Regulation of Monocytes/Macrophages by the Renin–Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study
Abstract
:1. Introduction
2. Pathophysiology of DN
2.1. Renal Function Consequences of DN
2.2. Cellular Consequences of Hyperglycemia
2.3. Experimental In Vivo Models of DN
3. Roles of Monocytes/Macrophages in DN
3.1. Monocyte Recruitment in DN
3.2. Macrophage Polarization and Plasticity in DN
4. Regulation of Monocytes/Macrophages by the RAS in DN
4.1. Brief Description of the RAS in DN
4.2. Local RAS in the Kidneys
4.3. Local Components of the RAS in Monocytes/Macrophages
4.4. Modulation of Monocyte Recruitment by the RAS in DN
4.5. Modulation of Macrophage Polarization by the RAS in DN
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barutta, F.; Bruno, G.; Grimaldi, S.; Gruden, G. Inflammation in Diabetic Nephropathy: Moving toward Clinical Biomarkers and Targets for Treatment. Endocrine 2015, 48, 730–742. [Google Scholar] [CrossRef]
- Calle, P.; Hotter, G. Macrophage Phenotype and Fibrosis in Diabetic Nephropathy. Int. J. Mol. Sci. 2020, 21, 2806. [Google Scholar] [CrossRef] [Green Version]
- McKinney, C.A.; Fattah, C.; Loughrey, C.M.; Milligan, G.; Nicklin, S.A. Angiotensin-(1-7) and Angiotensin-(1-9): Function in Cardiac and Vascular Remodelling. Clin. Sci. (Lond) 2014, 126, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Xu, C. Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. J. Am. Soc. Nephrol. 2017, 28, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Carey, R.M.; Siragy, H.M. The Intrarenal Renin-Angiotensin System and Diabetic Nephropathy. Trends Endocrinol. Metab. 2003, 14, 274–281. [Google Scholar] [CrossRef]
- Sparks, M.A.; Crowley, S.D.; Gurley, S.B.; Mirotsou, M.; Coffman, T.M. Classical Renin-Angiotensin System in Kidney Physiology. Compr. Physiol. 2014, 4, 1201–1228. [Google Scholar] [CrossRef] [Green Version]
- Hammer, A.; Stegbauer, J.; Linker, R.A. Macrophages in Neuroinflammation: Role of the Renin-Angiotensin-System. Pflugers Arch. 2017, 469, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Nehme, A.; Zibara, K. Cellular Distribution and Interaction between Extended Renin-Angiotensin-Aldosterone System Pathways in Atheroma. Atherosclerosis 2017, 263, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortega, M.; Rupérez, M.; Esteban, V.; Rodríguez-Vita, J.; Sánchez-López, E.; Carvajal, G.; Egido, J. Angiotensin II: A Key Factor in the Inflammatory and Fibrotic Response in Kidney Diseases. Nephrol. Dial. Transplant. 2006, 21, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Siragy, H.M.; Carey, R.M. Role of the Intrarenal Renin-Angiotensin-Aldosterone System in Chronic Kidney Disease. Am. J. Nephrol. 2010, 31, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Roscioni, S.S.; Heerspink, H.J.L.; de Zeeuw, D. The Effect of RAAS Blockade on the Progression of Diabetic Nephropathy. Nat. Rev. Nephrol. 2014, 10, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Komers, R. Pathophysiology of the Diabetic Kidney. Compr. Physiol. 2011, 1, 1175–1232. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Porrini, E.L.; Gaspari, F.; Motterlini, N.; Cannata, A.; Carrara, F.; Cella, C.; Ferrari, S.; Stucchi, N.; Parvanova, A.; et al. Glomerular Hyperfiltration and Renal Disease Progression in Type 2 Diabetes. Diabetes Care 2012, 35, 2061–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, B.M. Hemodynamically Mediated Glomerular Injury and the Progressive Nature of Kidney Disease. Kidney Int. 1983, 23, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Halimi, J.M. The Emerging Concept of Chronic Kidney Disease without Clinical Proteinuria in Diabetic Patients. Diabetes Metab 2012, 38, 291–297. [Google Scholar] [CrossRef]
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic Classification of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Schainuck, L.I.; Striker, G.E.; Cutler, R.E.; Benditt, E.P. Structural-Functional Correlations in Renal Disease. II. The Correlations. Hum. Pathol. 1970, 1, 631–641. [Google Scholar] [CrossRef]
- Striker, G.E.; Schainuck, L.I.; Cutler, R.E.; Benditt, E.P. Structural-Functional Correlations in Renal Disease. I. A Method for Assaying and Classifying Histopathologic Changes in Renal Disease. Hum. Pathol. 1970, 1, 615–630. [Google Scholar] [CrossRef]
- Bohle, A.; Wehrmann, M.; Bogenschütz, O.; Batz, C.; Müller, C.A.; Müller, G.A. The Pathogenesis of Chronic Renal Failure in Diabetic Nephropathy. Investigation of 488 Cases of Diabetic Glomerulosclerosis. Pathol. Res. Pract. 1991, 187, 251–259. [Google Scholar] [CrossRef]
- Liu, Y. Cellular and Molecular Mechanisms of Renal Fibrosis. Nat. Rev. Nephrol. 2011, 7, 684–696. [Google Scholar] [CrossRef]
- Brownlee, M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Tesch, G.H. Diabetic Nephropathy-Is This an Immune Disorder? Clin. Sci. (Lond) 2017, 131, 2183–2199. [Google Scholar] [CrossRef]
- Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory Molecules and Pathways in the Pathogenesis of Diabetic Nephropathy. Nat. Rev. Nephrol. 2011, 7, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Saito, T.; Ootaka, T.; Soma, J.; Obara, K.; Abe, K.; Yoshinaga, K. The Role of Macrophages in Diabetic Glomerulosclerosis. Am. J. Kidney Dis. 1993, 21, 480–485. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Zhao, Y. Macrophage Phenotype and Its Relationship with Renal Function in Human Diabetic Nephropathy. PLoS ONE 2019, 14, e0221991. [Google Scholar] [CrossRef] [PubMed]
- Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; IJpelaar, D.H.T. Macrophages in Diabetic Nephropathy in Patients with Type 2 Diabetes. Nephrol. Dial. Transplant. 2017, 32, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Alpers, C.E.; Hudkins, K.L. Mouse Models of Diabetic Nephropathy. Curr. Opin Nephrol. Hypertens 2011, 20, 278–284. [Google Scholar] [CrossRef]
