Determination of Two Differently Manufactured Silicon Dioxide Nanoparticles by Cloud Point Extraction Approach in Intestinal Cells, Intestinal Barriers and Tissues
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.2. Method Validation and Quantitative Analysis in Cells or Tissue Matrices
2.3. Solubility
2.4. Optimization of CPE for SiO2
2.5. Intracellular Uptake and Intestinal Transport Fates of SiO2 Particles
2.6. Oral Distribution and Fates of SiO2 Particles in Tissues
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Animals
4.4. Characterization
4.5. Digestion of Organic Matrices, Microwave Digestion, and ICP-AES Analysis
4.6. Validation of Quantitative Analytical Method
4.7. In Vitro Dissolution Properties of SiO2
4.8. Ex Vivo Dissolution Properties of SiO2 in Rat-Extracted GI Fluids
4.9. Optimization of CPE for SiO2
4.10. Cellular Uptake and Intracellular Fates of SiO2
4.11. Intestinal Transport and Fates of SiO2
4.12. In Vivo Oral Distribution and Fate Determination of SiO2 in Tissues
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dekkers, S.; Krystek, P.; Peters, R.J.; Lankveld, D.P.; Bokkers, B.G.; van Hoeven-Arentzen, P.H.; Bouwmeester, H.; Oomen, A.G. Presence and risks of nanosilica in food products. Nanotoxicology 2011, 5, 393–405. [Google Scholar] [CrossRef]
- Fruijtier-Polloth, C. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551). Arch. Toxicol. 2016, 90, 2885–2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food and Drug Administration (FDA). CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.480 (accessed on 1 April 2020).
- European Commision (EC). Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2011/1129/oj (accessed on 25 October 2017).
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Residue Monograph Prepared by the Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 84th Meeting 2017, Silicon Dioxide, Amorphous. Available online: http://www.fao.org/3/CA3117EN/ca3117en.pdf (accessed on 29 June 2021).
- Hempt, C.; Kaiser, J.P.; Scholder, O.; Buerki-Thurnherr, T.; Hofmann, H.; Rippl, A.; Schuster, T.B.; Wick, P.; Hirsch, C. The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium. Toxicol. In Vitro 2020, 67, 104903. [Google Scholar] [CrossRef]
- European Commision (EC). Commission recommendation on the definition of nanomaterial (2011/696/EU). OJEU 2011, L275, 38–40. [Google Scholar]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 2018, 16, e5088. [Google Scholar]
- Peters, R.; Kramer, E.; Oomen, A.G.; Rivera, Z.E.; Oegema, G.; Tromp, P.C.; Fokkink, R.; Rietveld, A.; Marvin, H.J.; Weigel, S.; et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 2012, 6, 2441–2451. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kim, Y.H.; Kim, H.M.; Oh, J.M.; Kim, Y.R.; Choi, S.J. Determination of the fate and biological responses of food additive silica particles in commercial foods. Food Chem. 2020, 331, 127304. [Google Scholar] [CrossRef]
- Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail (ANSES). Nanomatériaux dans les Produits Destinés à L’alimentation. Available online: https://www.anses.fr/fr/system/files/ERCA2016SA0226Ra.pdf (accessed on 29 June 2021).
- Tada-Oikawa, S.; Eguchi, M.; Yasuda, M.; Izuoka, K.; Ikegami, A.; Vranic, S.; Boland, S.; Tran, L.; Ichihara, G.; Ichihara, S. Functionalized surface-charged SiO2 nanoparticles induce pro-inflammatory responses, but are not lethal to Caco-2 Cells. Chem. Res. Toxicol. 2020, 33, 1226–1236. [Google Scholar] [CrossRef]
- Tarantini, A.; Lanceleur, R.; Mourot, A.; Lavault, M.T.; Casterou, G.; Jarry, G.; Hogeveen, K.; Fessard, V. Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line. Toxicol. In Vitro 2015, 29, 398–407. [Google Scholar] [CrossRef]
- Guo, Z.; Martucci, N.J.; Liu, Y.; Yoo, E.; Tako, E.; Mahler, G.J. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model. Nanotoxicology 2018, 12, 485–508. [Google Scholar] [CrossRef]
- Wang, F.; Jiao, C.; Liu, J.; Yuan, H.; Lan, M.; Gao, F. Oxidative mechanisms contribute to nanosize silican dioxide-induced developmental neurotoxicity in PC12 cells. Toxicol. In Vitro 2011, 25, 1548–1556. [Google Scholar] [CrossRef]
