Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation
Abstract
:1. Introduction
2. Biological Effects of PAHs
Carcinogenicity of PAHs
3. Legislation Concerning PAHs in Food
4. Main Factors Influencing PAHs Contamination in Foods
4.1. Cooking
4.2. Smoking
4.3. Other Processing
4.3.1. Processing of Vegetable Oils
4.3.2. Drying and Roasting in Grains
5. PAHs in Food and Their Impact on Food Quality
5.1. Oils
5.2. Meats and Meat Products
5.3. Cocoa and Chocolates
5.4. Fruits and Vegetables
5.5. Milk, Dairy, and Baby Foods
5.6. Bread and Cereals
5.7. Other Products
6. Analytical Methods for the Quantification of PAHs
7. Risk Assessment of PAHs in Foods
8. Strategies to Reduce Food Contamination with PAHs
8.1. Marinades
8.2. Cooking Methods
8.3. Solvents Used during Extraction Processes
8.4. Washing
8.5. Irradiation
8.6. Reduction of Smoke Contamination Used in the Smoking Process
8.7. Food Packaging
9. Current Knowledge, Future Trends and Recommendations
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Domingo, J.L.; Nadal, M. Human dietary exposure to polycyclic aromatic hydrocarbons: A review of the scientific literature. Food Chem. Toxicol. 2015, 86, 144–153. [Google Scholar] [CrossRef]
- Purcaro, G.; Moret, S.; Conte, L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta 2013, 105. [Google Scholar] [CrossRef] [PubMed]
- Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A.M.; Quiterio de Souza, S.L.; Barbosa Rocha, H.; Raices, R. Polycyclic aromatic hydrocarbons in milk and dairy products. Int. J. Dairy Technol. 2019, 72. [Google Scholar] [CrossRef] [Green Version]
- Zelinkova, Z.; Wenzl, T. EU marker polycyclic aromatic hydrocarbons in food supplements: Analytical approach and occurrence. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 1914–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, S1691–S2221. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60. [Google Scholar] [CrossRef] [PubMed]
- Abid, Z.; Cross, A.J.; Sinha, R. Meat, dairy, and cancer. Am. J. Clin. Nutr. 2014, 100, 386S–393S. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 835/2011 of 19 August 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Foodstuffs. OJ L 215. pp. 4–8. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0835&qid=1619334803026&from=EN (accessed on 13 April 2021).
- Garcia, L.P.; Gonçalves, B.L.; Panho, G.; Scussel, V.M. Hidrocarbonetos policíclicos aromáticos em alimentos: Uma revisão. Pubvet 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, E.N.; Hajeb, P.; Selamat, J.; Razis, A.F.A. Polycyclic aromatic hydrocarbons (PAHs) and their bioaccessibility in meat: A tool for assessing human cancer risk. Asian Pac. J. Cancer Prev. 2016, 17, 15–23. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2010; No. 92. Available online: https://www.ncbi.nlm.nih.gov/books/NBK321712/ (accessed on 13 April 2021).
- Malarkey, D.E.; Hoenerhoff, M.J.; Maronpot, R.R. Carcinogenesis. In Fundamentals of Toxicologic Pathology, 3rd ed.; Wallig, M.A., Haschek, W.M., Rousseaux, C.G., Bolon, B., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 83–104. [Google Scholar]
- Zelinkova, Z.; Wenzl, T. The occurrence of 16 EPA PAHs in food—A Review. Polycycl. Aromat. Compd. 2015, 35, 248–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Biotechnology Information. PubChem Compound Summary. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 4 April 2021).
- Duan, X.; Shen, G.; Yang, H.; Tian, J.; Wei, F.; Gong, J.; Zhang, J. Dietary intake polycyclic aromatic hydrocarbons (PAHs) and associated cancer risk in a cohort of Chinese urban adults: Inter- and intra-individual variability. Chemosphere 2016, 144, 2469–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ifegwu, O.C.; Anyakora, C. Polycyclic aromatic hydrocarbons: Part I. Exposure. In Advances in Clinical Chemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 72, Chapter 6; pp. 277–304. [Google Scholar]
- Katona, B.W.; Lynch, J.P. Mechanisms of gastrointestinal malignancies. In Physiology of the Gastrointestinal Tract; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1615–1642. [Google Scholar]
- Haschek, W.A.; Rousseaux, C.G.; Wallig, M.A. Nomenclature: Terminology for morphologic alterations. In Fundamentals of Toxicologic Pathology, 2nd ed.; Academic Press: San Diego, CA, USA, 2010; pp. 67–80. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polycyclic Aromatic Hydrocarbons; U.S. Department of Health and Human Services: Atlanta, GA, USA, 1995; pp. 1–455. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf (accessed on 12 April 2021).
- Bernardo, D.L.; Barros, K.A.; Silva, R.C.; Pavão, A.C. Carcinogenicity of polycyclic aromatic hydrocarbons. Quim. Nova 2016, 39, 789–794. [Google Scholar] [CrossRef]
- Das, D.N.; Panda, P.K.; Naik, P.P.; Mukhopadhyay, S.; Sinha, N.; Bhutia, S.K. Phytotherapeutic approach: A new hope for polycyclic aromatic hydrocarbons induced cellular disorders, autophagic and apoptotic cell death. Toxicol. Mech. Methods 2017, 27, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; da Silva, E.; Hou, L.; Denslow, N.D.; Xiang, P.; Ma, L.Q. Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environ. Int. 2018, 119, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Grover, P.L. Chemical Carcinogens and DNA, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; Volume 2, pp. 1–218. [Google Scholar]
- Nogacka, A.M.; Gómez-Martin, M.; Suárez, A.; González-Bernardo, O.; Reyes-Gavilán, C.G.; González, S. Xenobiotics formed during food processing: Their relation with the intestinal microbiota and colorectal cancer. Int. J. Mol. Sci. 2019, 20, 2051. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2016, 60, 64–87. [Google Scholar] [CrossRef]
- Singh, L.; Varshney, J.G.; Agarwal, T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 2016, 199, 768–781. [Google Scholar] [CrossRef]
- Choudhuri, S.; Patton, G.W.; Chanderbhan, R.F.; Mattia, A.; Klaassen, C.D. From classical toxicology to Tox21: Some critical conceptual and technological advances in the molecular understanding of the toxic response beginning from the last quarter of the 20th century. Toxicol. Sci. 2018, 161, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Harris, V.K.; Schiffman, J.D.; Boddy, A.M. Evolution of cancer defense mechanisms across species. In Ecology and Evolution of Cancer; Elsevier: Amsterdam, The Netherlands, 2017; pp. 99–110. [Google Scholar]
- IARC Working Group on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Polynuclear aromatic compounds, Part 1: Chemical, environmental and experimental data. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; International Agency for Research on Cancer: Lyon, France, 1983; Volume 32, pp. 1–453. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Polynuclear-Aromatic-Compounds-Part-1-Chemical-Environmental-And-Experimental-Data-1983 (accessed on 12 April 2021).
- European Food Safety Authority. Polycyclic aromatic hydrocarbons in food-scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 6, 724. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Summary and Conclusions of the Sixty-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available online: http://www.fao.org/3/at877e/at877e.pdf (accessed on 13 April 2021).