- Kawano, K.; Hirashima, T.; Mori, S.; Saitoh, Y.; Kurosumi, M.; Natori, T. Spontaneous Long-Term Hyperglycemic Rat with Diabetic Complications. Otsuka Long-Evans Tokushima Fatty (OLETF) Strain. Diabetes 1992, 41, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Ghosh, S.K.; Choudhury, Y. A Murine Model of Type 2 Diabetes Mellitus Developed Using a Combination of High Fat Diet and Multiple Low Doses of Streptozotocin Treatment Mimics the Metabolic Characteristics of Type 2 Diabetes Mellitus in Humans. J. Pharmacol. Toxicol. Methods 2017, 84, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.A.; Panchal, S.S. Streptozotocin-Induced Diabetes Mellitus in Neonatal Rats: An Insight into Its Applications to Induce Diabetic Complications. Curr. Diabetes Rev. 2019, 16, 26–39. [Google Scholar] [CrossRef]
- Pérez-López, L.; Boronat, M.; Melián, C.; Brito-Casillas, Y.; Wägner, A.M. Animal Models and Renal Biomarkers of Diabetic Nephropathy. Adv. Exp. Med. Biol. 2021, 1307, 521–551. [Google Scholar] [CrossRef]
- Nakagawa, T.; Sato, W.; Glushakova, O.; Heinig, M.; Clarke, T.; Campbell-Thompson, M.; Yuzawa, Y.; Atkinson, M.A.; Johnson, R.J.; Croker, B. Diabetic Endothelial Nitric Oxide Synthase Knockout Mice Develop Advanced Diabetic Nephropathy. J. Am. Soc. Nephrol. 2007, 18, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.J.; Wilkinson-Berka, J.L.; Allen, T.J.; Cooper, M.E.; Skinner, S.L. A New Model of Diabetic Nephropathy with Progressive Renal Impairment in the Transgenic (MRen-2)27 Rat (TGR). Kidney Int. 1998, 54, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Munro, D.A.D.; Hughes, J. The Origins and Functions of Tissue-Resident Macrophages in Kidney Development. Front. Physiol. 2017, 8, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Harris, D.C.H. Macrophages in Renal Disease. J. Am. Soc. Nephrol. 2011, 22, 21–27. [Google Scholar] [CrossRef] [Green Version]
- You, H.; Gao, T.; Cooper, T.K.; Brian Reeves, W.; Awad, A.S. Macrophages Directly Mediate Diabetic Renal Injury. Am. J. Physiol. Renal. Physiol. 2013, 305, F1719–F1727. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Lee, S.H.; Kim, D.K.; Jin, R.; Jung, D.-S.; Kwak, S.-J.; Kim, S.H.; Han, S.H.; Lee, J.E.; Moon, S.J.; et al. Colchicine Attenuates Inflammatory Cell Infiltration and Extracellular Matrix Accumulation in Diabetic Nephropathy. Am. J. Physiol. Renal. Physiol. 2009, 297, F200–F209. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Li, L.; Zhu, L.; Liu, F.; Tang, X.; Liao, G.; Liu, J.; Cheng, J.; Chen, Y.; Lu, Y. Mesenchymal Stem Cells Elicit Macrophages into M2 Phenotype via Improving Transcription Factor EB-Mediated Autophagy to Alleviate Diabetic Nephropathy. Stem. Cells 2020, 38, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Cailhier, J.F.; Partolina, M.; Vuthoori, S.; Wu, S.; Ko, K.; Watson, S.; Savill, J.; Hughes, J.; Lang, R.A. Conditional Macrophage Ablation Demonstrates That Resident Macrophages Initiate Acute Peritoneal Inflammation. J. Immunol. 2005, 174, 2336–2342. [Google Scholar] [CrossRef] [Green Version]
- Chow, F.Y.; Nikolic-Paterson, D.J.; Ozols, E.; Atkins, R.C.; Rollin, B.J.; Tesch, G.H. Monocyte Chemoattractant Protein-1 Promotes the Development of Diabetic Renal Injury in Streptozotocin-Treated Mice. Kidney Int. 2006, 69, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, H.; Matsubara, T.; Mima, A.; Sumi, E.; Nagai, K.; Takahashi, T.; Abe, H.; Iehara, N.; Fukatsu, A.; Okamoto, H.; et al. Inhibition of MCP-1/CCR2 Pathway Ameliorates the Development of Diabetic Nephropathy. Biochem. Biophys. Res. Commun. 2007, 360, 772–777. [Google Scholar] [CrossRef] [Green Version]
- Song, K.H.; Park, J.; Park, J.H.; Natarajan, R.; Ha, H. Fractalkine and Its Receptor Mediate Extracellular Matrix Accumulation in Diabetic Nephropathy in Mice. Diabetologia 2013, 56, 1661–1669. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Zhu, Y.; Du, J.; Khan, M.N.; Wang, B.; Wei, J.; Cheng, J.-W.; Gordon, J.R.; Mu, Y.; Li, F. CXCL8 Antagonist Improves Diabetic Nephropathy in Male Mice With Diabetes and Attenuates High Glucose-Induced Mesangial Injury. Endocrinology 2017, 158, 1671–1684. [Google Scholar] [CrossRef]
- Mohamed, R.; Jayakumar, C.; Chen, F.; Fulton, D.; Stepp, D.; Gansevoort, R.T.; Ramesh, G. Low-Dose IL-17 Therapy Prevents and Reverses Diabetic Nephropathy, Metabolic Syndrome, and Associated Organ Fibrosis. J. Am. Soc. Nephrol. 2016, 27, 745–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Li, Y.J.; Chen, X.; Kwan, T.; Chadban, S.J.; Wu, H. Interleukin 17A Promotes Diabetic Kidney Injury. Sci. Rep. 2019, 9, 2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, S.; Shikata, K.; Matsuda, M.; Ogawa, D.; Usui, H.; Kido, Y.; Nagase, R.; Wada, J.; Shikata, Y.; Makino, H. Intercellular Adhesion Molecule-1-Deficient Mice Are Resistant against Renal Injury after Induction of Diabetes. Diabetes 2003, 52, 2586–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talsma, D.T.; Katta, K.; Ettema, M.A.B.; Kel, B.; Kusche-Gullberg, M.; Daha, M.R.; Stegeman, C.A.; van den Born, J.; Wang, L. Endothelial Heparan Sulfate Deficiency Reduces Inflammation and Fibrosis in Murine Diabetic Nephropathy. Lab. Investig. 2018, 98, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Tian, J.; Xian, W.; Xie, T.; Yang, X. Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation. Inflammation 2015, 38, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Wang, Y.; Cao, Q.; Lee, V.W.S.; Zheng, G.; Sun, Y.; Tan, T.K.; Wang, Y.; Alexander, S.I.; Harris, D.C.H. Transfused Macrophages Ameliorate Pancreatic and Renal Injury in Murine Diabetes Mellitus. Nephron Exp. Nephrol. 2011, 118, e87–e99. [Google Scholar] [CrossRef]