- Du, Q.; Ge, D.; Mirshafiee, V.; Chen, C.; Li, M.; Xue, C.; Ma, X.; Sun, B. Assessment of neurotoxicity induced by different-sized Stober silica nanoparticles: Induction of pyroptosis in microglia. Nanoscale 2019, 11, 12965–12972. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, B.; Li, X.L.; Li, Y.X.; Sun, M.Z.; Chen, D.Y.; Zhao, X.; Feng, X.Z. SiO2 nanoparticles change colour preference and cause Parkinson’s-like behaviour in zebrafish. Sci. Rep. UK 2014, 4, 3810. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-R.; Lee, S.-Y.; Lee, E.J.; Park, S.H.; Seong, N.-W.; Seo, H.-S.; Shin, S.-S.; Kim, S.-J.; Meang, E.-H.; Park, M.-K.; et al. Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int. J. Nanomed. 2014, 9, 67–78. [Google Scholar]
- Crundwell, F.K. On the mechanism of the dissolution of quartz and silica in aqueous solutions. ACS Omega 2017, 2, 1116–1127. [Google Scholar] [CrossRef]
- Finnie, K.S.; Waller, D.J.; Perret, F.L.; Krause-Heuer, A.M.; Lin, H.Q.; Hanna, J.V.; Barbé, C.J. Biodegradability of sol–gel silica microparticles for drug delivery. J. Sol-Gel Sci. Technol. 2008, 49, 12–18. [Google Scholar] [CrossRef]
- Galagudza, M.; Korolev, D.; Postnov, V.; Naumisheva, E.; Grigorova, Y.; Uskov, I.; Shlyakhto, E. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles. Int. J. Nanomed. 2012, 7, 1671–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flörke, O.W.; Graetsch, H.A.; Brunk, F.; Benda, L.; Paschen, S.; Bergna, H.E.; Roberts, W.O.; Welsh, W.A.; Libanati, C.; Ettlinger, M.; et al. Silica. In Ullmann’s Encyclopedia of Industrial, Chemistry, 7th ed.; Wiley-VCH: Weinhein, Germany, 2008; Volume 32, pp. 421–507. [Google Scholar]
- Garrett, P.R. Defoaming: Theory and Industrial Applications; CRC Press: Boca Raton, FL, USA, 1992; pp. 239–240. [Google Scholar]
- Maharana, S.M.; Pandit, M.K.; Pradhan, A.K. Effect of chemical treatment and fumed silica coating on tensile and thermogravimetric properties of jute yarn. Mater. Today Proc. 2020, 27, 2693–2698. [Google Scholar] [CrossRef]
- Wiemann, M.; Vennemann, A.; Stintz, M.; Retamal Marin, R.R.; Babick, F.; Lindner, G.G.; Schuster, T.B.; Brinkmann, U.; Krueger, N. Effects of ultrasonic dispersion energy on the preparation of amorphous SiO2 nanomaterials for in vitro toxicity testing. Nanomaterials 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organisation for Economic Co-operation and Development (OECD). Silicon Dioxide: Summary of the Dossier. Series on the Safety of Manufactured Nanomaterials No. 71. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm%20/mono(2016)23&doclanguage=en (accessed on 29 June 2021).
- Azizi, N.A.M.; Rahim, N.Y.; Raoov, M.; Asman, S. Optimisation and evaluation of zinc in food samples by cloud point extraction and spectrophotometric detection. Sci. Res. J. 2019, 16, 41. [Google Scholar] [CrossRef]
- Tabrizi, A.B. Cloud point extraction and spectrofluorimetric determination of aluminium and zinc in foodstuffs and water samples. Food Chem. 2007, 100, 1698–1703. [Google Scholar] [CrossRef]
- Hu, Z.; Qi, L. Sample digestion methods. Reference Module in Earth Systems and Environmental Sciences. Treatise Geochem. Sec. 2014, 15, 87–109. [Google Scholar]
- OECD. OECD Guideline for the Testing of Chemicals, Water Solubility. Available online: https://www.oecd-ilibrary.org/environment/test-no-105-water-solubility_9789264069589-en (accessed on 29 June 2021).
- Liu, J.-F.; Liu, R.; Yin, Y.-G.; Jiang, G.-B. Triton X-114 based cloud point extraction: A thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. Chem. Commun. 2009, 12, 1514–1516. [Google Scholar] [CrossRef]
- Bian, S.-W.; Mudunkotuwa, I.A.; Rupasinghe, T.; Grassian, V.H. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 2011, 27, 6059–6068. [Google Scholar] [CrossRef] [PubMed]
- Santbergen, M.J.C.; van der Zande, M.; Gerssen, A.; Bouwmeester, H.; Nielen, M.W.F. Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Anal. Bioanal. Chem. 2020, 412, 1111–1122. [Google Scholar] [CrossRef] [Green Version]
- Sigma-Aldrich. Product Information. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/468/749/mtox1002pc24bul.pdf (accessed on 29 June 2021).