- European Food Safety Authority Scientific Committee. Statement on the applicability of the Margin of Exposure approach for the safety assessment of impurities which are both genotoxic and carcinogenic in substances added to food/feed. EFSA J. 2012, 10, 2578. [Google Scholar] [CrossRef]
- Mafra, I.; Amaral, J.S.; Oliveira, M.B.P.P. Polycyclic aromatic hydrocarbons (PAH) in olive oils and other vegetable oils; potential for carcinogenesis. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.-P.; Dogliotti, E.; Di Domenico, A.; Luisa Fernández-Cruz, M.; Fink-Gremmels, J.; Fürst, P.; Galli, C.; et al. Polycyclic Aromatic Hydrocarbons in Food 1 Scientific Opinion of the Panel on Contaminants in the Food Chain; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2008; Volume 724. [Google Scholar]
- Commission Regulation (EU) No. 1327/2014 of 12 December 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Polycyclic Aromatic Hydrocarbons (PAHs) in Traditionally Smoked Meat and Meat Products and Traditionally smoked fish and fishery products. OJ L 358. pp. 13–14. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R1327&qid=1619338758681&from=EN (accessed on 10 April 2021).
- Commission Regulation (EU) 2020/1255 of 7 September 2020 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Polycyclic Aromatic Hydrocarbons (PAHs) in Traditionally Smoked Meat and Smoked Meat Products and Traditionally Smoked Fish and Smoked Fishery Products and Establishing a Maximum Level of PAHs in Powders of Food of Plant Origin Used for the Preparation of Beverages. OJ L 293. pp. 1–4. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020R1255 (accessed on 10 April 2021).
- Commission Regulation (EU) 2015/1933 of 27 October 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Cocoa Fibre, Banana Chips, Food Supplements, Dried Herbs and Dried Spices. OJ L 282. pp. 11–13. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32015R1933 (accessed on 10 April 2021).
- Brasil, Ministério da Saúde. Resolução da Diretoria Colegiada (RDC) n. 281 de 29 de Abril de 2019. Autoriza o uso de Aditivos Alimentares e Coadjuvantes de Tecnologia em Diversas Categorias de Alimentos. In Diário Oficial [da] República Federativa do Brasil; 2019. Available online: https://www.in.gov.br/web/dou/-/resolu%C3%87%C3%83o-rdc-n%C2%BA-281-de-29-de-abril-de-2019-86234909 (accessed on 8 April 2021).
- Brasil, Secretaria de Vigilância Sanitária do Ministério da Saúde. Resolução da Diretoria Colegiada (RDC) n. 2 de 15 de Janeiro de 2007. Aprova o Regulamento Técnico Sobre Aditivos Aromatizantes. In Diário Oficial da União; 2007. Available online: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2007/rdc0002_15_01_2007.html (accessed on 8 April 2021).
- Brasil, Ministério da Saúde. Portaria de Consolidação MS/GM n° 5 de 28 de Setembro de 2017. Consolidação das Normas Sobre as Ações e os Serviços de Saúde do Sistema Único de Saúde. In Diário Oficial da União; 2017; pp. 360–568. Available online: https://portalarquivos2.saude.gov.br/images/pdf/2018/marco/29/PRC-5-Portaria-de-Consolida----o-n---5--de-28-de-setembro-de-2017.pdf (accessed on 8 April 2021).
- US Environmental Protection Agency. Environmental Protection Agency Consumer Factsheet on: BENZO(A)PYRENE. Available online: https://archive.epa.gov/water/archive/web/pdf/archived-consumer-factsheet-on-benzo.pdf (accessed on 12 April 2021).
- Government of Canada. Health Canada’s Maximum Levels for Chemical Contaminants in Foods. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html (accessed on 12 April 2021).
- Jakszyn, P.; Agudo, A.; Ibánez, R.; García-Closas, R.; Pera, G.; Amiano, P.; González, C.A. Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J. Nutr. 2004, 13, 2011–2014. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Carcinogenicity of consumption of red meat and processed meat: A review of scientific news since the IARC decision. Food Chem. Toxicol. 2017, 105, 256–261. [Google Scholar] [CrossRef]
- Da Paz, A.P.S.; Nascimento, E.C.P.; Marcondes, H.C.; da Silva, M.C.F.; Hamoy, M.; de Mello, V.J. The presence of polycyclic aromatic hydrocarbons in food products and their relationship with the cooking method and nature of the food. Braz. J. Food Technol. 2017, 20. [Google Scholar] [CrossRef] [Green Version]
- Wongmaneepratip, W.; Vangnai, K. Effects of oil types and pH on carcinogenic polycyclic aromatic hydrocarbons (PAHs) in grilled chicken. Food Control 2017, 79, 119–125. [Google Scholar] [CrossRef]
- Vintilă, I. Typical traditional processes: Cooking and frying. In Regulating Safety of Traditional and Ethnic Foods; Elsevier: Amsterdam, The Netherlands, 2016; pp. 29–62. [Google Scholar]
- Dantas, N.M.; Sampaio, G.R.; Ferreira, F.S.; Labre, T.S.; Torres, E.A.; Saldanha, T. Cholesterol oxidation in fish and fish products. J. Food Sci. 2015, 80, R2627–R2639. [Google Scholar] [CrossRef] [Green Version]
- Rose, M.; Holland, J.; Dowding, A.; Petch, S.R.G.; White, S.; Fernandes, A.; Mortimer, D. Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem. Toxicol. 2015, 78, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Perelló, G.; Martí-Cid, R.; Castell, V.; Llobet, J.M.; Domingo, J.L. Concentrations of polybrominated diphenyl ethers, hexachlorobenzene and polycyclic aromatic hydrocarbons in various foodstuffs before and after cooking. Food Chem. Toxicol. 2009, 47, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Viegas, O.; Novo, P.; Pinto, E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food Chem. Toxicol. 2012, 50, 2128–2134. [Google Scholar] [CrossRef]
- Kazerouni, N.; Sinha, R.; Hsu, C.-H.; Greenberg, A.; Rothman, N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 2001, 39, 423–439. [Google Scholar] [CrossRef]
- Park, K.-C.; Pyo, H.; Kim, W.; Yoon, K.S. Effects of cooking methods and tea marinades on the formation of benzo[a]pyrene in grilled pork belly (Samgyeopsal). Meat Sci. 2017, 129, 1–8. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; García-Falcón, M.S.; Martínez-Carballo, E.; Simal-Gándara, J. Effects of toasting procedures on the levels of polycyclic aromatic hydrocarbons in toasted bread. Food Chem. 2008, 108, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Patra, J.K.; Shin, H.-S. Factors influencing inhibition of eight polycyclic aromatic hydrocarbons in heated meat model system. Food Chem. 2018, 239, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Zachara, A.; Gałkowska, D.; Juszczak, L. Contamination of smoked meat and fish products from Polish market with polycyclic aromatic hydrocarbons. Food Control 2017, 80, 45–51. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. CAC/RCP 68/2009: Code of Practice for the Reduction of Contamination of Food with Polycyclic Aromatic Hydrocarbons (PAH) from Smoking and Direct Drying Processes. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/codes-of-practice/en/ (accessed on 11 April 2021).