- Devaraj, S.; Tobias, P.; Kasinath, B.S.; Ramsamooj, R.; Afify, A.; Jialal, I. Knockout of Toll-like Receptor-2 Attenuates Both the Proinflammatory State of Diabetes and Incipient Diabetic Nephropathy. Arterioscler Thromb. Vasc Biol. 2011, 31, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yao, B.; Wang, Y.; Fan, X.; Wang, S.; Niu, A.; Yang, H.; Fogo, A.; Zhang, M.-Z.; Harris, R.C. Macrophage Cyclooxygenase-2 Protects Against Development of Diabetic Nephropathy. Diabetes 2017, 66, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Tesch, G.H.; Pullen, N.; Jesson, M.I.; Schlerman, F.J.; Nikolic-Paterson, D.J. Combined Inhibition of CCR2 and ACE Provides Added Protection against Progression of Diabetic Nephropathy in Nos3-Deficient Mice. Am. J. Physiol. Renal. Physiol. 2019, 317, F1439–F1449. [Google Scholar] [CrossRef]
- Sugimoto, H.; Shikata, K.; Hirata, K.; Akiyama, K.; Matsuda, M.; Kushiro, M.; Shikata, Y.; Miyatake, N.; Miyasaka, M.; Makino, H. Increased Expression of Intercellular Adhesion Molecule-1 (ICAM-1) in Diabetic Rat Glomeruli: Glomerular Hyperfiltration Is a Potential Mechanism of ICAM-1 Upregulation. Diabetes 1997, 46, 2075–2081. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Guo, Y.-F.; Song, Z.-X.; Zhou, M. Vitamin D Prevents Podocyte Injury via Regulation of Macrophage M1/M2 Phenotype in Diabetic Nephropathy Rats. Endocrinology 2014, 155, 4939–4950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhao, Y.; Zhu, X.; Guo, Y.; Yang, Y.; Jiang, Y.; Liu, B. Active Vitamin D Regulates Macrophage M1/M2 Phenotypes via the STAT-1-TREM-1 Pathway in Diabetic Nephropathy. J. Cell Physiol. 2019, 234, 6917–6926. [Google Scholar] [CrossRef] [PubMed]
- Ndisang, J.F.; Jadhav, A. Hemin Therapy Improves Kidney Function in Male Streptozotocin-Induced Diabetic Rats: Role of the Heme Oxygenase/Atrial Natriuretic Peptide/Adiponectin Axis. Endocrinology 2014, 155, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Ninichuk, V.; Clauss, S.; Kulkarni, O.; Schmid, H.; Segerer, S.; Radomska, E.; Eulberg, D.; Buchner, K.; Selve, N.; Klussmann, S.; et al. Late Onset of Ccl2 Blockade with the Spiegelmer MNOX-E36-3’PEG Prevents Glomerulosclerosis and Improves Glomerular Filtration Rate in Db/Db Mice. Am. J. Pathol. 2008, 172, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Chow, F.Y.; Nikolic-Paterson, D.J.; Ozols, E.; Atkins, R.C.; Tesch, G.H. Intercellular Adhesion Molecule-1 Deficiency Is Protective against Nephropathy in Type 2 Diabetic Db/Db Mice. J. Am. Soc. Nephrol. 2005, 16, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Ma, C.; Wu, H.; Zhang, H.; Yuan, F.; Yang, G.; Yang, Q.; Jia, L.; Liang, Z.; Kang, L. Tectorigenin Attenuates Diabetic Nephropathy by Improving Vascular Endothelium Dysfunction through Activating AdipoR1/2 Pathway. Pharmacol. Res. 2020, 153, 104678. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.K.H.; Ma, F.Y.; Nikolic-Paterson, D.J.; Thomas, M.C.; Hurst, L.A.; Tesch, G.H. Antibody Blockade of C-Fms Suppresses the Progression of Inflammation and Injury in Early Diabetic Nephropathy in Obese Db/Db Mice. Diabetologia 2009, 52, 1669–1679. [Google Scholar] [CrossRef] [Green Version]
- Ndisang, J.F.; Jadhav, A.; Mishra, M. The Heme Oxygenase System Suppresses Perirenal Visceral Adiposity, Abates Renal Inflammation and Ameliorates Diabetic Nephropathy in Zucker Diabetic Fatty Rats. PLoS ONE 2014, 9, e87936. [Google Scholar] [CrossRef]
- Nourshargh, S.; Alon, R. Leukocyte Migration into Inflamed Tissues. Immunity 2014, 41, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Karimi, Z.; Kahe, F.; Jamil, A.; Marszalek, J.; Ghanbari, A.; Afarideh, M.; Khajeh, E.; Noshad, S.; Esteghamati, A.; Chi, G. Intercellular Adhesion Molecule-1 in Diabetic Patients with and without Microalbuminuria. Diabetes Metab Syndr. 2018, 12, 365–368. [Google Scholar] [CrossRef]
- Coimbra, T.M.; Janssen, U.; Gröne, H.J.; Ostendorf, T.; Kunter, U.; Schmidt, H.; Brabant, G.; Floege, J. Early Events Leading to Renal Injury in Obese Zucker (Fatty) Rats with Type II Diabetes. Kidney Int. 2000, 57, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillén-Gómez, E.; Bardají-de-Quixano, B.; Ferrer, S.; Brotons, C.; Knepper, M.A.; Carrascal, M.; Abian, J.; Mas, J.M.; Calero, F.; Ballarín, J.A.; et al. Urinary Proteome Analysis Identified Neprilysin and VCAM as Proteins Involved in Diabetic Nephropathy. J. Diabetes Res. 2018, 2018, 6165303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, K.; Shikata, K.; Matsuda, M.; Akiyama, K.; Sugimoto, H.; Kushiro, M.; Makino, H. Increased Expression of Selectins in Kidneys of Patients with Diabetic Nephropathy. Diabetologia 1998, 41, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Mezzano, S.A.; Barría, M.; Droguett, M.A.; Burgos, M.E.; Ardiles, L.G.; Flores, C.; Egido, J. Tubular NF-KappaB and AP-1 Activation in Human Proteinuric Renal Disease. Kidney Int. 2001, 60, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Donadelli, R.; Abbate, M.; Zanchi, C.; Corna, D.; Tomasoni, S.; Benigni, A.; Remuzzi, G.; Zoja, C. Protein Traffic Activates NF-KB Gene Signaling and Promotes MCP-1-Dependent Interstitial Inflammation. Am. J. Kidney Dis. 2000, 36, 1226–1241. [Google Scholar] [CrossRef]
- Banba, N.; Nakamura, T.; Matsumura, M.; Kuroda, H.; Hattori, Y.; Kasai, K. Possible Relationship of Monocyte Chemoattractant Protein-1 with Diabetic Nephropathy. Kidney Int. 2000, 58, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, A.; Sekizuka, K.; Hayashi, T.; Kaneko, S.; Suzuki, Y.; Tomino, Y. Detection of Urinary MCP-1 in Patients with Diabetic Nephropathy. Nephron 1998, 80, 99. [Google Scholar] [CrossRef]