- Paek, H.-J.; Chung, H.-E.; Lee, J.-A.; Kim, M.-K.; Lee, Y.-J.; Kim, M.-S.; Kim, S.-H.; Maeng, E.-H.; Lee, J.K.; Jeong, J.; et al. Quantitative determination of silica nanoparticles in biological matrices and their pharmacokinetics and toxicokinetics in rats. Sci. Adv. Mater. 2014, 6, 1605–1610. [Google Scholar] [CrossRef]
- Lee, J.A.; Kim, M.K.; Paek, H.J.; Kim, Y.R.; Kim, M.K.; Lee, J.K.; Jeong, J.; Choi, S.J. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int. J. Nanomed. 2014, 9, 251–260. [Google Scholar]
- Jo, M.-R.; Chung, H.-E.; Kim, H.-J.; Bae, S.-H.; Go, M.-R.; Yu, J.; Choi, S.-J. Effects of zinc oxide nanoparticle dispersants on cytotoxicity and cellular uptake. Mol. Cell Toxicol. 2016, 12, 281–288. [Google Scholar] [CrossRef]
- Vranic, S.; Gosens, I.; Jacobsen, N.R.; Jensen, K.A.; Bokkers, B.; Kermanizadeh, A.; Stone, V.; Baeza-Squiban, A.; Cassee, F.R.; Tran, L.; et al. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO2 nanoparticles. Arch. Toxicol. 2017, 91, 353–363. [Google Scholar] [CrossRef]
- Barbosa, L.R.; Ortore, M.G.; Spinozzi, F.; Mariani, P.; Bernstorff, S.; Itri, R. The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: A small-angle X-ray scattering study. Biophys. J. 2010, 98, 147–157. [Google Scholar] [CrossRef]
- Sogaard, C.; Funehag, J.; Abbas, Z. Silica sol as grouting material: A physio-chemical analysis. Nano Converg. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scientific Committee on Consumer Safety (SCCS). Opinion on Solubility of Synthetic Amorphous Silica (SAS). Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_228.pdf (accessed on 29 June 2021).
- Cappel, C.; Gonzalez, A.C.; Damme, M. Quantification and characterization of the 5’exonuclease activity of the lysosomal nuclease PLD3 by a novel cell-based assay. J. Biol. Chem. 2020, 296, 100152. [Google Scholar] [CrossRef]
- Hu, Y.B.; Dammer, E.B.; Ren, R.J.; Wang, G. The endosomal-lysosomal system: From acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 2015, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Lillard, J.W., Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Mao, Z.; Zhang, Y.; Gao, C. Influences of size of silica particles on the cellular endocytosis, exocytosis and cell activity of HepG2 cells. J. Nanosci. Lett. 2011, 1, 1–16. [Google Scholar]
- Lee, J.-A.; Kim, M.-K.; Song, J.-H.; Jo, M.-R.; Yu, J.; Kim, K.-M.; Kim, Y.-R.; Oh, J.-M.; Choi, S.-J. Biokinetics of food additive silica nanoparticles and their interactions with food components. Colloid. Surface. B Biointerfaces 2017, 150, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Dash, S.K.; Tripathy, S.; Das, B.; Mandal, D.; Pramanik, P.; Roy, S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem. Biol. Interact. 2015, 226, 58–71. [Google Scholar] [CrossRef]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Guidance for Industry Q2B Validation of Analytical Procedures: Methodology. Available online: https://www.fda.gov/media/71725/download (accessed on 29 June 2021).