- European Salmon Smokers Association. European Guide with Good Practice for Smoked, Salted and Marinated Fish. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/biosafety_fh_guidance_essa_smoked-salted-marinated-fish.pdf (accessed on 11 April 2021).
- Roseiro, L.C.; Gomes, A.; Santos, C. Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product. Food Chem. Toxicol. 2011, 49, 1340–1345. [Google Scholar] [CrossRef]
- Škaljac, S.; Jokanović, M.; Tomović, V.; Ivić, M.; Tasić, T.; Ikonić, P.; Šojić, B.; Džinić, N.; Petrović, L. Influence of smoking in traditional and industrial conditions on colour and content of polycyclic aromatic hydrocarbons in dry fermented sausage “Petrovská klobása”. LWT Food Sci. Technol. 2018, 87, 158–162. [Google Scholar] [CrossRef]
- Tongo, I.; Ogbeide, O.; Ezemonye, L. Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicol. Rep. 2017, 4, 55–61. [Google Scholar] [CrossRef]
- Wretling, S.; Eriksson, A.; Eskhult, G.A.; Larsson, B. Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. J. Food Compos. Anal. 2010, 23, 264–272. [Google Scholar] [CrossRef]
- Rozentāle, I.; Stumpe-Vīksna, I.; Začs, D.; Siksna, I.; Melngaile, A.; Bartkevičs, V. Assessment of dietary exposure to polycyclic aromatic hydrocarbons from smoked meat products produced in Latvia. Food Control 2015, 54, 16–22. [Google Scholar] [CrossRef]
- Rojo Camargo, M.C.; Antoniolli, P.R.; Vicente, E. Evaluation of polycyclic aromatic hydrocarbons content in different stages of soybean oils processing. Food Chem. 2012, 135, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Bansal, V.; Kim, K.-H. Review of PAH contamination in food products and their health hazards. Environ. Int. 2015, 84, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.Y.; Zeitoun, M.A. Quality evaluation of flaxseed oil obtained by different extraction techniques. LWT Food Sci. Technol. 2013, 53, 338–345. [Google Scholar] [CrossRef]
- Roszko, M.; Szterk, A.; Szymczyk, K.; Waszkiewicz-Robak, B. PAHs, PCBs, PBDEs and pesticides in cold-pressed vegetable oils. J. Am. Oil Chem. Soc. 2012, 89, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Ciecierska, M.; Obiedziński, M.W. Polycyclic aromatic hydrocarbons in vegetable oils from unconventional sources. Food Control 2013, 30, 556–562. [Google Scholar] [CrossRef]
- de Lima, R.F.; Dionello, R.G.; Peralba, M.d.C.R.; Barrionuevo, S.; Radunz, L.L.; Reichert Júnior, F.W. PAHs in corn grains submitted to drying with firewood. Food Chem. 2017, 215, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Bertinetti, I.A.; Ferreira, C.D.; Monks, J.L.F.; Sanches-Filho, P.J.; Elias, M.C. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels plus temperature, industrial processes and cooking. J. Food Compos. Anal. 2018, 66, 109–115. [Google Scholar] [CrossRef]
- Tfouni, S.A.V.; Serrate, C.S.; Leme, F.M.; Camargo, M.C.R.; Teles, C.R.A.; Cipolli, K.M.V.A.B.; Furlani, R.P.Z. Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. LWT Food Sci. Technol. 2013, 50, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Ciecierska, M.; Derewiaka, D.; Kowalska, J.; Majewska, E.; Drużyńska, B.; Wołosiak, R. Effect of mild roasting on Arabica and Robusta coffee beans contamination with polycyclic aromatic hydrocarbons. J. Food Sci. Technol. 2019, 56, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Santonicola, S.; Albrizio, S.; Murru, N.; Ferrante, M.C.; Mercogliano, R. Study on the occurrence of polycyclic aromatic hydrocarbons in milk and meat/fish based baby food available in Italy. Chemosphere 2017, 184, 467–472. [Google Scholar] [CrossRef]
- García Londoño, V.A.; Reynoso, C.M.; Resnik, S. Polycyclic aromatic hydrocarbons in milk powders marketed in Uruguay. Food Addit. Contam. Part B 2017, 10, 284–291. [Google Scholar] [CrossRef]
- Dobrinas, S.; Soceanu, A.; Popescu, V.; Coatu, V. Polycyclic aromatic hydrocarbons and pesticides in milk powder. J. Dairy Res. 2016, 83, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Fasano, E.; Esposito, F.; Scognamiglio, G.; Cocchieri Amodio, R.; Cirillo, T. Detection of polycyclic aromatic hydrocarbons in smoked buffalo mozzarella cheese produced in Campania Region, Italy. J. Sci. Food Agric. 2016, 96, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Girelli, A.M.; Sperati, D.; Tarola, A.M. Determination of polycyclic aromatic hydrocarbons in Italian milk by HPLC with fluorescence detection. Food Addit. Contam. Part A 2014, 31, 703–710. [Google Scholar] [CrossRef]
- Garcia Londoño, V.A.; Garcia, L.P.; Scussel, V.M.; Resnik, S. Polycyclic aromatic hydrocarbons in milk powders marketed in Argentina and Brazil. Food Addit. Contam. Part A 2013, 30, 1573–1580. [Google Scholar] [CrossRef]
- Naccari, C.; Cristani, M.; Giofrè, F.; Ferrante, M.; Siracusa, L.; Trombetta, D. PAHs concentration in heat-treated milk samples. Food Res. Int. 2011, 44, 716–724. [Google Scholar] [CrossRef]
- Li, H.; Zhu, D.; Lu, X.; Du, H.; Guan, S.; Chen, Z. Determination and risk assessment of sixteen polycyclic aromatic hydrocarbons in vegetables. J. Environ. Sci. Heal. Part A 2018, 53, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xia, Z.; Zhang, Q.; Yin, J.; Zhou, Y.; Yang, H. Distribution and health risk assessment on dietary exposure of polycyclic aromatic hydrocarbons in vegetables in Nanjing, China. J. Chem. 2016, 2016, 1581253. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.W.; Salam, A. Polycyclic aromatic hydrocarbons (PAHs) in vegetables and fruits produced in Saudi Arabia. Bull. Environ. Contam. Toxicol. 2012, 88, 543–547. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Li, C.; Xu, X.; Zhou, G. Effects of phenolic acid marinades on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled chicken wings. J. Food Prot. 2019, 82, 684–690. [Google Scholar] [CrossRef]
