Protease Activated Receptors and Arthritis
Abstract
:1. Introduction
2. PAR-1
2.1. Receptor Pharmacology
2.2. PAR-1 and Joints
3. PAR-2
3.1. Receptor Pharmacology
3.2. PAR-2 and Joints
4. PAR-3
4.1. Receptor Pharmacology
4.2. PAR-3 and Joints
5. PAR-4
5.1. Receptor Pharmacology
5.2. PAR-4 and Joints
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woolf, A.; Pfleger, B. Burden of major muskuloskeletal conditions. Bull. World Health Organ. 2003, 81, 646–656. [Google Scholar]
- van Delft, M.A.M.; Huizinga, T.W.J. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020, 110, 102392. [Google Scholar] [CrossRef]
- Grässel, S.; Zaucke, F.; Madry, H. Osteoarthritis: Novel Molecular Mechanisms Increase Our Understanding of the Disease Pathology. J. Clin. Med. 2021, 10, 1938. [Google Scholar] [CrossRef]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.M.; Weinblatt, M.E. Rheumatoid arthritis. Lancet 2001, 358, 903–911. [Google Scholar] [CrossRef]
- Helmick, C.G.; Felson, D.T.; Lawrence, R.C.; Gabriel, S.; Hirsch, R.; Kwoh, C.K.; Liang, M.H.; Kremers, H.M.; Mayes, M.D.; Merkel, P.A.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part I. Arthritis Rheum. 2007, 58, 15–25. [Google Scholar] [CrossRef]
- Gibofsky, A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am. J. Manag. Care 2012, 18, S295–S302. [Google Scholar]
- Singh, J.A.; Saag, K.G., Jr.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; McAlindon, T.; et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2015, 68, 1–26. [Google Scholar] [CrossRef]
- McAlindon, T.E.; Bannuru, R.R.; Sullivan, M.C.; Arden, N.K.; Berenbaum, F.; Bierma-Zeinstra, S.M.; Hawker, G.A.; Henrotin, Y.; Hunter, D.J.; Kawaguchi, H.; et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 2014, 22, 363–388. [Google Scholar] [CrossRef] [Green Version]
- Krustev, E.; Rioux, D.; McDougall, J.J. Mechanisms and Mediators That Drive Arthritis Pain. Curr. Osteoporos. Rep. 2015, 13, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Hollenberg, M.D. Protease-mediated signalling: New paradigms for cell regulation and drug development. Trends Pharmacol. Sci. 1996, 17, 3–6. [Google Scholar] [CrossRef]
- McDougall, J.J.; Muley, M.M. The Role of Proteases in Pain. In Pain Control; Schaible, H.-G., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 239–260. ISBN 978-3-662-46450-2. [Google Scholar]
- Ramachandran, R.; Noorbakhsh, F.; DeFea, K.; Hollenberg, M.D. Targeting proteinase-activated receptors: Therapeutic potential and challenges. Nat. Rev. Drug Discov. 2012, 11, 69–86. [Google Scholar] [CrossRef]
- Zhao, P.; Metcalf, M.; Bunnett, N.W. Biased Signaling of Protease-Activated Receptors. Front. Endocrinol. 2014, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Hollenberg, M.D.; Mihara, K.; Polley, D.; Suen, J.Y.; Han, A.; Fairlie, D.P.; Ramachandran, R. Biased signalling and proteinase-activated receptors (PARs): Targeting inflammatory disease. Br. J. Pharmacol. 2013, 171, 1180–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis-Fox, O.; Preston, R.J.S. Molecular basis of protease-activated receptor 1 signaling diversity. J. Thromb. Haemost. 2019, 18, 6–16. [Google Scholar] [CrossRef]
- Hoogerwerf, W.A.; Zou, L.; Shenoy, M.; Sun, D.; Micci, M.A.; Lee-Hellmich, H.; Xiao, S.Y.; Winston, J.H.; Pasricha, P.J. The Proteinase-Activated Receptor 2 Is Involved in Nociception. J. Neurosci. 2001, 21, 9036–9042. [Google Scholar] [CrossRef] [Green Version]