- Tashiro, K.; Koyanagi, I.; Saitoh, A.; Shimizu, A.; Shike, T.; Ishiguro, C.; Koizumi, M.; Funabiki, K.; Horikoshi, S.; Shirato, I.; et al. Urinary Levels of Monocyte Chemoattractant Protein-1 (MCP-1) and Interleukin-8 (IL-8), and Renal Injuries in Patients with Type 2 Diabetic Nephropathy. J. Clin. Lab. Anal. 2002, 16, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Furuichi, K.; Sakai, N.; Iwata, Y.; Yoshimoto, K.; Shimizu, M.; Takeda, S.I.; Takasawa, K.; Yoshimura, M.; Kida, H.; et al. Up-Regulation of Monocyte Chemoattractant Protein-1 in Tubulointerstitial Lesions of Human Diabetic Nephropathy. Kidney Int. 2000, 58, 1492–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susztak, K.; Böttinger, E.; Novetsky, A.; Liang, D.; Zhu, Y.; Ciccone, E.; Wu, D.; Dunn, S.; McCue, P.; Sharma, K. Molecular Profiling of Diabetic Mouse Kidney Reveals Novel Genes Linked to Glomerular Disease. Diabetes 2004, 53, 784–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Yang, C.W.; Park, C.W.; Ahn, H.J.; Kim, W.Y.; Yoon, K.H.; Suh, S.H.; Lim, S.W.; Cha, J.H.; Kim, Y.S.; et al. Long-Term Treatment with Ramipril Attenuates Renal Osteopontin Expression in Diabetic Rats. Kidney Int. 2003, 63, 454–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, G.F.; Ashkar, S.; Glimcher, M.J.; Cantor, H. Receptor-Ligand Interaction between CD44 and Osteopontin (Eta-1). Science 1996, 271, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, C.P.; Batlle, D.; Sahai, A. Osteopontin Mediates Hypoxia-Induced Proliferation of Cultured Mesangial Cells: Role of PKC and P38 MAPK. Kidney Int. 2000, 58, 691–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endlich, N.; Sunohara, M.; Nietfeld, W.; Wolski, E.W.; Schiwek, D.; Kränzlin, B.; Gretz, N.; Kriz, W.; Eickhoff, H.; Endlich, K. Analysis of Differential Gene Expression in Stretched Podocytes: Osteopontin Enhances Adaptation of Podocytes to Mechanical Stress. FASEB J. 2002, 16, 1850–1852. [Google Scholar] [CrossRef]
- Grutzmacher, C.; Park, S.; Zhao, Y.; Morrison, M.E.; Sheibani, N.; Sorenson, C.M. Aberrant Production of Extracellular Matrix Proteins and Dysfunction in Kidney Endothelial Cells with a Short Duration of Diabetes. Am. J. Physiol. Renal. Physiol. 2013, 304, F19–F30. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.J.; Wilkinson-Berka, J.L.; Ricardo, S.D.; Cox, A.J.; Gilbert, R.E. Progression of Tubulointerstitial Injury by Osteopontin-Induced Macrophage Recruitment in Advanced Diabetic Nephropathy of Transgenic (MRen-2)27 Rats. Nephrol. Dial. Transplant. 2002, 17, 985–991. [Google Scholar] [CrossRef]
- Kelly, D.J.; Chanty, A.; Gow, R.M.; Zhang, Y.; Gilbert, R.E. Protein Kinase Cbeta Inhibition Attenuates Osteopontin Expression, Macrophage Recruitment, and Tubulointerstitial Injury in Advanced Experimental Diabetic Nephropathy. J. Am. Soc. Nephrol 2005, 16, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, S.B.; Liu, J.; Kim, J.; Ren, Y.; Collins, A.R.; Nguyen, L.; Hsueh, W.A. Critical Role for Osteopontin in Diabetic Nephropathy. Kidney Int. 2010, 77, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Yiu, W.H.; Li, R.X.; Wu, H.J.; Wong, D.W.L.; Chan, L.Y.Y.; Leung, J.C.K.; Lai, K.N.; Tang, S.C.W. The TLR4 Antagonist CRX-526 Protects against Advanced Diabetic Nephropathy. Kidney Int. 2013, 83, 887–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junaid, A.; Amara, F.M. Osteopontin: Correlation with Interstitial Fibrosis in Human Diabetic Kidney and PI3-Kinase-Mediated Enhancement of Expression by Glucose in Human Proximal Tubular Epithelial Cells. Histopathology 2004, 44, 136–146. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Ikee, R.; Hemmi, N.; Hyodo, N.; Saigusa, T.; Namikoshi, T.; Yamada, M.; Suzuki, S.; Miura, S. Fractalkine and Its Receptor, CX3CR1, Upregulation in Streptozotocin-Induced Diabetic Kidneys. Nephron Exp. Nephrol. 2004, 97, e17–e25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, Q.; Liu, Q.; Li, Z.; Zhou, L.; Zou, F.; Yuan, Y.; Sun, Z. Crosstalk between Monocytes and Renal Mesangial Cells via Interaction of Metalloproteinases and Fractalkine in Diabetic Nephropathy. Mol. Med. Rep. 2013, 8, 1817–1823. [Google Scholar] [CrossRef] [Green Version]
- Mosser, D.M. The Many Faces of Macrophage Activation. J. Leukoc Biol 2003, 73, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Chinetti-Gbaguidi, G.; Colin, S.; Staels, B. Macrophage Subsets in Atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 10–17. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodelja, V.; Müller, C.; Politz, O.; Hakij, N.; Orfanos, C.E.; Goerdt, S. Alternative Macrophage Activation-Associated CC-Chemokine-1, a Novel Structural Homologue of Macrophage Inflammatory Protein-1 Alpha with a Th2-Associated Expression Pattern. J. Immunol. 1998, 160, 1411–1418. [Google Scholar] [PubMed]
- Arora, S.; Dev, K.; Agarwal, B.; Das, P.; Syed, M.A. Macrophages: Their Role, Activation and Polarization in Pulmonary Diseases. Immunobiology 2018, 223, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Kobori, H.; Nangaku, M.; Navar, L.G.; Nishiyama, A. The Intrarenal Renin-Angiotensin System: From Physiology to the Pathobiology of Hypertension and Kidney Disease. Pharmacol. Rev. 2007, 59, 251–287. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.; Muller, D.N. The Biology of the (pro)Renin Receptor. J. Am. Soc. Nephrol. 2010, 21, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, G.I.; Thomas, D.A.; Grant, P.J.; Turner, A.J.; Hooper, N.M. Evaluation of Angiotensin-Converting Enzyme (ACE), Its Homologue ACE2 and Neprilysin in Angiotensin Peptide Metabolism. Biochem. J. 2004, 383, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Flores-Muñoz, M.; Smith, N.J.; Haggerty, C.; Milligan, G.; Nicklin, S.A. Angiotensin1-9 Antagonises pro-Hypertrophic Signalling in Cardiomyocytes via the Angiotensin Type 2 Receptor. J. Physiol. 2011, 589, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Brem, A.S.; Morris, D.J.; Gong, R. Aldosterone-Induced Fibrosis in the Kidney: Questions and Controversies. Am. J. Kidney Dis. 2011, 58, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, D.J.; Zhang, Y.; Moe, G.; Naik, G.; Gilbert, R.E. Aliskiren, a Novel Renin Inhibitor, Is Renoprotective in a Model of Advanced Diabetic Nephropathy in Rats. Diabetologia 2007, 50, 2398–2404. [Google Scholar] [CrossRef] [Green Version]