- Bogdanović, T.; Pleadin, J.; Petričević, S.; Listeš, E.; Sokolić, D.; Marković, K.; Ozogul, F.; Šimat, V. The occurrence of polycyclic aromatic hydrocarbons in fish and meat products of Croatia and dietary exposure. J. Food Compos. Anal. 2019, 75, 49–60. [Google Scholar] [CrossRef]
- Belo, R.F.C.; Figueiredo, J.P.; Nunes, C.M.; Pissinatti, R.; de Souza, S.V.C.; Junqueira, R.G. Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography–mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1053, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Żyżelewicz, D.; Oracz, J.; Krysiak, W.; Budryn, G.; Nebesny, E. Effects of various roasting conditions on acrylamide, acrolein, and polycyclic aromatic hydrocarbons content in cocoa bean and the derived chocolates. Dry. Technol. 2017, 35, 363–374. [Google Scholar] [CrossRef]
- Sadowska-Rociek, A.; Cieślik, E.; Sieja, K. Determination of polycyclic aromatic hydrocarbons in chocolate using the combination of quick easy cheap effective rugged safe method and dispersive liquid-liquid microextraction. J. Food Nutr. Res. 2015, 54, 289–297. [Google Scholar]
- Raters, M.; Matissek, R. Quantitation of polycyclic aromatic hydrocarbons (PAH4) in cocoa and chocolate samples by an HPLC-FD method. J. Agric. Food Chem. 2014, 62, 10666–10671. [Google Scholar] [CrossRef]
- Kumari, R.; Chaturvedi, P.; Ansari, N.G.; Murthy, R.C.; Patel, D.K. Optimization and validation of an extraction method for the analysis of polycyclic aromatic hydrocarbons in chocolate candies. J. Food Sci. 2012, 77, 34–40. [Google Scholar] [CrossRef]
- Misnawi, J. Effect of cocoa bean drying methods on polycyclic aromatic hydrocarbons contamination in cocoa butter. Int. Food Res. J. 2012, 19, 1589–1594. [Google Scholar]
- Ziegenhals, K.; Speer, K.; Jira, W. Polycyclic aromatic hydrocarbons (PAH) in chocolate on the German market. J. Verbrauch. Leb. 2009, 4, 128–135. [Google Scholar] [CrossRef]
- Kacmaz, S.; Zelinkova, Z.; Wenzl, T. Rapid and sensitive method for the determination of four EU marker polycyclic aromatic hydrocarbons in cereal-based foods using isotope-dilution GC/MS. Food Addit. Contam. Part A 2016, 33, 631–638. [Google Scholar] [CrossRef]
- Kamalabadi, M.; Kamankesh, M.; Mohammadi, A.; Hadian, Z.; Ferdowsi, R. Contamination and daily intake of polycyclic aromatic hydrocarbons in Iranian bread samples. Polycycl. Aromat. Compd. 2020, 40, 1187–1195. [Google Scholar] [CrossRef]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Assessing polycyclic aromatic hydrocarbons in cereal-based foodstuffs by using a continuous solid-phase extraction system and gas chromatography–mass spectrometry. Food Control 2018, 92, 92–100. [Google Scholar] [CrossRef]
- Pandey, M.K.; Mishra, K.K.; Khanna, S.K.; Das, M. Detection of polycyclic aromatic hydrocarbons in commonly consumed edible oils and their likely intake in the Indian population. J. Am. Oil Chem. Soc. 2004, 81, 1131–1136. [Google Scholar] [CrossRef]
- Jiang, D.; Xin, C.; Li, W.; Chen, J.; Li, F.; Chu, Z.; Xiao, P.; Shao, L. Quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons in edible vegetable oils marketed in Shandong of China. Food Chem. Toxicol. 2015, 83, 61–67. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Farssi, M.; AitTaleb, A.; Guillaume, D.; Laknifli, A. Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. OCL 2018, 25, A303. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.A.D.; Torres, E.A.F.D.S.; Almeida, A.P.D.; Sampaio, G.R. Polycyclic aromatic hydrocarbons content and fatty acids profile in coconut, safflower, evening primrose and linseed oils. Food Chem. 2018, 245, 798–805. [Google Scholar] [CrossRef]
- Kiralan, S.S.; Toptancı, İ.; Tekin, A. Further evidence on the removal of polycyclic aromatic hydrocarbons (PAHs) during refining of olive pomace oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800381. [Google Scholar] [CrossRef]
- Martorell, I.; Perelló, G.; Martí-Cid, R.; Castell, V.; Llobet, J.M.; Domingo, J.L. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environ. Int. 2010, 36, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, X.; Wang, B.; Tao, S.; Liu, W.; Wang, X.; Cao, J.; Li, B.; Lu, X.; Wong, M.H. Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China. Environ. Sci. Technol. 2011, 45, 10235–10242. [Google Scholar] [CrossRef]
- Djinovic, J.; Popovic, A.; Jira, W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Sci. 2008, 80, 449–456. [Google Scholar] [CrossRef]
- Olatunji, O.S.; Fatoki, O.S.; Opeolu, B.O.; Ximba, B.J. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography–flame ionization detector. Food Chem. 2014, 156, 296–300. [Google Scholar] [CrossRef]
- Ledesma, E.; Rendueles, M.; Díaz, M. Spanish smoked meat products: Benzo(a)pyrene (BaP) contamination and moisture. J. Food Compos. Anal. 2015, 37, 87–94. [Google Scholar] [CrossRef]
- Lu, F.; Kuhnle, G.K.; Cheng, Q. The effect of common spices and meat type on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in deep-fried meatballs. Food Control 2018, 92, 399–411. [Google Scholar] [CrossRef]
- Yao, M.; Khan, I.A.; Cheng, Y.; Ang, Y.; Zhou, X.; Huang, M. Effects of cooking methods and tea marinades on the formation of heterocyclic amines and Benzo[a]pyrene in grilled drumsticks. J. Food Prot. 2020, 83, 365–376. [Google Scholar] [CrossRef]
- Agus, B.A.P.; Hussain, N.; Selamat, J. Quantification of PAH4 in roasted cocoa beans using QuEChERS and dispersive liquid-liquid micro-extraction (DLLME) coupled with HPLC-FLD. Food Chem. 2020, 303, 125398. [Google Scholar] [CrossRef] [PubMed]
- Ciecierska, M. Cocoa beans of different origins and varieties and their derived products contamination with polycyclic aromatic hydrocarbons. Food Chem. 2020, 317, 126408. [Google Scholar] [CrossRef]