- Dattilio, A.; Vizzard, M.A. Up-regulation of protease activated receptors in bladder after cyclophosphamide induced cystitis and colocalization with capsaicin receptor (vr1) in bladder nerve fibers. J. Urol. 2005, 173, 635–639. [Google Scholar] [CrossRef]
- Ito, M.; Ono, K.; Hitomi, S.; Nodai, T.; Sago, T.; Yamaguchi, K.; Harano, N.; Gunjigake, K.; Hosokawa, R.; Kawamoto, T.; et al. Prostanoid-dependent spontaneous pain and PAR2-dependent mechanical allodynia following oral mucosal trauma. Mol. Pain 2017, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vergnolle, N.; Bunnett, N.W.; Sharkey, K.; Brussee, V.; Compton, S.J.; Grady, E.F.; Cirino, G.; Gerard, N.; Basbaum, A.I.; Andrade-Gordon, P.; et al. Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat. Med. 2001, 7, 821–826. [Google Scholar] [CrossRef]
- Grant, A.D.; Cottrell, G.S.; Amadesi, S.; Trevisani, M.; Nicoletti, P.; Materazzi, S.; Altier, C.; Cenac, N.; Zamponi, G.W.; Bautista-Cruz, F.; et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J. Physiol. 2007, 578, 715–733. [Google Scholar] [CrossRef] [PubMed]
- Obreja, O.; Rukwied, R.; Steinhoff, M.; Schmelz, M. Neurogenic components of trypsin- and thrombin-induced inflammation in rat skin, in vivo. Exp. Dermatol. 2006, 15, 58–65. [Google Scholar] [CrossRef]
- Kirilak, Y.; Pavlos, N.J.; Willers, C.R.; Han, R.; Feng, H.; Xu, J.; Asokananthan, N.; Stewart, G.A.; Henry, P.; Wood, D.; et al. Fibrin sealant promotes migration and proliferation of human articular chondrocytes: Possible involvement of thrombin and protease-activated receptors. Int. J. Mol. Med. 2006, 17, 551–558. [Google Scholar] [CrossRef]
- Song, S.J.; Pagel, C.N.; Campbell, T.M.; Pike, R.N.; Mackie, E.J. The Role of Protease-Activated Receptor-1 in Bone Healing. Am. J. Pathol. 2005, 166, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Hirano, F.; Kobayashi, A.; Hirano, Y.; Nomura, Y.; Fukawa, E.; Makino, I. Thrombin-induced expression of RANTES mRNA through protease activated receptor-1 in human synovial fibroblasts. Ann. Rheum. Dis. 2002, 61, 834–837. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Augé, C.; Boué, J.; Buresi, M.C.; Chapman, K.; Asfaha, S.; Andrade-Gordon, P.; Steinhoff, M.; Cenac, N.; Dietrich, G.; et al. Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain 2009, 146, 121–129. [Google Scholar] [CrossRef]
- Milner, J.M.; Patel, A.; Davidson, R.K.; Swingler, T.E.; Désilets, A.; Young, D.A.; Kelso, E.B.; Donell, S.T.; Cawston, T.E.; Clark, I.M.; et al. Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum. 2010, 62, 1955–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muley, M.M.; Reid, A.R.; Botz, B.; Bölcskei, K.; Helyes, Z.; McDougall, J.J. Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2. Br. J. Pharmacol. 2015, 173, 766–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helyes, Z.; Sándor, K.; Borbély, É.; Tékus, V.; Pintér, E.; Elekes, K.; Tóth, D.M.; Szolcsányi, J.; McDougall, J.J. Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur. J. Pain 2010, 14, 351–358. [Google Scholar] [CrossRef]