- Epstein, M.; Williams, G.H.; Weinberger, M.; Lewin, A.; Krause, S.; Mukherjee, R.; Patni, R.; Beckerman, B. Selective Aldosterone Blockade with Eplerenone Reduces Albuminuria in Patients with Type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 2006, 1, 940–951. [Google Scholar] [CrossRef] [Green Version]
- Lytvyn, Y.; Godoy, L.C.; Scholtes, R.A.; van Raalte, D.H.; Cherney, D.Z. Mineralocorticoid Antagonism and Diabetic Kidney Disease. Curr. Diab. Rep. 2019, 19, 4. [Google Scholar] [CrossRef]
- Malek, V.; Sharma, N.; Sankrityayan, H.; Gaikwad, A.B. Concurrent Neprilysin Inhibition and Renin-Angiotensin System Modulations Prevented Diabetic Nephropathy. Life Sci. 2019, 221, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.D. Angiotensin II and Its Receptors in the Diabetic Kidney. Am. J. Kidney Dis. 2000, 36, 449–467. [Google Scholar] [CrossRef] [PubMed]
- Price, D.A.; Porter, L.E.; Gordon, M.; Fisher, N.D.; De’Oliveira, J.M.; Laffel, L.M.; Passan, D.R.; Williams, G.H.; Hollenberg, N.K. The Paradox of the Low-Renin State in Diabetic Nephropathy. J. Am. Soc. Nephrol. 1999, 10, 2382–2391. [Google Scholar] [CrossRef]
- Konoshita, T.; Wakahara, S.; Mizuno, S.; Motomura, M.; Aoyama, C.; Makino, Y.; Kawai, Y.; Kato, N.; Koni, I.; Miyamori, I.; et al. Tissue Gene Expression of Renin-Angiotensin System in Human Type 2 Diabetic Nephropathy. Diabetes Care 2006, 29, 848–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, E.J.; Hunsicker, L.G.; Clarke, W.R.; Berl, T.; Pohl, M.A.; Lewis, J.B.; Ritz, E.; Atkins, R.C.; Rohde, R.; Raz, I.; et al. Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. N. Engl. J. Med. 2001, 345, 851–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S.; et al. Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef] [Green Version]
- The GISEN Group (Gruppo Italiano Di Studi Epidemiologici in Nefrologia). Randomised Placebo-Controlled Trial of Effect of Ramipril on Decline in Glomerular Filtration Rate and Risk of Terminal Renal Failure in Proteinuric, Non-Diabetic Nephropathy. Lancet 1997, 349, 1857–1863. [Google Scholar]
- Barnett, A.H.; Bain, S.C.; Bouter, P.; Karlberg, B.; Madsbad, S.; Jervell, J.; Mustonen, J.; Diabetics Exposed to Telmisartan and Enalapril Study Group. Angiotensin-Receptor Blockade versus Converting-Enzyme Inhibition in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2004, 351, 1952–1961. [Google Scholar] [CrossRef] [Green Version]
- de Zeeuw, D.; Remuzzi, G.; Parving, H.-H.; Keane, W.F.; Zhang, Z.; Shahinfar, S.; Snapinn, S.; Cooper, M.E.; Mitch, W.E.; Brenner, B.M. Proteinuria, a Target for Renoprotection in Patients with Type 2 Diabetic Nephropathy: Lessons from RENAAL. Kidney Int. 2004, 65, 2309–2320. [Google Scholar] [CrossRef] [Green Version]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Parving, H.-H.; Persson, F.; Lewis, J.B.; Lewis, E.J.; Hollenberg, N.K.; AVOID Study Investigators. Aliskiren Combined with Losartan in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2008, 358, 2433–2446. [Google Scholar] [CrossRef] [Green Version]
- Fried, L.F.; Emanuele, N.; Zhang, J.H.; Brophy, M.; Conner, T.A.; Duckworth, W.; Leehey, D.J.; McCullough, P.A.; O’Connor, T.; Palevsky, P.M.; et al. Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy. N. Engl. J. Med. 2013, 369, 1892–1903. [Google Scholar] [CrossRef] [Green Version]
- Hilgers, K.F. Monocytes/Macrophages in Hypertension. J. Hypertens 2002, 20, 593–596. [Google Scholar] [CrossRef]
- Keidar, S.; Strizevsky, A.; Raz, A.; Gamliel-Lazarovich, A. ACE2 Activity Is Increased in Monocyte-Derived Macrophages from Prehypertensive Subjects. Nephrol Dial. Transplant. 2007, 22, 597–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagitani, Y.; Rakugi, H.; Okamura, A.; Moriguchi, K.; Takiuchi, S.; Ohishi, M.; Suzuki, K.; Higaki, J.; Ogihara, T. Angiotensin II Type 1 Receptor-Mediated Peroxide Production in Human Macrophages. Hypertension 1999, 33, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamura, A.; Rakugi, H.; Ohishi, M.; Yanagitani, Y.; Takiuchi, S.; Moriguchi, K.; Fennessy, P.A.; Higaki, J.; Ogihara, T. Upregulation of Renin-Angiotensin System during Differentiation of Monocytes to Macrophages. J. Hypertens 1999, 17, 537–545. [Google Scholar] [CrossRef]
- Skiba, D.S.; Nosalski, R.; Mikolajczyk, T.P.; Siedlinski, M.; Rios, F.J.; Montezano, A.C.; Jawien, J.; Olszanecki, R.; Korbut, R.; Czesnikiewicz-Guzik, M.; et al. Anti-Atherosclerotic Effect of the Angiotensin 1-7 Mimetic AVE0991 Is Mediated by Inhibition of Perivascular and Plaque Inflammation in Early Atherosclerosis. Br. J. Pharmacol. 2017, 174, 4055–4069. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, C.D.C.C.; Deinum, J.; Joosten, L.A.B.; Netea, M.G.; Riksen, N.P. The Mineralocorticoid Receptor as a Modulator of Innate Immunity and Atherosclerosis. Cardiovasc Res. 2018, 114, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Daugherty, A.; Rateri, D.L.; Lu, H.; Inagami, T.; Cassis, L.A. Hypercholesterolemia Stimulates Angiotensin Peptide Synthesis and Contributes to Atherosclerosis through the AT1A Receptor. Circulation 2004, 110, 3849–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narumi, K.; Hirose, T.; Sato, E.; Mori, T.; Kisu, K.; Ishikawa, M.; Totsune, K.; Ishii, T.; Ichihara, A.; Nguyen, G.; et al. A Functional (pro)Renin Receptor Is Expressed in Human Lymphocytes and Monocytes. Am. J. Physiol. Renal. Physiol. 2015, 308, F487–F499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldt, S.; Batenburg, W.W.; Mazak, I.; Maschke, U.; Wellner, M.; Kvakan, H.; Dechend, R.; Fiebeler, A.; Burckle, C.; Contrepas, A.; et al. Prorenin and Renin-Induced Extracellular Signal-Regulated Kinase 1/2 Activation in Monocytes Is Not Blocked by Aliskiren or the Handle-Region Peptide. Hypertension 2008, 51, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Nahmod, K.A.; Vermeulen, M.E.; Raiden, S.; Salamone, G.; Gamberale, R.; Fernández-Calotti, P.; Alvarez, A.; Nahmod, V.; Giordano, M.; Geffner, J.R. Control of Dendritic Cell Differentiation by Angiotensin II. FASEB J. 2003, 17, 491–493. [Google Scholar] [CrossRef]