- Jia, J.; Bi, C.; Zhang, J.; Jin, X.; Chen, Z. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk. Environ. Pollut. 2018, 241, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Obiri, S.; Ansa-Asare, O.D.; Dartey, G.; Kuddy, R.; Appiah, S. Assessment of concentration of polycyclic aromatic hydrocarbons (PAHs) in vegetables from farms in Accra, Ghana. Environ. Monit. Assess. 2019, 191, 417. [Google Scholar] [CrossRef] [PubMed]
- Badibostan, H.; Feizy, J.; Daraei, B.; Shoeibi, S.; Rajabnejad, S.H.; Asili, J.; Taghizadeh, S.F.; Giesy, J.P.; Karimi, G. Polycyclic aromatic hydrocarbons in infant formulae, follow-on formulae, and baby foods in Iran: An assessment of risk. Food Chem. Toxicol. 2019, 131, 110640. [Google Scholar] [CrossRef]
- Pluta-Kubica, A.; Filipczak-Fiutak, M.; Domagała, J.; Duda, I.; Migdał, W. Contamination of traditionally smoked cheeses with polycyclic aromatic hydrocarbons and biogenic amines. Food Control 2020, 112, 107115. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, K.; Wu, S.; Gong, G. Occurrence, spatial distribution and impact factors of 16 polycyclic aromatic hydrocarbons in milks from nine countries. Food Control 2020, 113, 107197. [Google Scholar] [CrossRef]
- Shariatifar, N.; Dadgar, M.; Fakhri, Y.; Shahsavari, S.; Moazzen, M.; Ahmadloo, M.; Kiani, A.; Aeenehvand, S.; Nazmara, S.; Mousavi Khanegah, A. Levels of polycyclic aromatic hydrocarbons in milk and milk powder samples and their likely risk assessment in Iranian population. J. Food Compos. Anal. 2020, 85, 103331. [Google Scholar] [CrossRef]
- Rozentale, I.; Yan Lun, A.; Zacs, D.; Bartkevics, V. The occurrence of polycyclic aromatic hydrocarbons in dried herbs and spices. Food Control 2018, 83, 45–53. [Google Scholar] [CrossRef]
- Ozoani, H.A.; Ezejiofor, A.N.; Amadi, C.N.; Chijioke-Nwauche, I.; Orisakwe, O.E. Safety of honey consumed in Enugu State, Nigeria: A public health risk assessment of lead and polycyclic aromatic hydrocarbons. Rocz. Panstw. Zakl. Hig. 2020, 71, 57–66. [Google Scholar] [CrossRef]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Use of semi-automated continuous solid-phase extraction and gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in alcoholic and non-alcoholic drinks from Andalucía (Spain). J. Sci. Food Agric. 2019, 99, 1117–1125. [Google Scholar] [CrossRef]
- Will, C.; Huelsmann, R.D.; da Cunha, H.C.; Carasek, E.; Martendal, E. Improvement of dispersive liquid-liquid microextraction robustness by performing consecutive extractions: Determination of polycyclic aromatic hydrocarbons in Brazilian sugar cane spirits by GC-MS. Sep. Sci. Plus 2018, 1, 564–573. [Google Scholar] [CrossRef]
- Tfouni, S.A.V.; Reis, R.M.; Kamikata, K.; Gomes, F.M.L.; Morgano, M.A.; Furlani, R.P.Z. Polycyclic aromatic hydrocarbons in teas using QuEChERS and HPLC-FLD. Food Addit. Contam. Part B 2018, 11, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Ciemniak, A.; Kuźmicz, K.; Rajkowska-Myśliwiec, M.; Cadena, M.F. Assessing the contamination levels of dried teas and their infusions by polycyclic aromatic hydrocarbons (PAHs). J. Verbrauch. Leb. 2019, 14, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemistry. Method 973.30: Polycyclic aromatic hydrocarbons and benzo(a)pyrene in food, 1973. In Official Methods of Analysis of AOAC, 21st ed.; 2019; Available online: www.eoma.aoac.org (accessed on 10 March 2021).
- Sun, Y.; Wu, S.; Gong, G. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends Food Sci. Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Bansal, V.; Kumar, P.; Kwon, E.E.; Kim, K.-H. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit. Rev. Food Sci. Nutr. 2017, 57, 3297–3312. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Bolaños, P.; Frenich, A.G.; Vidal, J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A 2010, 1217, 6303–6326. [Google Scholar] [CrossRef]
- Purcaro, G.; Barp, L.; Moret, S. Determination of hydrocarbon contamination in foods. A review. Anal. Methods 2016, 8, 5755–5772. [Google Scholar] [CrossRef]
- Akinpelu, A.A.; Ali, M.E.; Johan, M.R.; Saidur, R.; Qurban, M.A.; Saleh, T.A. Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes: A review of the current technologies, challenges and prospects. Process Saf. Environ. Prot. 2019, 122, 68–82. [Google Scholar] [CrossRef]
- Grimmer, G.; Böhnke, H. Polycyclic aromatic hydrocarbon profile analysis of high-protein foods, oils, and fats by gas chromatography. J. AOAC Int. 1975, 58, 725–733. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Faridah, A.; Zaidul, I.S.M. Effects of marinating on the formation of polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene and fluoranthene) in grilled beef meat. Food Control 2012, 28, 420–425. [Google Scholar] [CrossRef]
- Taghvaee, Z.; Piravivanak, Z.; Rezaei, K.; Faraji, M. Determination of polycyclic aromatic hydrocarbons (PAHs) in olive and refined pomace olive oils with modified low temperature and ultrasound-assisted liquid–liquid extraction method followed by the HPLC/FLD. Food Anal. Methods 2016, 9, 1220–1227. [Google Scholar] [CrossRef]
- Urban, M.; Lesueur, C. Comparing d-SPE sorbents of the QuEChERS extraction method and EMR-lipid for the determination of polycyclic aromatic hydrocarbons (PAH4) in food of animal and plant origin. Food Anal. Methods 2017, 10, 2111–2124. [Google Scholar] [CrossRef]
- Duedahl-Olesen, L.; Iversen, N.M.; Kelmo, C.; Jensen, L.K. Validation of QuEChERS for screening of 4 marker polycyclic aromatic hydrocarbons in fish and malt. Food Control 2020, 108, 106434. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemistry. Method 2014.08: Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood, 2014. In Official Methods of Analysis of AOAC, 21st ed.; 2019; Available online: www.eoma.aoac.org (accessed on 10 March 2021).