- Russell, F.A.; Schuelert, N.; Veldhoen, V.E.; Hollenberg, M.D.; McDougall, J.J. Activation of PAR2receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. Br. J. Pharmacol. 2012, 167, 1665–1678. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuizen, L.; Schutgens, R.E.G.; Coeleveld, K.; Mastbergen, S.C.; Schiffelers, R.M.; Roosendaal, G.; Biesma, D.H.; Lafeber, F.P.J.G. Silencing of protease-activated receptors attenuates synovitis and cartilage damage following a joint bleed in haemophilic mice. Haemophilia 2015, 22, 152–159. [Google Scholar] [CrossRef]
- McDougall, J.J.; Zhang, C.; Cellars, L.; Joubert, E.; Dixon, C.M.; Vergnolle, N. Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice. Arthritis Rheum. 2009, 60, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Hung, D.T.; Wong, Y.H.; Vu, T.K.H.; Coughlin, S.R. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J. Biol. Chem. 1992, 267, 20831–20834. [Google Scholar] [CrossRef]
- Benka, M.L.; Lee, M.; Wang, G.-R.; Buckman, S.; Burlacu, A.; Cole, L.; DePina, A.; Dias, P.; Granger, A.; Grant, B.; et al. The thrombin receptor in human platelets is coupled to a GTP binding protein of the Gαqfamily. FEBS Lett. 1995, 363, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Déry, O.; Corvera, C.U.; Steinhoff, M.; Bunnett, N.W. Proteinase-activated receptors: Novel mechanisms of signaling by serine proteases. Am. J. Physiol. Physiol. 1998, 274, C1429–C1452. [Google Scholar] [CrossRef]
- Ossovskaya, V.S.; Bunnett, N.W. Protease-Activated Receptors: Contribution to Physiology and Disease. Physiol. Rev. 2004, 84, 579–621. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-C.; Fong, Y.-C.; Lai, C.-H.; Hung, C.-H.; Hsu, H.-C.; Lee, T.-S.; Yang, R.-S.; Fu, W.-M.; Tang, C.-H. Thrombin-induced IL-6 production in human synovial fibroblasts is mediated by PAR1, phospholipase C, protein kinase Cα, c-Src, NF-kappaB and p300 pathway. Mol. Immunol. 2008, 45, 1587–1599. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-F.; Hou, S.-M.; Tsai, C.-H.; Huang, C.-Y.; Yang, W.-H.; Tang, C.-H. Thrombin induces heme oxygenase-1 expression in human synovial fibroblasts through protease-activated receptor signaling pathways. Arthritis Res. Ther. 2012, 14, R91. [Google Scholar] [CrossRef] [Green Version]
- Tao, K.-M.; Tao, Y.; Chen, C.-Y.; Yang, L.-Q.; Lu, Z.-J.; Sun, Y.-M.; Huang, S.-D.; Yu, W.-F. Proteinase-activated Receptor 1 Contributed to Up-regulation of Enkephalin in Keratinocytes of Patients with Obstructive Jaundice. Anesthesiology 2014, 121, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Kanno, Y.; Ishisaki, A.; Kawashita, E.; Kuretake, H.; Ikeda, K.; Matsuo, O. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca2+/CaMKK/AMPK Axis. Int. J. Biol. Sci. 2016, 12, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Paing, M.M.; Stutts, A.B.; Kohout, T.A.; Lefkowitz, R.J.; Trejo, J. β-Arrestins Regulate Protease-activated Receptor-1 Desensitization but Not Internalization or Down-regulation. J. Biol. Chem. 2002, 277, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
- Paing, M.M.; Johnston, C.A.; Siderovski, D.P.; Trejo, J. Clathrin Adaptor AP2 Regulates Thrombin Receptor Constitutive Internalization and Endothelial Cell Resensitization. Mol. Cell. Biol. 2006, 26, 3231–3242. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.N.; Ramachandran, R.; Yau, M.-K.; Suen, J.Y.; Fairlie, D.P.; Hollenberg, M.D.; Hooper, J.D. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 2011, 130, 248–282. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Siderovski, D.P.; Neubig, R.R.; Lawson, M.A.; Trejo, J. Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins. J. Biol. Chem. 2014, 289, 1580–1591. [Google Scholar] [CrossRef] [Green Version]