- Viinikainen, A.; Nyman, T.; Fyhrquist, F.; Saijonmaa, O. Downregulation of Angiotensin Converting Enzyme by TNF-Alpha in Differentiating Human Macrophages. Cytokine 2002, 18, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Merino, A.; Alvarez-Lara, M.A.; Ramirez, R.; Carracedo, J.; Martin-Malo, A.; Aljama, P. Losartan Prevents the Development of the Pro-Inflammatory Monocytes CD14+CD16+ in Haemodialysis Patients. Nephrol. Dial. Transplant. 2012, 27, 2907–2912. [Google Scholar] [CrossRef] [Green Version]
- Hermansson, C.; Lundqvist, A.; Magnusson, L.U.; Ullström, C.; Bergström, G.; Hultén, L.M. Macrophage CD14 Expression in Human Carotid Plaques Is Associated with Complicated Lesions, Correlates with Thrombosis, and Is Reduced by Angiotensin Receptor Blocker Treatment. Int. Immunopharmaco.l 2014, 22, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Lu, H.; Chen, R.; Tian, Y.; Jiang, Y.; Zhang, S.; Ni, D.; Su, Z.; Shao, X. Angiotensin II Enhances the Acetylation and Release of HMGB1 in RAW264.7 Macrophage. Cell Biol. Int. 2018, 42, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chen, K.; Xiao, J.; Xin, J.; Zhang, L.; Li, X.; Li, L.; Si, J.; Wang, L.; Ma, K. Angiotensin II Induces RAW264.7 Macrophage Polarization to the M1-type through the Connexin 43/NF-κB Pathway. Mol. Med. Rep. 2020, 21, 2103–2112. [Google Scholar] [CrossRef] [Green Version]
- Hammer, A.; Yang, G.; Friedrich, J.; Kovacs, A.; Lee, D.-H.; Grave, K.; Jörg, S.; Alenina, N.; Grosch, J.; Winkler, J.; et al. Role of the Receptor Mas in Macrophage-Mediated Inflammation in Vivo. Proc. Natl. Acad. Sci. USA 2016, 113, 14109–14114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho Santuchi, M.; Dutra, M.F.; Vago, J.P.; Lima, K.M.; Galvão, I.; de Souza-Neto, F.P.; Morais, E.; Silva, M.; Oliveira, A.C.; de Oliveira, F.C.B.; et al. Angiotensin-(1-7) and Alamandine Promote Anti-Inflammatory Response in Macrophages In Vitro and In Vivo. Mediators Inflamm. 2019, 2019, 2401081. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.L.; Costa-Neto, C.M. Angiotensin-(1-7) Decreases LPS-Induced Inflammatory Response in Macrophages. J. Cell Physiol. 2012, 227, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Huang, W.; Wang, Z.; Ren, F.; Luo, L.; Zhou, J.; Yan, R.; Xia, N.; Tang, L. Anti-Inflammatory Effects of Ang-(1-7) via TLR4-Mediated Inhibition of the JNK/FoxO1 Pathway in Lipopolysaccharide-Stimulated RAW264.7 cells. Dev. Comp. Immunol. 2019, 92, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-J.; Li, W.-H.; Wu, R.; Xie, Q.; Cui, L.-Q. ACE2 Overexpression Inhibits Angiotensin II-Induced Monocyte Chemoattractant Protein-1 Expression in Macrophages. Arch. Med. Res. 2008, 39, 149–154. [Google Scholar] [CrossRef]
- Urushihara, M.; Kondo, S.; Kinoshita, Y.; Ozaki, N.; Jamba, A.; Nagai, T.; Fujioka, K.; Hattori, T.; Kagami, S. (Pro)Renin Receptor Promotes Crescent Formation via the ERK1/2 and Wnt/β-Catenin Pathways in Glomerulonephritis. Am. J. Physiol. Renal. Physiol. 2020, 319, F571–F578. [Google Scholar] [CrossRef]
- Yoshida, A.; Kanamori, H.; Naruse, G.; Minatoguchi, S.; Iwasa, M.; Yamada, Y.; Mikami, A.; Kawasaki, M.; Nishigaki, K.; Minatoguchi, S. (Pro)Renin Receptor Blockade Ameliorates Heart Failure Caused by Chronic Kidney Disease. J. Card Fail. 2019, 25, 286–300. [Google Scholar] [CrossRef]
- Hahn, A.W.; Jonas, U.; Bühler, F.R.; Resink, T.J. Activation of Human Peripheral Monocytes by Angiotensin II. FEBS Lett. 1994, 347, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, A.; Cerdá-Nicolás, M.; Naim Abu Nabah, Y.; Mata, M.; Issekutz, A.C.; Panés, J.; Lobb, R.R.; Sanz, M.-J. Direct Evidence of Leukocyte Adhesion in Arterioles by Angiotensin II. Blood 2004, 104, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tummala, P.E.; Chen, X.L.; Sundell, C.L.; Laursen, J.B.; Hammes, C.P.; Alexander, R.W.; Harrison, D.G.; Medford, R.M. Angiotensin II Induces Vascular Cell Adhesion Molecule-1 Expression in Rat Vasculature: A Potential Link between the Renin-Angiotensin System and Atherosclerosis. Circulation 1999, 100, 1223–1229. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.-Y.; Lang, P.-P.; Zhang, Y.-L.; Yang, X.-L.; Xia, Y.-L.; Bai, J.; Li, H.-H. Pharmacological Blockage of ICAM-1 Improves Angiotensin II-Induced Cardiac Remodeling by Inhibiting Adhesion of LFA-1+ Monocytes. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H1301–H1311. [Google Scholar] [CrossRef] [PubMed]
- Kamal, F.; Yanakieva-Georgieva, N.; Piao, H.; Morioka, T.; Oite, T. Local Delivery of Angiotensin II Receptor Blockers into the Kidney Passively Attenuates Inflammatory Reactions during the Early Phases of Streptozotocin-Induced Diabetic Nephropathy through Inhibition of Calpain Activity. Nephron. Exp. Nephrol. 2010, 115, e69–e79. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Luyckx, V.A.; Ots, M.; Lee, K.W.; Ziai, F.; Troy, J.L.; Brenner, B.M.; MacKenzie, H.S. Renin-Angiotensin Blockade Lowers MCP-1 Expression in Diabetic Rats. Kidney Int. 1999, 56, 1037–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggins, K.J.; Tiauw, V.; Zhang, Y.; Gilbert, R.E.; Langham, R.G.; Kelly, D.J. Perindopril Attenuates Tubular Hypoxia and Inflammation in an Experimental Model of Diabetic Nephropathy in Transgenic Ren-2 Rats. Nephrology (Carlton) 2008, 13, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-Z.; Wang, S.; Yang, S.; Yang, H.; Fan, X.; Takahashi, T.; Harris, R.C. Role of Blood Pressure and the Renin-Angiotensin System in Development of Diabetic Nephropathy (DN) in ENOS-/- Db/Db Mice. Am. J. Physiol. Renal. Physiol. 2012, 302, F433–F438. [Google Scholar] [CrossRef]