- Rozentale, I.; Zacs, D.; Bartkevics, V. Application of dopant-assisted atmospheric pressure photoionisation HPLC–MS method for the sensitive determination of polycyclic aromatic hydrocarbons in dark chocolate. J. Chromatogr. Sci. 2019, 57, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Slámová, T.; Sadowska-Rociek, A.; Fraňková, A.; Surma, M.; Banout, J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin. J. Food Compos. Anal. 2020, 87, 103420. [Google Scholar] [CrossRef]
- European Committee for Standardization—CEN. Food Analysis-Determination of Benzo[a]Pyrene, Benz[a]Anthracene, Chrysene and Benzo[b]Fluoranthene in Foodstuffs by Gas Chromatography Mass Spectrometry (GC-MS); EN 16619:2015; CEN: Brussels, Belgium, 2015. [Google Scholar]
- European Committee for Standardization—CEN. Food Analysis-Determination of Benzo[a]Pyrene, Benz[a]Anthracene, Chrysene and Benzo[b]Fluoranthene in Foodstuffs by High Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD); CEN/TS 16621:2014; CEN: Brussels, Belgium, 2014. [Google Scholar]
- Kim, L.; Lee, D.; Cho, H.-K.; Choi, S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Sadowska-Rociek, A.; Surma, M.; Cieślik, E. Comparison of different modifications on QuEChERS sample preparation method for PAHs determination in black, green, red and white tea. Environ. Sci. Pollut. Res. 2014, 21, 1326–1338. [Google Scholar] [CrossRef] [PubMed]
- Petrarca, M.H.; Godoy, H.T. Gas chromatography–mass spectrometry determination of polycyclic aromatic hydrocarbons in baby food using QuEChERS combined with low-density solvent dispersive liquid–liquid microextraction. Food Chem. 2018, 257, 44–52. [Google Scholar] [CrossRef]
- Xia, Z.; Duan, X.; Qiu, W.; Liu, D.; Wang, B.; Tao, S.; Jiang, Q.; Lu, B.; Song, Y.; Hu, X. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci. Total Environ. 2010, 408, 5331–5337. [Google Scholar] [CrossRef]
- Li, G.; Wu, S.; Wang, L.; Akoh, C.C. Concentration, dietary exposure and health risk estimation of polycyclic aromatic hydrocarbons (PAHs) in youtiao, a Chinese traditional fried food. Food Control 2016, 59, 328–336. [Google Scholar] [CrossRef]
- Purcaro, G.; Moret, S.; Conte, L.S. Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat. Meat Sci. 2009, 81, 275–280. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.A.; Sampaio, G.R.; Torres, E.A.F.d.S. Optimization and validation of a method using UHPLC-fluorescence for the analysis of polycyclic aromatic hydrocarbons in cold-pressed vegetable oils. Food Chem. 2017, 221, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Hollosi, L.; Wenzl, T. Development and optimisation of a dopant assisted liquid chromatographic-atmospheric pressure photo ionisation-tandem mass spectrometric method for the determination of 15+1 EU priority PAHs in edible oils. J. Chromatogr. A 2011, 1218, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Correa, C.L.; Alonzo, H.G.A.; Trevisan, R.M.S. Avaliação de Risco. In Fundamentos de Toxicologia, 4th ed.; Oga, S., Camargo, M.M.A., Batistuzzo, J.A.O., Eds.; Atheneu: Sao Paulo, Brazil, 2014. [Google Scholar]
- Wang, Y.; Jiao, Y.; Kong, Q.; Zheng, F.; Shao, L.; Zhang, T.; Jiang, D.; Gao, X. Occurrence of polycyclic aromatic hydrocarbons in fried and grilled fish from Shandong China and health risk assessment. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Yousefi, M.; Shemshadi, G.; Khorshidian, N.; Ghasemzadeh-Mohammadi, V.; Fakhri, Y.; Hosseini, H.; Khaneghah, A.M. Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food Chem. Toxicol. 2018, 118, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Roudbari, A.; Rafiei Nazari, R.; Shariatifar, N.; Moazzen, M.; Abdolshahi, A.; Mirzamohammadi, S.; Madani-Tonekaboni, M.; Delvarianzadeh, M.; Arabameri, M. Concentration and health risk assessment of polycyclic aromatic hydrocarbons in commercial tea and coffee samples marketed in Iran. Environ. Sci. Pollut. Res. 2021, 28, 4827–4839. [Google Scholar] [CrossRef] [PubMed]
- Sirot, V.; Rivière, G.; Leconte, S.; Vin, K.; Traore, T.; Jean, J.; Carne, G.; Gorecki, S.; Veyrand, B.; Marchand, P.; et al. French infant total diet study: Dietary exposure to heat-induced compounds (acrylamide, furan and polycyclic aromatic hydrocarbons) and associated health risks. Food Chem. Toxicol. 2019, 130, 308–316. [Google Scholar] [CrossRef]
- Janoszka, B. HPLC-fluorescence analysis of polycyclic aromatic hydrocarbons (PAHs) in pork meat and its gravy fried without additives and in the presence of onion and garlic. Food Chem. 2011, 126, 1344–1353. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Y.; Wang, H.; Bai, Y.; Dai, C.; Li, C.; Xu, X.; Zhou, G. Phenolic compounds in beer inhibit formation of polycyclic aromatic hydrocarbons from charcoal-grilled chicken wings. Food Chem. 2019, 294, 578–586. [Google Scholar] [CrossRef]
- El-Badry, N. Effect of household cooking methods and some food additives on polycyclic aromatic hydrocarbons (PAHs) formation in chicken meat. World Appl. Sci. J. 2010, 9, 963–974. [Google Scholar]
- Alomirah, H.; Al-Zenki, S.; Al-Hooti, S.; Zaghloul, S.; Sawaya, W.; Ahmed, N.; Kannan, K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 2011, 22, 2028–2035. [Google Scholar] [CrossRef]
- Galeotti, F.; Crimaldi, L.; Maccari, F.; Zaccaria, V.; Fachini, A.; Volpi, N. Selective treatment to reduce contamination of propolis by polycyclic aromatic hydrocarbons (PAHs) still preserving its active polyphenol component and antioxidant activity. Nat. Prod. Res. 2017, 31, 1971–1980. [Google Scholar] [CrossRef]
- Mahugija, J.A.M.; Njale, E. Effects of washing on the polycyclic aromatic hydrocarbons (PAHs) contents in smoked fish. Food Control 2018, 93, 139–143. [Google Scholar] [CrossRef]
- Khalil, A.; AL-Bachir, M. Decontamination of polycyclic aromatic hydrocarbons in pea seeds by gamma irradiation. J. Food Meas. Charact. 2017, 11, 1167–1173. [Google Scholar] [CrossRef]
