Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia
Abstract
:1. Introduction
2. Results
2.1. ADSC-Derived MVs Mitigated BPAO-Induced Bladder Ischemia
2.2. ADSCs and ADSC-Derived MVs Ameliorated BPAO-Induced Bladder Physiological Changes
3. Discussion
4. Materials and Methods
4.1. Animal Groups and Experimental Design
4.2. Preparation of ADSCs and ADSC-Derived MVs
4.3. Measurement of Bladder Microcirculation
4.4. Evaluation of Transcystometrogram
4.5. Morphological Staining
4.6. Western Blot and Biochemical Evaluation
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ponholzer, A.; Temml, C.; Wehrberger, C.; Marszalek, M.; Madersbacher, S. The association between vascular risk factors and lower urinary tract symptoms in both sexes. Eur. Urol. 2006, 50, 581–586. [Google Scholar] [CrossRef]
- Smith, D.P.; Weber, M.F.; Soga, K.; Korda, R.J.; Tikellis, G.; Patel, M.I.; Clements, M.S.; Dwyer, T.; Latz, I.K.; Banks, E. Relationship between lifestyle and health factors and severe lower urinary tract symptoms (LUTS) in 106,435 middle-aged and older Australian men: Population-based study. PLoS ONE 2014, 9, e109278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, K.E.; Boedtkjer, D.B.; Forman, A. The link between vascular dysfunction, bladder ischemia, and aging bladder dysfunction. Ther. Adv. Urol. 2017, 9, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Azadzoi, K.M.; Tarcan, T.; Kozlowski, R.; Krane, R.J.; Siroky, M.B. Overactivity and structural changes in the chronically ischemic bladder. J. Urol. 1999, 162, 1768–1778. [Google Scholar] [CrossRef]
- Nomiya, M.; Yamaguchi, O.; Andersson, K.E.; Sagawa, K.; Aikawa, K.; Shishido, K.; Yanagida, T.; Kushida, N.; Yazaki, J.; Takahashi, N. The effect of atherosclerosis-induced chronic bladder ischemia on bladder function in the rat. Neurourol. Urodyn. 2012, 31, 195–200. [Google Scholar] [CrossRef]
- Zhang, Q.; Siroky, M.; Yang, J.H.; Zhao, Z.; Azadzoi, K. Effects of ischemia and oxidative stress on bladder purinoceptors expression. Urology 2014, 84, 1249.e1–1249.e7. [Google Scholar] [CrossRef]
- Azadzoi, K.M.; Radisavljevic, Z.M.; Siroky, M.B. Effects of ischemia on tachykinin-containing nerves and neurokinin receptors in the rabbit bladder. Urology 2008, 71, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Azadzoi, K.M. Effect of chronic ischemia on bladder structure and function. Adv. Exp. Med. Biol. 2003, 539, 271–280. [Google Scholar] [PubMed]
- Azadzoi, K.M.; Heim, V.K.; Tarcan, T.; Siroky, M.B. Alteration of urothelial-mediated tone in the ischemic bladder: Role of eicosanoids. Neurourol. Urodyn. 2004, 23, 258–264. [Google Scholar] [CrossRef]
- Azadzoi, K.M.; Shinde, V.M.; Tarcan, T.; Kozlowski, R.; Siroky, M.B. Increased leukotriene and prostaglandin release, and overactivity in the chronically ischemic bladder. J. Urol. 2003, 169, 1885–1891. [Google Scholar] [CrossRef]
- Azadzoi, K.M.; Yalla, S.V.; Siroky, M.B. Oxidative stress and neurodegeneration in the ischemic overactive bladder. J. Urol. 2007, 178, 710–715. [Google Scholar] [CrossRef]
- Azadzoi, K.M.; Radisavljevic, Z.M.; Golabek, T.; Yalla, S.V.; Siroky, M.B. Oxidative modification of mitochondrial integrity and nerve fiber density in the ischemic overactive bladder. J. Urol. 2010, 183, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Balkanci, Z.D.; Pehlivanoglu, B.; Bayrak, S.; Karabulut, I.; Karaismailoglu, S.; Erdem, A. The effect of hypercholesterolemia on carbachol-induced contractions of the detrusor smooth muscle in rats: Increased role of L-type Ca2+ channels. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012, 385, 1141–1148. [Google Scholar] [CrossRef]