- Ding, D.; Du, Y.; Qiu, Z.; Yan, S.; Chen, F.; Wang, M.; Yang, S.; Zhou, Y.; Hu, X.; Deng, Y.; et al. Vaccination against Type 1 Angiotensin Receptor Prevents Streptozotocin-Induced Diabetic Nephropathy. J. Mol. Med. (Berl.) 2016, 94, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassis, P.; Locatelli, M.; Corna, D.; Villa, S.; Rottoli, D.; Cerullo, D.; Abbate, M.; Remuzzi, G.; Benigni, A.; Zoja, C. Addition of Cyclic Angiotensin-(1-7) to Angiotensin-Converting Enzyme Inhibitor Therapy Has a Positive Add-on Effect in Experimental Diabetic Nephropathy. Kidney Int. 2019, 96, 906–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cucak, H.; Nielsen Fink, L.; Højgaard Pedersen, M.; Rosendahl, A. Enalapril Treatment Increases T Cell Number and Promotes Polarization towards M1-like Macrophages Locally in Diabetic Nephropathy. Int. Immunopharmacol 2015, 25, 30–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-G.; Lin, H.; Qian, H.; Zhao, M.; Qi, X.-M.; Wu, G.-Z.; Lin, S.-T. Renoprotective Effects of Combination of Angiotensin Converting Enzyme Inhibitor with Mycophenolate Mofetil in Diabetic Rats. Inflamm. Res. 2006, 55, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Johansson, U.; Peng, X.-R.; Bamberg, K.; Huang, Y. An Additive Effect of Eplerenone to ACE Inhibitor on Slowing the Progression of Diabetic Nephropathy in the Db/Db Mice. Am. J. Transl. Res. 2016, 8, 1339–1354. [Google Scholar]
- Greene, E.L.; Kren, S.; Hostetter, T.H. Role of Aldosterone in the Remnant Kidney Model in the Rat. J. Clin. Investig. 1996, 98, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Nistala, R.; Meuth, A.; Smith, C.; Annayya, A. Reliable and High Efficiency Extraction of Kidney Immune Cells. J. Vis. Exp. 2016. [Google Scholar] [CrossRef]
- Ma, L.-J.; Corsa, B.A.; Zhou, J.; Yang, H.; Li, H.; Tang, Y.-W.; Babaev, V.R.; Major, A.S.; Linton, M.F.; Fazio, S.; et al. Angiotensin Type 1 Receptor Modulates Macrophage Polarization and Renal Injury in Obesity. Am. J. Physiol. Renal. Physiol. 2011, 300, F1203–F1213. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Yancey, P.G.; Zuo, Y.; Ma, L.-J.; Kaseda, R.; Fogo, A.B.; Ichikawa, I.; Linton, M.F.; Fazio, S.; Kon, V. Macrophage Polarization by Angiotensin II-Type 1 Receptor Aggravates Renal Injury-Acceleration of Atherosclerosis. Arterioscler. Thromb Vasc. Biol. 2011, 31, 2856–2864. [Google Scholar] [CrossRef] [Green Version]
- Marketou, M.E.; Kontaraki, J.E.; Tsakountakis, N.A.; Zacharis, E.A.; Kochiadakis, G.E.; Arfanakis, D.A.; Parthenakis, F.; Chlouverakis, G.; Vardas, P.E. Differential Effect of Telmisartan and Amlodipine on Monocyte Chemoattractant Protein-1 and Peroxisome Proliferator-Activated Receptor-Gamma Gene Expression in Peripheral Monocytes in Patients with Essential Hypertension. Am. J. Cardiol. 2011, 107, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Fujisaka, S.; Usui, I.; Kanatani, Y.; Ikutani, M.; Takasaki, I.; Tsuneyama, K.; Tabuchi, Y.; Bukhari, A.; Yamazaki, Y.; Suzuki, H.; et al. Telmisartan Improves Insulin Resistance and Modulates Adipose Tissue Macrophage Polarization in High-Fat-Fed Mice. Endocrinology 2011, 152, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.; Burgess, E.; Weir, M.; Davidai, G.; Koval, S.; AMADEO Study Investigators. Telmisartan Is More Effective than Losartan in Reducing Proteinuria in Patients with Diabetic Nephropathy. Kidney Int. 2008, 74, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayego-Mateos, S.; Morgado-Pascual, J.L.; Opazo-Ríos, L.; Guerrero-Hue, M.; García-Caballero, C.; Vázquez-Carballo, C.; Mas, S.; Sanz, A.B.; Herencia, C.; Mezzano, S.; et al. Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int. J. Mol. Sci. 2020, 21, 3798. [Google Scholar] [CrossRef]
Diabetic Models | Strategies | Effects on Macrophage Recruitment and Polarization in Kidneys | Renal Effects | Ref. |
---|---|---|---|---|
STZ-treated mice | induced depletion of macrophages with diphtheria toxin | ↓ macrophage infiltration | ↓ glomerulosclerosis and albuminuria | [36] |
clodronate liposomes | ↓ UACR, renal fibrosis and glomerulosclerosis | [38] | ||
Mcp-1−/− | ↓ albuminuria and renal fibrosis | [40] | ||
propagermanium (CCR2 antagonist) administration or Mcp-1−/− | ↓ glomerulosclerosis and collagen deposition | [41] | ||
Cx3cr1−/− | ↓ macrophage infiltration and MCP-1 renal expression | ↓ glomerulosclerosis and interstitial fibrosis | [42] | |
G31P (antagonist of CXCL8) | ↓ macrophage marker expression | ↓ glomerulosclerosis and renal fibrosis | [43] | |
IL-17A | ↓ urinary MCP-1 level and macrophage renal infiltration | ↓ glomerulosclerosis | [44] | |
Il-17−/− | ↓ macrophage infiltration | ↓ albuminuria and glomerulosclerosis | [45] | |
IL-17A monoclonal antibodies | no effect on macrophage infiltration | ↓ glomerulosclerosis | [45] | |
Icam-1−/− | ↓ macrophage infiltration | ↓ glomerulosclerosis, ↓ albuminuria and glomerular collagen IV deposition | [46] | |
endothelial heparan sulfate deficiency | ↓ macrophage infiltration | ↓ glomerulosclerosis and interstitial renal fibrosis | [47] | |
recombinant pentraxin 3 | ↓ M1 and ↑ M2 macrophage infiltration | preserved slit diaphragm proteins | [48] | |
pentraxin 3 monoclonal antibodies | ↑ M1 and ↓ M2 macrophage infiltration | altered slit diaphragm proteins | [48] | |
administration of IL-4-/IL-13-treated M2 macrophages | ↑ M2 macrophage infiltration | ↓ interstitial fibrosis and glomerulosclerosis | [49] | |
mesenchymal stem cells | ↓ M1 and ↑ M2 macrophage infiltration | ↓ UACR, renal fibrosis and glomerulosclerosis | [38] | |