- Grimsey, N.J.; Coronel, L.J.; Cordova, I.C.; Trejo, J. Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins. J. Biol. Chem. 2016, 291, 2223–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuepbach, R.A.; Feistritzer, C.; Brass, L.F.; Riewald, M. Activated protein C–cleaved protease activated receptor-1 is retained on the endothelial cell surface even in the presence of thrombin. Blood 2008, 111, 2667–2673. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Soh, U.J.K.; Paing, M.M.; Arora, P.; Trejo, J. Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc. Natl. Acad. Sci. USA 2009, 106, 6393–6397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, R.; Winyard, P.G.; Brass, L.F.; Blake, D.R.; Morris, C.J. Thrombin receptor expression in rheumatoid and osteoarthritic synovial tissue. Ann. Rheum. Dis. 1996, 55, 841–843. [Google Scholar] [CrossRef]
- Shin, H.; Nakajima, T.; Kitajima, I.; Shigeta, K.; Abeyama, K.; Imamura, T.; Okano, T.; Kawahara, K.; Nakamura, T.; Maruyama, I. Thrombin Receptor-Mediated Synovial Proliferation in Patients with Rheumatoid Arthritis. Clin. Immunol. Immunopathol. 1995, 76, 225–233. [Google Scholar] [CrossRef]
- Xue, M.; Chan, Y.-K.A.; Shen, K.; Dervish, S.; March, L.; Sambrook, P.N.; Jackson, C.J. Protease-activated receptor 2, rather than protease-activated receptor 1, contributes to the aggressive properties of synovial fibroblasts in rheumatoid arthritis. Arthritis Rheum. 2011, 64, 88–98. [Google Scholar] [CrossRef]
- Furmaniak-Kazmierczak, E.; Cooke, T.D.; Manuel, R.; Scudamore, A.; Hoogendorn, H.; Giles, A.R.; Nesheim, M. Studies of thrombin-induced proteoglycan release in the degradation of human and bovine cartilage. J. Clin. Investig. 1994, 94, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-Y.; Lin, H.-J.; Chen, H.-S.; Cheng, S.-Y.; Hsu, H.-C.; Tang, C.-H. Thrombin Promotes Matrix Metalloproteinase-13 Expression through the PKCδ/c-Src/EGFR/PI3K/Akt/AP-1 Signaling Pathway in Human Chondrocytes. Mediat. Inflamm. 2013, 2013, 326041. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.T.; Moradi, B.; Smith, M.M.; Jackson, C.J.; Little, C.B. Activation of Matrix Metalloproteinases 2, 9, and 13 by Activated Protein C in Human Osteoarthritic Cartilage Chondrocytes. Arthritis Rheumatol. 2014, 66, 1525–1536. [Google Scholar] [CrossRef]
- Jastrzebski, S.; Kalinowski, J.; Mun, S.; Shin, B.; Adapala, N.S.; Jacome-Galarza, C.E.; Mirza, F.; Aguila, H.L.; Drissi, H.; Sanjay, A.; et al. Protease-Activated Receptor 1 Deletion Causes Enhanced Osteoclastogenesis in Response to Inflammatory Signals through a Notch2-Dependent Mechanism. J. Immunol. 2019, 203, 105–116. [Google Scholar] [CrossRef]
- Song, S.J.; Pagel, C.N.; Pike, R.N.; Mackie, E.J. Studies on the receptors mediating responses of osteoblasts to thrombin. Int. J. Biochem. Cell Biol. 2005, 37, 206–213. [Google Scholar] [CrossRef]
- Pagel, C.N.; de Niese, M.R.; Abraham, L.A.; Chinni, C.; Song, S.-J.; Pike, R.N.; Mackie, E.J. Inhibition of osteoblast apoptosis by thrombin. Bone 2003, 33, 733–743. [Google Scholar] [CrossRef]