- Rahman, N.U.; Phonsombat, S.; Bochinski, D.; Carrion, R.E.; Nunes, L.; Lue, T.F. An animal model to study lower urinary tract symptoms and erectile dysfunction: The hyperlipidaemic rat. BJU Int. 2007, 100, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; van Goor, H.; Frye, J.; Diamond, J.R. Transforming growth factor-beta expression in macrophages during hypercholesterolemic states. Am. J. Physiol. 1994, 267, F937–F943. [Google Scholar] [CrossRef] [PubMed]
- Shenfeld, O.Z.; Meir, K.S.; Yutkin, V.; Gofrit, O.N.; Landau, E.H.; Pode, D. Do atherosclerosis and chronic bladder ischemia really play a role in detrusor dysfunction of old age? Urology 2005, 65, 181–184. [Google Scholar] [CrossRef]
- Tai, H.C.; Chung, S.D.; Chien, C.T.; Yu, H.J. Sulforaphane Improves Ischemia-Induced Detrusor Overactivity by Downregulating the Enhancement of Associated Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Rat Bladder. Sci. Rep. 2016, 6, 36110. [Google Scholar] [CrossRef]
- Qiu, X.; Sun, C.; Yu, W.; Lin, H.; Sun, Z.; Chen, Y.; Wang, R.; Dai, Y. Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of diabetes-associated erectile dysfunction. J. Androl. 2012, 33, 37–44. [Google Scholar] [CrossRef]
- Bivalacqua, T.J.; Deng, W.; Kendirci, M.; Usta, M.F.; Robinson, C.; Taylor, B.K.; Murthy, S.N.; Champion, H.C.; Hellstrom, W.J.; Kadowitz, P.J. Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1278–H1290. [Google Scholar] [CrossRef]
- Garcia, M.M.; Fandel, T.M.; Lin, G.; Shindel, A.W.; Banie, L.; Lin, C.S.; Lue, T.F. Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells. J. Sex. Med. 2010, 7, 89–98. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Qiu, X.; Shindel, A.W.; Ning, H.; Ferretti, L.; Jin, X.; Lin, G.; Lin, C.S.; Lue, T.F. Adipose tissue-derived stem cells ameliorate diabetic bladder dysfunction in a type II diabetic rat model. Stem Cells Dev. 2012, 21, 1391–1400. [Google Scholar] [CrossRef]
- Huang, Y.C.; Shindel, A.W.; Ning, H.; Lin, G.; Harraz, A.M.; Wang, G.; Garcia, M.; Lue, T.F.; Lin, C.S. Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model. J. Urol. 2010, 183, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Luo, Q.; Halim, A.; Ju, Y.; Morita, Y.; Song, G. Directed Differentiation and Paracrine Mechanisms of Mesenchymal Stem Cells: Potential Implications for Tendon Repair and Regeneration. Curr. Stem Cell Res. Ther. 2017, 12, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; Tang, C.; Rao, M.S.; Weissman, I.L.; Wu, J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 2013, 19, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoorvogel, W. Functional transfer of microRNA by exosomes. Blood 2012, 119, 646–648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Li, Y.; Chen, L.; Wang, X.; Guo, W.; Zhang, X.; Qin, G.; He, S.H.; Zimmerman, A.; et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int. J. Cardiol. 2015, 192, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.T.; Juan, Y.S. Ischemia, Hypoxia and Oxidative Stress in Bladder Outlet Obstruction and Bladder Overdistention Injury. Low. Urin. Tract Symptoms 2012, 4 (Suppl. 1), 27–31. [Google Scholar] [CrossRef]
- Lee, W.C.; Chuang, Y.C.; Chiang, P.H.; Chien, C.T.; Yu, H.J.; Wu, C.C. Pathophysiological studies of overactive bladder and bladder motor dysfunction in a rat model of metabolic syndrome. J. Urol. 2011, 186, 318–325. [Google Scholar] [CrossRef]
- Chancellor, M.B. The overactive bladder progression to underactive bladder hypothesis. Int. Urol. Nephrol. 2014, 46 (Suppl. 1), S23–S27. [Google Scholar] [CrossRef]