Tlr2−/− | ↓ M1 macrophage infiltration, ↓ serum and renal MCP-1 levels | preserved slit diaphragm proteins, normalized renal weight | [50] | |
cyclooxygenase-2 deletion in hematopoietic stem cells | ↑ macrophage infiltration, ↓ M2 macrophage infiltration and marker expression, ↑ renal MCP-1 expression | ↓ deposition of collagen in glomeruli and of α-SMA in interstitium | [51] | |
STZ-treated mice deficient for Nos3 | CCR2 antagonists | ↓ macrophage infiltration | ↓ UACR and collagen IV deposition in glomeruli | [52] |
STZ-treated rats | colchicine | ↓ macrophage infiltration, ↓ MCP-1 and ICAM-1 renal expression | ↓ albuminuria and ECM accumulation | [37] |
ICAM-1 monoclonal antibodies | ↓ macrophage infiltration | correction of glomerular hyperfiltration | [53] | |
calcitriol | ↓ M1 and ↑ M2 macrophage marker expression | ↓ glomerulosclerosis | [54] | |
25-OH vitamin D | ↓ macrophage infiltration | [55] | ||
hemin | ↓ renal urinary MCP-1 levels, ↓ renal macrophage infiltration, ↓ M1 and ↑ M2 macrophage marker expression | prevented kidney overweight and restored GFR | [56] | |
db/db mice | CCL2 antagonizing L-RNA aptamer | ↓ macrophage infiltration | ↓ glomerulosclerosis | [57] |
Mcp-1−/− | ↓ interstitial and glomerular collagen IV deposition, ↓ tubular atrophy | [40] | ||
IL-17A | ↓ urinary MCP-1 level | ↓ glomerulosclerosis | [44] | |
Icam-1−/− | ↓ macrophage infiltration | ↓ glomerulosclerosis, renal fibrosis and albuminuria | [58] | |
tectorigenin | ↓ macrophage infiltration, ↓ M1 and ↑ M2 macrophage marker expression | preserved slit diaphragm proteins, ↓ glomerulosclerosis | [59] | |
c-fms monoclonal antibodies | ↓ macrophage infiltration, ↓ urine excretion of MCP-1 | ↓ renal weight without normalization, ↓ hyperfiltration and interstitial collagen deposition | [60] | |
Ins2Akita mutant mice | IL-17A | ↓ urinary MCP-1 level | ↓ glomerulosclerosis | [44] |
AMPWAP | ↓ M1 and ↑ M2 macrophage marker expression | ↓ glomerulosclerosis and albuminuria | [44] | |
Zucker diabetic fatty rats | hemin | ↓ M1 macrophage infiltration and M1 marker expression, ↑ M2 macrophage marker expression | restored GFR, ↓ collagen deposition | [61] |
Diabetic Models | Strategies | Effects on Macrophage Recruitment and Polarization in Kidneys | Renal Effects | Ref. |
---|---|---|---|---|
STZ-treated mice | enalapril (ACEI) | ↑ blood leucocytes and CD68+F4/80+ cell number, ↑ CD206 (M2 marker) expression in renal macrophages, ↑ fractalkine renal expression | ↓ 24-h albuminuria in metabolic cages | [144] |
subcapsular implantation of a valsartan (ARB) delivery sponge in the kidneys | ↓ macrophage infiltration | no effect | [138] | |
STZ-treated hypertensive Nos3−/− mice | CCR2 antagonist and/or captopril (ACEI) | ↓ macrophage infiltration with a CCR2 antagonist, additional effect with captopril | ↓ UACR with CCR2 antagonist and collagen IV deposition in glomeruli, no additional effect with captopril | [52] |
STZ-treated rats | olmesartan (ARB) | ↓ macrophage infiltration | ↓ glomerulosclerosis, interstitial fibrosis | [142] |
losartan (ARB) and/or mycophenolate mofetil (macrophage infiltration and proliferation suppressor) | ↓ macrophage infiltration and MCP-1 renal expression, additional effect with mycophenolate mofetil, no effect on ICAM-1 expression | ↓ kidney weight and glomerulosclerosis, additional effect with mycophenolate mofetil | [145] | |
candesartan (ARB) or enalapril (ACEI) | ↓ MCP-1 renal expression and macrophage infiltration | ↓ kidney weight | [139] | |
thiorphan (NEPI) or diminazene aceturate (ACE2 activator) and telmisartan (ARB) | not available | ↓ glomerular and tubulointerstitial fibrosis | [100] | |
STZ-treated hypertensive REN-2 rats | no treatment | not available | severe glomerulosclerosis, low GFR | [33] |
perindopril (ACEI) | ↓ macrophage infiltration | ↓ renal fibrosis and protection against GFR decrease | [140] | |
db/db mice | enalapril (ACEI) | ↑ blood leucocyte and macrophage number, ↑ CD11c (M1 marker) expression in renal macrophages | ↓ 24-h albuminuria in metabolic cages | [144] |
ob/ob mice | cAng-(1,7) and/or lisinopril (ACEI) | ↓ macrophage infiltration, additional effect with lisinopril | ↓ glomerulosclerosis, albuminuria, renal fibrosis, additional effect with lisinopril | [143] |
eNos−/− and db/db mice | captopril (ACEI) | ↓ macrophage infiltration, ↑ arginase-1 and IL4-RA (M2 markers) expression | ↓ UACR, glomerulosclerosis and interstitial fibrosis | [141] |
Otsuka Long-Evans Tokushima fatty rats | ramipril (ACEI) | ↓ macrophage infiltration and osteopontin expression | ↓ glomerulosclerosis and tubulointerstitial fibrosis | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moratal, C.; Laurain, A.; Naïmi, M.; Florin, T.; Esnault, V.; Neels, J.G.; Chevalier, N.; Chinetti, G.; Favre, G. Regulation of Monocytes/Macrophages by the Renin–Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int. J. Mol. Sci. 2021, 22, 6009. https://doi.org/10.3390/ijms22116009
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin–Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. International Journal of Molecular Sciences. 2021; 22(11):6009. https://doi.org/10.3390/ijms22116009
Chicago/Turabian StyleMoratal, Claudine, Audrey Laurain, Mourad Naïmi, Thibault Florin, Vincent Esnault, Jaap G. Neels, Nicolas Chevalier, Giulia Chinetti, and Guillaume Favre. 2021. "Regulation of Monocytes/Macrophages by the Renin–Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study" International Journal of Molecular Sciences 22, no. 11: 6009. https://doi.org/10.3390/ijms22116009
APA StyleMoratal, C., Laurain, A., Naïmi, M., Florin, T., Esnault, V., Neels, J. G., Chevalier, N., Chinetti, G., & Favre, G. (2021). Regulation of Monocytes/Macrophages by the Renin–Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. International Journal of Molecular Sciences, 22(11), 6009. https://doi.org/10.3390/ijms22116009