; Macaulay, V.; Richards, M.; Bandelt, H. Harvesting the fruit of the human mtDNA tree. Trends Genet. 2006, 22, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Van Oven, M.; Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009, 30, E386–E394. [Google Scholar] [CrossRef] [PubMed]
- Röck, A.; Irwin, J.; Dür, A.; Parsons, T.; Parson, W. SAM: String-based sequence search algorithm for mitochondrial DNA database queries. Forensic Sci. Int. Genet. 2011, 5, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloss-Brandstätter, A.; Pacher, D.; Schoenherr, S.; Weissensteiner, H.; Binna, R.; Specht, G.; Kronenberg, F. HaploGrep: A fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 2011, 32, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Soares, I.; Amorim, A.; Goios, A. mtDNAoffice: A software to assign human mtDNA macro haplogroups through automated analysis of the protein coding region. Mitochondrion 2012, 12, 666–668. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Yao, Y.-G. An update to MitoTool: Using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion 2013, 13, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Vianello, D.; Sevini, F.; Castellani, G.; Lomartire, L.; Capri, M.; Franceschi, C. HAPLOFIND: A New Method for High-Throughput mtDNA Haplogroup Assignment. Hum. Mutat. 2013, 34, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Weissensteiner, H.; Pacher, D.; Kloss-Brandstätter, A.; Forer, L.; Specht, G.; Bandelt, H.-J.; Kronenberg, F.; Salas, A.; Schönherr, S. HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016, 44, W58–W63. [Google Scholar] [CrossRef] [PubMed]
- Huber, N.; Parson, W.; Dür, A. Next generation database search algorithm for forensic mitogenome analyses. Forensic Sci. Int. Genet. 2018, 37, 204–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, P.; Ermini, L.; Thomson, N.; Mormina, M.; Rito, T.; Röhl, A.; Salas, A.; Oppenheimer, S.; Macaulay, V.; Richards, M.B. Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock. Am. J. Hum. Genet. 2009, 84, 740–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandelt, H.-J.; Parson, W. Consistent treatment of length variants in the human mtDNA control region: A reappraisal. Int. J. Leg. Med. 2007, 122, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Parson, W.; Dür, A. EMPOP—A forensic mtDNA database. Forensic Sci. Int. Genet. 2007, 1, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-G.; Salas, A.; Logan, I.; Bandelt, H.-J. mtDNA Data Mining in GenBank Needs Surveying. Am. J. Hum. Genet. 2009, 85, 929–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parson, W.; Gusmão, L.; Hares, D.; Irwin, J.; Mayr, W.; Morling, N.; Pokorak, E.; Prinz, M.; Salas, A.; Schneider, P.; et al. DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci. Int. Genet. 2014, 13, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Kivisild, T.; Metspalu, M.; Bandelt, H.-J.; Richards, M.; Villems, R. The World mtDNA Phylogeny. In Human Mitochondrial DNA and the Evolution of Homo sapiens; Bandelt, H.-J., Macaulay, V., Richards, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 18, pp. 149–179. [Google Scholar]
Data Set | PT17 Average | rPT17 Average |
---|---|---|
PT17 Representatives | 2.51 | 2.22 (−12%) |
West Eurasian | 2.29 | 2.20 (−4%) |
East Asian | 4.95 | 4.64 (−6%) |