- Parsons, B.A.; Drake, M.J. Animal models in overactive bladder research. Handb. Exp. Pharmacol. 2011, 202, 15–43. [Google Scholar] [CrossRef]
- Chien, C.T.; Yu, H.J.; Lin, T.B.; Chen, C.F. Neural mechanisms of impaired micturition reflex in rats with acute partial bladder outlet obstruction. Neuroscience 2000, 96, 221–230. [Google Scholar] [CrossRef]
- Abrams, P.; Andersson, K.E.; Buccafusco, J.J.; Chapple, C.; de Groat, W.C.; Fryer, A.D.; Kay, G.; Laties, A.; Nathanson, N.M.; Pasricha, P.J.; et al. Muscarinic receptors: Their distribution and function in body systems, and the implications for treating overactive bladder. Br. J. Pharmacol. 2006, 148, 565–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.C.; Chiang, B.J.; Tsai, W.H.; Chung, S.D. I-Tiao-Gung extract through its active component daidzin improves cyclophosphamide-induced bladder dysfunction in rat model. Neurourol. Urodyn. 2018, 37, 2560–2570. [Google Scholar] [CrossRef] [PubMed]
- Kawada, T.; Yamazaki, T.; Akiyama, T.; Inagaki, M.; Shishido, T.; Zheng, C.; Yanagiya, Y.; Sugimachi, M.; Sunagawa, K. Vagosympathetic interactions in ischemia-induced myocardial norepinephrine and acetylcholine release. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H216–H221. [Google Scholar] [CrossRef]
- Sun, Y.; Chai, T.C. Role of Purinergic Signaling in Voiding Dysfunction. Curr. Bladder Dysfunct. Rep. 2010, 5, 219–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochodnický, P.; Cruz, C.D.; Yoshimura, N.; Michel, M.C. Nerve growth factor in bladder dysfunction: Contributing factor, biomarker, and therapeutic target. Neurourol. Urodyn. 2011, 30, 1227–1241. [Google Scholar] [CrossRef] [PubMed]
- Seth, J.H.; Sahai, A.; Khan, M.S.; van der Aa, F.; de Ridder, D.; Panicker, J.N.; Dasgupta, P.; Fowler, C.J. Nerve growth factor (NGF): A potential urinary biomarker for overactive bladder syndrome (OAB)? BJU Int. 2013, 111, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Yoshimura, N.; Chancellor, M.B. Implications of diabetes mellitus in urology. Urol. Clin. N. Am. 2003, 30, 1–12. [Google Scholar] [CrossRef]
- Yokokawa, R.; Akino, H.; Ito, H.; Zha, X.; Yokoyama, O. Nerve growth factor release from the urothelium increases via activation of bladder C-fiber in rats with cerebral infarction. Neurourol. Urodyn. 2017, 36, 1448–1455. [Google Scholar] [CrossRef]
- Woo, L.L.; Tanaka, S.T.; Anumanthan, G.; Pope, J.C.T.; Thomas, J.C.; Adams, M.C.; Brock, J.W., 3rd; Bhowmick, N.A. Mesenchymal stem cell recruitment and improved bladder function after bladder outlet obstruction: Preliminary data. J. Urol. 2011, 185, 1132–1138. [Google Scholar] [CrossRef]
- Dayanc, M.; Kibar, Y.; Ural, A.U.; Onguru, O.; Yildiz, O.; Irkilata, H.C.; Avcu, F.; Soner, B.C.; Ulku, C.; Seyrek, M. The histopathologic, pharmacologic and urodynamic results of mesenchymal stem cell’s injection into the decompensated rabbit’s bladder. Stem Cell Rev. 2012, 8, 1245–1253. [Google Scholar] [CrossRef]
- Lee, H.J.; Won, J.H.; Doo, S.H.; Kim, J.H.; Song, K.Y.; Lee, S.J.; Lim, I.; Chang, K.T.; Song, Y.S.; Kim, S.U. Inhibition of collagen deposit in obstructed rat bladder outlet by transplantation of superparamagnetic iron oxide-labeled human mesenchymal stem cells as monitored by molecular magnetic resonance imaging (MRI). Cell Transplant. 2012, 21, 959–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhang, H.Y.; Zhang, N.; Li, W.H.; Shan, H.; Liu, K.; Yang, Y. Treatment for chronic ischaemia-induced bladder detrusor dysfunction using bone marrow mesenchymal stem cells: An experimental study. Int. J. Mol. Med. 2012, 29, 416–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Zhang, S.; Zhao, X.; Fu, K.; Guo, H. The Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cells for Radiation-Induced Bladder Injury. Stem Cells Int. 2016, 2016, 3679047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 30, 3–22. [Google Scholar] [CrossRef]