- Babić, J.M.; Kartalović, B.D.; Škaljac, S.; Vidaković, S.; Ljubojević, D.; Petrović, J.M.; Ćirković, M.A.; Teodorović, V. Reduction of polycyclic aromatic hydrocarbons in common carp meat smoked in traditional conditions. Food Addit. Contam. Part B 2018, 11, 208–213. [Google Scholar] [CrossRef]
- Kuźmicz, K.; Ciemniak, A. Assessing contamination of smoked sprats (Sprattussprattus) with polycyclic aromatic hydrocarbons (PAHs) and changes in its level during storage in various types of packaging. J. Environ. Sci. Heal. Part B 2018, 53, 1–11. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S. Removal of polycyclic aromatic hydrocarbons by low density polyethylene from liquid model and roasted meat. Food Chem. 2005, 90, 461–469. [Google Scholar] [CrossRef]
Compound Name | Abbreviation | Chemical Formula | Molecular Weight (g mol−1) | Melting Point (°C) | Boiling Point (°C) |
---|---|---|---|---|---|
5-Methylchrysene | 5MC | C19H14 | 242.3 | 118 | 458 |
Acenaphthene | ACE | C12H10 | 154.2 | 203 | 279 |
Acenaphthylene | ACY | C12H8 | 152.2 | 92–93 | 265–275 |
Anthracene | ANT | C14H10 | 178.2 | 218 | 340–342 |
Benz[a]anthracene | BaA | C18H12 | 228.3 | 158 | 438 |
Benzo[a]pyrene | BaP | C20H12 | 252.3 | 179 | 495 |
Benzo[b]fluoranthene | BbF | C20H12 | 252.3 | 168 | 481 |
Benzo[c]fluorene | BcF | C17H12 | 216.3 | 125–127 | 398 |
Benzo[e]pyrene | BeP | C20H12 | 252.3 | 177 | 492 |
Benzo[ghi]perylene | BPe | C22H12 | 276.3 | 273 | 550 |
Benzo[j]fluoranthene | BjF | C20H12 | 252.3 | 165–166 | 480 |
Benzo[k]fluoranthene | BkF | C20H12 | 252.3 | 216 | 480 |
Chrysene | Chr | C18H12 | 228.3 | 254 | 448 |
Cyclopenta[cd]pyrene | CPP | C18H10 | 226.3 | 170 | 439 |
Dibenzo[a,e]pyrene | DeP | C24H14 | 302.4 | 233–244 | 592 |
Dibenz[a,h]anthracene | DBA | C22H14 | 278.3 | 262 | 535 |
Dibenzo[a,i]pyrene | DiP | C24H14 | 302.4 | 281–284 | 594 |
Dibenzo[a,l]pyrene | DlP | C24H14 | 302.4 | 162 | 595 |
Flourene | FLR | C13H10 | 166.2 | 116–117 | 295 |
Fluoranthene | FLT | C16H10 | 202.3 | 111 | 375 |
Indeno[1,2,3-cd]pyrene | IcP | C22H12 | 276.3 | 164 | 530 |
Naphthalene | NAP | C10H8 | 128.2 | 80 | 218 |
Phenanthrene | PHN | C14H10 | 178.2 | 100 | 340 |
Pyrene | PYR | C16H10 | 202.3 | 156 | 393–404 |
Group | Compound | Evidence |
---|---|---|
1 | Benzo[a]pyrene | The agent (mixture) is carcinogenic to humans |
2A | Cyclopenta[cd]pyrene | The agent (mixture) is probably carcinogenic to humans |
Dibenzo[a,l]pyrene | ||
Dibenz[a,h]anthracene | ||
2B | Benzo[b]fluoranthene | The agent (mixture) is possibly carcinogenic to humans |
Benzo[k]fluoranthene | ||
Benzo[j]fluoranthene | ||
Benz[a]anthracene | ||
Chrysene | ||
5-Methylchrysene | ||
Dibenzo[a,i]pyrene | ||
Dibenzo[a,h]pyrene | ||
Indeno[1,2,3-cd]pyrene | ||
3 | Benzo[ghi]perylene | The agent (mixture or exposure circumstance) is not classifiable as to its carcinogenicity to humans |
Dibenzo[a,e]pyrene | ||
Benzo[c]fluorene |
Type of Heat | Cooking Procedure | Characteristics |
---|---|---|
Dry | Baking | Indirect heat |
Moist | Baking | Indirect heat, conducted by water |
Moist | Bain-marie | Indirect baking with heat transfer control |
Moist | Deep-frying | Indirect heat, conducted by oil |
Dry | Gas grilling | Direct heat, controlled temperature |
Dry | Charcoal roasting | Direct heat and smoke, partially controlled temperature |
Dry | Smoking | Indirect heat and direct smoke |
Dry | Microwave cooking | Indirect heat, heating by dissipation of water molecules |
Moist | Stewing | Indirect heat, partially conducted by oil |
Product | Processing Method | BaP µg/kg | PAH4 a µg/kg | Total Sum b µg/kg | Reference |
---|---|---|---|---|---|
Milk, Dairy and Baby Foods | |||||
Baby foods (n = 40) | None | 0.19–0.55 | 1.02–3.12 | 11.82–52.25 (14) | [74] |
Milk powder (n = 44) | None | 0.13 | 2.36 | 169.99 (16) | [75] |
Milk powder formula (n = 5) | None | ≤LOD | 0.24 | 1.23 (15) | [76] |
Smoked mozzarella cheese (n = 57) | None | 0.09 | 0.84 | 1.24 (8) | [77] |
Pasteurized milk, UHT milk (n = 29) | None | ≤LOD–0.10 | ≤LOD–0.10 | 5.86–26.60 (16) | [78] |
Milk powder (n = 31) | None | 0.04 | 0.02–10.16 | 11.8–78.40 (15) | [79] |
Raw milk, Pasteurized milk, UHT milk (n = 36) | None | 0.25–0.27 | 1.21–1.59 | 5.43–7.75 (16) | [80] |
Vegetables and Fruits | |||||
Fruits (n = 16) | None | ≤LOD | ≤LOD–0.59 | 0.19–1.08 (8) | [15] |
Vegetables (n = 26) | None | ≤LOD–0.35 | ≤LOD–3.28 | ND–3.81 (8) | [15] |
Vegetables (n = 40) | The samples were prepared according to each type of vegetable | ≤LOD–4.35 | ≤LOD–2.00 | 14.20–413.20 (16) | [81] |
Vegetables (n = 45) | None | ≤LOD–4.40 | 1.40–19.60 | 60.50–312.00 (16) | [82] |
Vegetables (n = 355) | None | 0.01–0.14 | - | 0.20–0.85 (8) | [83] |
Meat and Fish | |||||
Chicken wings (n = 18) | Grilling (temperature) 270 °C | 3.27 | 8.60 | 12.83 (8) | [84] |
240 °C | 2.51 | 7.45 | 11.23 (8) | ||
210 °C | 1.38 | 6.59 | 10.10 (8) | ||
Fish products (n = 18) | Fresh (n = 10) | <LOQ | <0.33 | <0.33(4) | [85] |
Marinated (n = 4) | |||||
Smoked (n = 4) | |||||
Shellfish (n = 63) | Fresh | <LOQ–3.43 | <0.27–7.92 | <0.27–7.92 (4) | |
Meat products (n = 99) | Fermented sausages (n = 21) | <LOQ–5.40 | <0.40–7.10 | <0.40–7.10 (4) | |
Semi-dry sausages (n = 25) | <LOQ–1.05 | <0.40–2.53 | <0.40–2.53 (4) | ||
Pasteurized sausages (n = 5) | <LOQ–0.57 | 0.46–3.31 | 0.46–3.31 (4) | ||
Dry cured meat (n = 13) | <LOQ–1.90 | 0.46–12.66 | 0.46–12.66 (4) | ||
Semi-dry cured meat (n = 24) | <LOQ–2.48 | <0.40–9.44 | <0.40–9.44 (4) | ||
Dry bacon (n = 8) | <LOQ | <0.40–9.45 | <0.40–9.45 (4) | ||
Meat products (n = 35) | None | 0.19–1.73 | 0.59–7.55 | 0.59–11.05 (8) | [15] |
Cocoa and Chocolate | |||||
Cocoa beans (n = 8) | Fermented and sun dried | <LOQ–9.06 | <LOQ–49.96 | <LOQ–63.30 (8) | [86] |
Cocoa beans (n = 4) and crushed cocoa beans (n = 4) | Fermented and dried | ≤LOD | ≤LOD–0.01 | 0.38–0.76 (11) | [87] |
135 °C (40 min) | |||||
135 °C (50 min) | |||||
150 °C (25 min) | |||||
150 °C (35 min) | |||||
135 °C (7 min) | |||||
135 °C (10 min) | |||||
150 °C (5 min) | |||||
150 °C (7 min) | |||||