Native American | 5.77 | 5.54 (−4%) |
Oceanian | 6.44 | 6.11 (−5%) |
Data Set | PT17 Average | rPT17 Average |
---|---|---|
PT17 Representatives | 0.76 | 0.65 (−14%) |
West Eurasian | 0.78 | 0.73 (−6%) |
East Asian | 1.70 | 1.54 (−9%) |
Native American | 1.85 | 1.75 (−5%) |
Oceanian | 3.00 | 2.89 (−4%) |
Data Set | PT17 Rank 1 | PT17 Rank 2 | rPT17 Rank 1 | rPT17 Rank 2 |
---|---|---|---|---|
PT17 Representatives | 8059/8248 (98%) | 185/189 (98%) | 8092/8248 (98%) | 153/156 (98%) |
West Eurasian | 1115/1179 (95%) | 64/64 (100%) | 1118/1179 (95%) | 61/61 (100%) |
East Asian | 1956/2152 (91%) | 174/196 (89%) | 2030/2152 (94%) | 104/122 (85%) |
Native American | 502/548 (92%) | 38/46 (83%) | 502/548 (92%) | 46/46 (100%) |
Oceanian | 8/9 (89%) | 1/1 (100%) | 9/9 (100%) | 0/0 |
Mitogenome | Haplogroup | PT17 Estimate for CR | rPT17 Estimate for CR |
---|---|---|---|
AP012346.1 | F1f | F1a | F1a, F1f |
JF824974.2 | F1f | F1a | F1f |
JQ705339.1 | H4a1a1a | P+16176 | H4a1a1a, P+16176 |
Haplogroup | PT17 Motif | Realigned Motif |
---|---|---|
N9b4 | 16187del 16188T 16189C | 16187T 16189C 16193del |
J2a1a1a (5) | 310.1T 315.1c | 311T 315.1c 315.2c |
R8b2 | 456T 456.1T | 455.1T 456T |
A5b (6) | 961C 965.1C | 960.1C 961C |
M7a2a2 | ||
U4a1a1 | ||
L1c2b1c | 5894del 5899.1C | 5894C |
R11 (6) | 8277C 8278.1C | 8276.1C 8277C |
S3 |
Haplogroup | Modification | Frequency | |
---|---|---|---|
L5b2 | Removed 7972G | A7972G | 0/5 |
L2a1f2 | Removed 14566G | A14566G | 0/6 |
L2b1b | Added 183G | A183G | 7/7 |
L3d3a (4) | Changed 16189Y to 16189C, 16278Y to 16278T, 16304Y to 16304C and 16311Y to 16311C | T16189C | 13/14 |
T16189N | 1/14 | ||
C16278T | 14/14 | ||
T16304C | 14/14 | ||
T16311C | 14/14 | ||
D5b3a (2) | Removed 16189C | T16189C | 0/13 |
W4b | Added 119C | T119C | 4/4 |
V5 | Added 93G | A93G | 4/4 |
H1j9 | Changed 16189Y to 16189C | T16189C | 2/2 |
H5c2 | Added 16216G | A16216G | 3/3 |
H8c1 | Added 9052G | A9052G | 3/3 |
T2a1a1 | Changed 143R to 143A and added 8994A | G143A | 3/3 |
G8994A | 3/3 | ||
B4b1a2c | Added 310C | T310C | 5/5 |
B4b1a2d | Added 310C | T310C | 4/4 |
B4b1a2f | Removed 16189C and 8281–8289del | T16189C | 0/4 |
8281–8289del | 0/4 | ||
B4b1a2g (2) | Removed 16189C and 8281–8289del | T16189C | 0/4 |
8281–8289del | 0/4 | ||
B5a2a1b | Changed 16266G to 16266A | C16266A | 5/5 |
U7a4a1a | Changed 16318T to 16318C | A16318C | 3/3 |
K1b1a1b | Changed 16189Y to 16189C | T16189C | 1/1 |
K2a9 | Removed 152C and 709A | T152C | 0/4 |
G709A | 0/4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dür, A.; Huber, N.; Parson, W. Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences. Int. J. Mol. Sci. 2021, 22, 5747. https://doi.org/10.3390/ijms22115747
Dür A, Huber N, Parson W. Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences. International Journal of Molecular Sciences. 2021; 22(11):5747. https://doi.org/10.3390/ijms22115747
Chicago/Turabian StyleDür, Arne, Nicole Huber, and Walther Parson. 2021. "Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences" International Journal of Molecular Sciences 22, no. 11: 5747. https://doi.org/10.3390/ijms22115747
APA StyleDür, A., Huber, N., & Parson, W. (2021). Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences. International Journal of Molecular Sciences, 22(11), 5747. https://doi.org/10.3390/ijms22115747