- Sluijter, J.P.G.; Davidson, S.M.; Boulanger, C.M.; Buzás, E.I.; de Kleijn, D.P.V.; Engel, F.B.; Giricz, Z.; Hausenloy, D.J.; Kishore, R.; Lecour, S.; et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc. Res. 2018, 114, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Balaj, L.; Lessard, R.; Dai, L.; Cho, Y.J.; Pomeroy, S.L.; Breakefield, X.O.; Skog, J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2011, 2, 180. [Google Scholar] [CrossRef]
- Sun, L.; Xu, R.; Sun, X.; Duan, Y.; Han, Y.; Zhao, Y.; Qian, H.; Zhu, W.; Xu, W. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy 2016, 18, 413–422. [Google Scholar] [CrossRef]
- Kotmakci, M.; Bozok Cetintas, V. Extracellular Vesicles as Natural Nanosized Delivery Systems for Small-Molecule Drugs and Genetic Material: Steps towards the Future Nanomedicines. J. Pharm. Pharm. Sci. A Publ. Can. Soc. Pharm. Sci. Soc. Can. Sci. Pharm. 2015, 18, 396–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishita, M.; Takahashi, Y.; Nishikawa, M.; Takakura, Y. Pharmacokinetics of Exosomes-An Important Factor for Elucidating the Biological Roles of Exosomes and for the Development of Exosome-Based Therapeutics. J. Pharm. Sci. 2017, 106, 2265–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallet, R.; Dawkins, J.; Valle, J.; Simsolo, E.; de Couto, G.; Middleton, R.; Tseliou, E.; Luthringer, D.; Kreke, M.; Smith, R.R.; et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur. Heart J. 2017, 38, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Giricz, Z.; Varga, Z.V.; Baranyai, T.; Sipos, P.; Paloczi, K.; Kittel, A.; Buzas, E.I.; Ferdinandy, P. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J. Mol. Cell. Cardiol. 2014, 68, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, K.C.; Bond, D.T.; Levin, J.Z.; Adiconis, X.; Sivachenko, A.; Russ, C.; Brown, D.; Nusbaum, C.; Russo, L.M. Massively parallel sequencing of human urinary exosome/microvesicle RNA reveals a predominance of non-coding RNA. PLoS ONE 2014, 9, e96094. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; Grange, C.; Deregibus, M.C.; Calogero, R.A.; Saviozzi, S.; Collino, F.; Morando, L.; Busca, A.; Falda, M.; Bussolati, B.; et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. JASN 2009, 20, 1053–1067. [Google Scholar] [CrossRef] [Green Version]
- Francis, M.P.; Sachs, P.C.; Elmore, L.W.; Holt, S.E. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 2010, 6, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Ju, G.Q.; Cheng, J.; Zhong, L.; Wu, S.; Zou, X.Y.; Zhang, G.Y.; Gu, D.; Miao, S.; Zhu, Y.J.; Sun, J.; et al. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS ONE 2015, 10, e0121534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, T.; Yamaguchi, O. Changes in cholinergic and purinergic neurotransmission in pathologic bladder of chronic spinal rabbit. J. Urol. 1996, 156, 1862–1866. [Google Scholar] [CrossRef]
- Balog, B.M.; Tangada, A.; Sheth, P.; Song, Q.X.; Couri, B.M.; Porras, L.L.; Deng, G.G.; Damaser, M.S. Combination phosphodiesterase type 4 inhibitor and phosphodiesterase type 5 inhibitor treatment reduces non-voiding contraction in a rat model of overactive bladder. PLoS ONE 2019, 14, e0220788. [Google Scholar] [CrossRef]
- Chung, S.D.; Lai, T.Y.; Chien, C.T.; Yu, H.J. Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney. PLoS ONE 2012, 7, e47299. [Google Scholar] [CrossRef]