Milk chocolate (n = 7) | None | ≤LOD | ≤LOD–36.2 | 48.70–147.00 (13) | [88] |
Dark chocolate (n = 7) | ≤LOD–38.5 | 87.80–149.00 (13) | |||
White chocolate (n = 6) | ≤LOD–17.1 | 44.20–122.00 (13) | |||
Raw cocoa beans (n = 12) | Unshelled, fermented, and dried | ≤LOD–9.98 | 0.88–44.28 | 0.88–44.28 (4) | [89] |
Cocoa mass (n = 22) | Finely ground cocoa nibs | ≤LOD–0.76 | 2.59–9.29 | 2.59–9.29 (4) | |
Cocoa butter (n = 67) | Pressed cocoa mass | ≤LOD–7.86 | 2.09–92.53 | 2.09–92.53 (4) | |
Milk chocolate (n = 27) | None | 0.70 | 10.11 | 10.11 (4) | |
Dark chocolate (n = 69) | None | 0.57 | 5.88 | 5.88 (4) | |
Cocoa powder (n = 12) | Finely ground cocoa press cake | 1.07 | 8.86 | 8.86 (4) | |
Cocoa drink powder (n = 9) | Finely ground cocoa press cake | 1.00 | 9.48 | 9.48 (4) | |
Chocolate candy (n = 25) | None | ≤LOD–12.76 | ≤LOD–17.11 | 2.70–235.16 (16) | [90] |
Cocoa beans (n = 8) | Drying and sun drying (65 °C. 70 °C, and 80 °C) | 0.15–0.42 | - | 0.15–0.42 (1) | [91] |
Chocolate (n = 40) | None | 0.07–0.63 | 0.69–4.45 | 1.33–6.85 (14) | [92] |
Bread and Cereal | |||||
Bread samples (n = 10) | Commercial samples | <LOQ–0.20 | 0.11–0.22 | 0.11–0.22 (4) | [93] |
Breakfast cereals (n = 10) | Commercial samples | <LOQ–0.30 | 0.23–0.87 | 0.23–0.87 (4) | |
Baguette (n = 52) | Baked (industrial) | - | 0.48–12.55 | 20.78–228.98 (13) | [94] |
Lavash (n = 62) | Baked for 80 s at 332 °C | - | 0.48–4.94 | 9.46–152.07 (13) | |
Taftoon (n = 55) | Baked for 2.5 min at 315 °C | - | 0.48–20.66 | 18.19–169.26 (13) | |
Pasta | Commercial samples | ≤LOD | ≤LOD–920 | 168–1980 (16) | [95] |
Cereal | ≤LOD–4200 | ≤LOD–7500 | 3500–22,300 (16) | ||
Flour | ≤LOD | ≤LOD | 803–2486 (16) | ||
Rice | ≤LOD | ≤LOD | 180–10,540 (16) | ||
Bread | ≤LOD | ≤LOD–480 | 1290–4800 (16) | ||
Toast | Toasted on an electric home toaster at 600 W for 2 min | ≤LOD–980 | 240–3450 | 13,000–17,820 (16) |
Food Product | Extraction | Clean-Up Step | Quantification | Reference |
---|---|---|---|---|
Smoked fish and meat | Saponification (3.5 M methanolic potassium hydroxide solution at 70 °C for 2 h) and cyclohexane | Silica SPE cartridge | GC–QMS | [63] |
Dry/fermented sausage | Saponification (potassium hydroxide, methanol and water for 3 h under reflux) and extraction with n-hexane | Florisil SPE cartridge | UHPLC-UV/VIS/FLD | [60] |
Beef meat | Saponification (sodium hydroxide and diatomaceous earth) | Extrelut column connected to a PRS SPE column and silica SPE cartridge | HPLC-FLD | [129] |
Beef stripe, pork, and chicken fillet | Saponification (2 M methanolic potassium hydroxide solution) and extraction with n-hexane | SPE in neutral-Si/basic-Si/acidic-Si/neutral-Si frits | GC–FID | [104] |
Dry fermented sausage | Acetonitrile, magnesium sulfate, and sodium chloride | QuEChERS (C18 + PSA) | GC-QMS | [61] |
Olive and refined pomace olive oils | Acetone/acetonitrile in an alumina-N SPE cartridge | Amine SPE cartridge | HPLC-FLD | [130] |
Salmon, shrimps, mussels, cutlet, bacon, curry spice, wheat flour, infant formula, cereal-based baby foods with fruits, and baby foods with vegetables | QuEChERS (Acetonitrile, and salts combinations) | QuEChERS (C18 + PSA), EMR-Lipid | GC- QqQMS | [131] |
Milk and meat/fish-based baby food | Saponification (1 M ethanolic potassium hydroxide solution at 80 °C for 3 h) | Washed the cyclohex-ane phase with meth-anol:water | HPLC-FLD | [74] |
Chicken breast, smoked ham, ham, roasted bacon, crispy bacon, pork sausage, Swedish meatballs, honey roast salmon, and sweet chili salmon | Saponification (sodium hydroxide and diatomaceous earth) | Silica SPE cartridge | HPLC-DAD/FLD | [106] |
Spices and meat | Homogenized with 1 M sodium hydroxide solution and Extrelut and loaded in an Extrelut 20 column, followed by PRS cartridges with dichloromethane containing 5% toluene | Silica SPE cartridge | HPLC-FLD | [106] |
Fruit, vegetables, and meats and their products | Saponification (ethanolic potassium hydroxide solution 80 °C for 3 h) and extraction with n-hexane–ethanol solution | Silica SPE cartridge | GC-QMS | [15] |
Fish and malt | Acetonitrile and ceramic stone | QuEChERS (Zirconium dispersive SPE) | GC-QTOF MS | [132] |
Fish, mollusk, and shrimp | ELL with ethyl acetate and aqueous solution containing magnesium sulfate and sodium chloride | Silica SPE cartridge | GC-MS | [133] |
Dark chocolate | Dichloromethane and n-hexane | Gel permeation chromatography | [134] | |
Animal-based smoked foods | QuEChERS (Acetonitrile, water, and salts combinations) | QuEChERS (C18 + PSA), EMR-Lipid, DLLME | GC-Iontrap MS | [135] |
Extruded wheat flour, smoked fish, dry infant formula, sausage meat, freeze-dried mussels, edible oil, and wheat flour | n-hexane or cyclohexane | SEC and SPE | GC-MS | [136] |
Edible olive oil, fresh mussels, smoked fish, smoked meat products, processed cereal-based foods for young children, infant formula, chocolate, and food supplements (isoflavones) | Dichloromethane | SEC | HPLC-FLD | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. https://doi.org/10.3390/ijms22116010
Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, de Camargo AC, Torres EAFS. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. International Journal of Molecular Sciences. 2021; 22(11):6010. https://doi.org/10.3390/ijms22116010
Chicago/Turabian StyleSampaio, Geni Rodrigues, Glória Maria Guizellini, Simone Alves da Silva, Adriana Palma de Almeida, Ana Clara C. Pinaffi-Langley, Marcelo Macedo Rogero, Adriano Costa de Camargo, and Elizabeth A. F. S. Torres. 2021. "Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation" International Journal of Molecular Sciences 22, no. 11: 6010. https://doi.org/10.3390/ijms22116010
APA StyleSampaio, G. R., Guizellini, G. M., da Silva, S. A., de Almeida, A. P., Pinaffi-Langley, A. C. C., Rogero, M. M., de Camargo, A. C., & Torres, E. A. F. S. (2021). Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. International Journal of Molecular Sciences, 22(11), 6010. https://doi.org/10.3390/ijms22116010