- Linsinger, T.P.; Peters, R.; Weigel, S. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Anal. Bioanal. Chem. 2014, 406, 3835–3843. [Google Scholar] [CrossRef]
- Sáiz-Abajo, M.-J.; González-Sáiz, J.M.; Pizarro, C. Prediction of organic acids and other quality parameters of wine vinegar by near-infrared spectroscopy. A feasibility study. Food Chem. 2006, 99, 615–621. [Google Scholar] [CrossRef]
- Geitner, N.K.; Ogilvie Hendren, C.; Cornelis, G.; Kaegi, R.; Lead, J.R.; Lowry, G.V.; Lynch, I.; Nowack, B.; Petersen, E.; Bernhardt, E.; et al. Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environ. Sci. Nano 2020, 7, 13–36. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-A.; Kim, M.-K.; Kim, H.-M.; Lee, J.K.; Jeong, J.; Kim, Y.-R.; Oh, J.-M.; Choi, S.-J. The fate of calcium carbonate nanoparticles administered by oral route: Absorption and their interaction with biological matrices. Int. J. Nanomed. 2015, 10, 2273–2293. [Google Scholar]
- des Rieux, A.; Fievez, V.; Theate, I.; Mast, J.; Preat, V.; Schneider, Y.J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 2007, 30, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-R.; Yu, J.; Choi, S.-J. Fate Determination of ZnO in Commercial Foods and Human Intestinal Cells. Int. J. Mol. Sci. 2020, 21, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.M.; Veiga, F.; Ribeiro, A.J.; Zerrouk, N.; Arnaud, P. Effect of chitosan-coated alginate microspheres on the permeability of Caco-2 cell monolayers. Drug Dev. Ind. Pharm. 2006, 32, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Satsu, H.; Yokoyama, T.; Ogawa, N.; Fujiwara-Hatano, Y.; Shimizu, M. The changes in the neuronal PC12 and the intestinal epithelial Caco-2 cells during the coculture. The functional analysis using an in vitro coculture system. Cytotechnology 2001, 35, 73–79. [Google Scholar] [CrossRef]
- Jeon, Y.R. Fate Determination of Food Additive Zinc Oxide and Silicon Dioxide Nanoparticles in Commercial Foods and Biological Matrices by Optimizing Cloud Point Extraction Approach. Master’s Thesis, Seoul Women’s University, Seoul, Korea, 19 February 2021. [Google Scholar]
Samples | Fraction (Number %) | Fraction (Mass %) | Z-Average Diameter (nm) | BET (m2/g) | ||||
---|---|---|---|---|---|---|---|---|
<100 nm | 100–200 nm | >200 nm | <100 nm | 100–200 nm | >200 nm | |||
Precipitated SiO2 | 0 ± 0 a | 4 ± 1 a | 96 ± 1 a | 0 ± 0 a | 1 ± 0 a | 99 ± 0 a | 375 ± 1 a | 167 ± 1 a |
Fumed SiO2 | 43 ± 2 b | 54 ± 2 b | 3 ± 0 b | 15 ± 1 b | 62 ± 2 b | 23 ± 1 b | 156 ± 1 b | 177 ± 1 b |
Samples | Linearity (R2) | RMSE | Recovery (%) | Repeatability (RSD%) | LOD (μg/g of Matrix) | LOQ (μg/g of Matrix) |
---|---|---|---|---|---|---|
Si standard solution | 0.9999 | 0.0363 | 96.1 ± 2.7 | 1.95 | – | – |
Precipitated SiO2 | ||||||
Pristine | 0.9999 | 0.3318 | 98.0 ± 6.4 | 1.54 | – | – |
Cell | 0.9998 | 0.2451 | 99.2 ± 1.5 | 2.94 | 0.50 | 1.55 |
Liver | 1.0000 | 0.1565 | 97.3 ± 0.8 | 3.55 | 0.36 | 1.08 |
Fumed SiO2 | ||||||
Pristine | 0.9999 | 0.3987 | 103.3 ± 6.4 | 5.12 | – | – |
Cell | 0.9999 | 0.3015 | 99.8 ± 5.2 | 3.41 | 0.37 | 1.15 |
Liver | 0.9997 | 0.4520 | 105.0 ± 4.5 | 3.39 | 0.52 | 1.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, N.-K.; Jeon, Y.-R.; Choi, S.-J. Determination of Two Differently Manufactured Silicon Dioxide Nanoparticles by Cloud Point Extraction Approach in Intestinal Cells, Intestinal Barriers and Tissues. Int. J. Mol. Sci. 2021, 22, 7035. https://doi.org/10.3390/ijms22137035
Yoo N-K, Jeon Y-R, Choi S-J. Determination of Two Differently Manufactured Silicon Dioxide Nanoparticles by Cloud Point Extraction Approach in Intestinal Cells, Intestinal Barriers and Tissues. International Journal of Molecular Sciences. 2021; 22(13):7035. https://doi.org/10.3390/ijms22137035
Chicago/Turabian StyleYoo, Na-Kyung, Ye-Rin Jeon, and Soo-Jin Choi. 2021. "Determination of Two Differently Manufactured Silicon Dioxide Nanoparticles by Cloud Point Extraction Approach in Intestinal Cells, Intestinal Barriers and Tissues" International Journal of Molecular Sciences 22, no. 13: 7035. https://doi.org/10.3390/ijms22137035
APA StyleYoo, N. -K., Jeon, Y. -R., & Choi, S. -J. (2021). Determination of Two Differently Manufactured Silicon Dioxide Nanoparticles by Cloud Point Extraction Approach in Intestinal Cells, Intestinal Barriers and Tissues. International Journal of Molecular Sciences, 22(13), 7035. https://doi.org/10.3390/ijms22137035