Group | Urination Frequency (n/Half Day) | Water Intake (mL/Day) | Food Intake (g/Day) | Urine (g/Day) | Feces (g/Day) |
---|---|---|---|---|---|
Sham, n = 6 | 7.5 ± 1.67 [5.65, 9.35] | 38 ± 13.49 [23.84, 52.16] | 17.7 ± 8.67 [8.61, 26.79] | 19.33 ± 2.8 [16.39, 22.27] | 14.03 ± 3.35 [10.51, 17.56] |
BPAO, n = 6 | 10.83 ± 1.47 * [9.29, 12.38] | 47.83 ± 13.04 [34.14, 61.52] | 21.43 ± 3.09 [18.19, 24.68] | 22.88 ± 5.84 [17.75, 30.01] | 18.5 ± 5.99 [21.21, 24.79] |
BPAO + ADSCs, n = 6 | 7.68 ± 1.37 # [6.23, 9.1] | 40.17 ± 15.94 [23.44, 56.9] | 15.27 ± 7.99 [6.92, 23.62] | 19.03 ± 5.92 [13.09, 25.51] | 15.02 ± 4.79 [9.99, 20.04] |
BPAO + ADSC-derived MVs, n = 6 | 7.83 ± 1.472 # [6.29, 9.38] | 45.83 ± 3.13 [42.55, 49.11] | 21.3 ± 1.64 [19.58, 23.03] | 19.50 ± 6.68 [12.49, 26.51] | 13.92 ± 2.77 [11.01, 16.83] |
Group | Intercontraction Interval (s) | Amplitude (mmHg) | Average Urine Amount (g) | Residual Urine (%) | Bladder Volume (mL) | Bladder Weight (g) |
---|---|---|---|---|---|---|
Sham, n = 6 | 602.8 ± 132.3 [463.9, 741.7] | 22.44 ± 2.64 [19.67, 25.21] | 0.16 ± 0.043 [0.12, 0.21] | 26.12 ± 6.11 [19.70, 32.53] | 0.38 ± 0.08 [0.29, 0.46] | 0.10 ± 0.02 [0.08, 0.13] |
BPAO, n = 6 | 353.2 ± 149.0 * [196.8, 509.5] | 26.45 ± 5.11 * [21.09, 31.82] | 0.15 ± 0.038 [0.11, 0.19] | 33.97 ± 10.68 [22.76, 45.17] | 0.27 ± 0.028 * [0.24, 0.30] | 0.11 ± 0.022 [0.08, 0.15] |
BPAO + ADSCs, n = 6 | 592.0 ± 293.8 # [283.6, 900.3] | 22.16 ± 4.21 [17.74, 26.57] | 0.21 ± 0.088 [0.12, 0.30] | 26.88 ± 16.49 [9.57, 44.19] | 0.44 ± 0.21 [0.22, 0.67] | 0.11 ± 0.01 [0.10, 0.12] |
BPAO + ADSC-derived MVs, n = 6 | 575.6 ± 269.8 # [292.4, 858.8] | 21.10 ± 2.33 # [18.65, 23.55] | 0.21 ± 0.12 [0.07, 0.34] | 23.52 ± 14.79 # [21.97, 25.08] | 0.71 ± 0.37 # [0.31, 1.01] | 0.10 ± 0.01 [0.09, 0.12] |
Group | Phase 1 | Phase 2 |
---|---|---|
Sham, n = 6 | 11.43 ± 4.91 [6.28, 16.58] | 1.98 ± 0.72 [1.22, 2.74] |
BPAO, n = 6 | 12.21 ± 2.58 [9.50, 14.92] | 2.57 ± 0.73 [1.81, 3.33] |
BPAO + ADSCs, n = 6 | 11.64 ± 2.17 [9.36, 13.92] | 2.46 ± 1.59 [0.79, 4.13] |
BPAO + ADSC-derived MVs, n = 6 | 10.81 ± 1.88 [8.84, 12.79] | 2.58 ± 0.46 [2.1, 3.05] |
Group | Non-Voiding Contraction (n) | Mean Amplitude (ΔmmHg) | Max Amplitude (ΔmmHg) |
---|---|---|---|
Sham, n = 6 | 2.27 ± 0.87 [1.35, 3.18] | 1.35 ± 0.18 [1.15, 1.54] | 2.22 ± 0.34 [1.86, 2.57] |
BPAO, n = 6 | 2.54 ± 0.74 [1.76, 3.31] | 2.09 ± 0.42 * [1.65, 2.53] | 3.54 ± 1.05 * [2.44, 4.64] |
BPAO + ADSCs, n = 6 | 2.82 ± 0.59 [2.20, 3.43] | 1.50 ± 0.32 # [1.16, 1.84] | 2.71 ± 0.59 [2.10, 3.33] |
BPAO + ADSC-derived MVs, n = 6 | 2.71 ± 0.60 [2.08, 3.32] | 1.58 ± 0.37 # [1.19, 1.97] | 2.41 ± 0.32 # [2.07, 2.75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, B.-J.; Liao, C.-H.; Mao, S.-H.; Chien, C.-T. Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia. Int. J. Mol. Sci. 2021, 22, 7000. https://doi.org/10.3390/ijms22137000
Chiang B-J, Liao C-H, Mao S-H, Chien C-T. Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia. International Journal of Molecular Sciences. 2021; 22(13):7000. https://doi.org/10.3390/ijms22137000
Chicago/Turabian StyleChiang, Bing-Juin, Chun-Hou Liao, Su-Han Mao, and Chiang-Ting Chien. 2021. "Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia" International Journal of Molecular Sciences 22, no. 13: 7000. https://doi.org/10.3390/ijms22137000
APA StyleChiang, B. -J., Liao, C. -H., Mao, S. -H., & Chien, C. -T. (2021). Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia. International Journal of Molecular Sciences, 22(13), 7000. https://doi.org/10.3390/ijms22137000