- Shin, H.; Kitajima, I.; Nakajima, T.; Shao, Q.; Tokioka, T.; Takasaki, I.; Hanyu, N.; Kubo, T.; Maruyama, I. Thrombin receptor mediated signals induce expressions of interleukin 6 and granulocyte colony stimulating factor via NF-kappa B activation in synovial fibroblasts. Ann. Rheum. Dis. 1999, 58, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuhashi, I.; Abe, K.; Sato, T.; Inoue, H. Thrombin-Stimulated Proliferation of Cultured Human Synovial Fibroblasts through Proteolytic Activation of Proteinase-Activated Receptor-1. J. Pharmacol. Sci. 2008, 108, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillén, M.; Megías, J.; Gomar, F.; Alcaraz, M. Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes. J. Pathol. 2007, 214, 515–522. [Google Scholar] [CrossRef]
- Varisco, P.A.; Péclat, V.; Van Ness, K.; Bischof-Delaloye, A.; So, A.; Busso, N. Effect of thrombin inhibition on synovial inflammation in antigen induced arthritis. Ann. Rheum. Dis. 2000, 59, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Marty, I.; Péclat, V.; Kirdaite, G.; Salvi, R.; So, A.; Busso, N. Amelioration of collagen-induced arthritis by thrombin inhibition. J. Clin. Investig. 2001, 107, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.H.; Hall, P.; Little, C.B.; Fosang, A.J.; Milenkovski, G.; Santos, L.; Xue, J.; Tipping, P.; Morand, E.F. Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis Rheum. 2005, 52, 1325–1332. [Google Scholar] [CrossRef]
- Billi, A.C.; Ludwig, J.E.; Fritz, Y.; Rozic, R.; Swindell, W.R.; Tsoi, L.C.; Gruszka, D.; Abdollahi-Roodsaz, S.; Xing, X.; Diaconu, D.; et al. KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. J. Clin. Investig. 2020, 130, 3151–3157. [Google Scholar] [CrossRef]
- Vellani, V.; Kinsey, A.M.; Prandini, M.; Hechtfischer, S.C.; Reeh, P.; Magherini, P.C.; Giacomoni, C.; McNaughton, P.A. Protease Activated Receptors 1 and 4 Sensitize TRPV1 in Nociceptive Neurones. Mol. Pain 2010, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koetzner, L.; Gregory, J.A.; Yaksh, T.L. Intrathecal Protease-Activated Receptor Stimulation Produces Thermal Hyperal-gesia through Spinal Cyclooxygenase Activity. J. Pharmacol. Exp. Ther. 2004, 311, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Syre, P.P.; Oake, S.A.; Nicholson, K.J.; Weisshaar, C.L.; Cruz, K.; Bucki, R.; Baumann, B.C.; Janmey, P.A.; Winkelstein, B.A. Salmon and Human Thrombin Differentially Regulate Radicular Pain, Glial-Induced Inflammation and Spinal Neuronal Excitability through Protease-Activated Receptor-1. PLoS ONE 2013, 8, e80006. [Google Scholar] [CrossRef] [Green Version]
- Asfaha, S.; Brussee, V.; Chapman, K.; Zochodne, D.W.; Vergnolle, N. Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br. J. Pharmacol. 2002, 135, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, A.; Kawao, N.; Kuroda, R.; Tanaka, A.; Shimada, C. The PAR-1-activating peptide attenuates carrageenan-induced hyperalgesia in rats. Peptides 2002, 23, 1181–1183. [Google Scholar] [CrossRef]
- Al-Ani, B.; Saifeddine, M.; Kawabata, A.; Renaux, B.; Mokashi, S.; Hollenberg, M.D. Proteinase-activated receptor 2 (PAR(2)): Development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands. J. Pharmacol. Exp. Ther. 1999, 290, 753–760. [Google Scholar]
- Santulli, R.J.; Derian, C.K.; Darrow, A.L.; Tomko, K.A.; Eckardt, A.J.; Seiberg, M.; Scarborough, R.M.; Andrade-Gordon, P. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc. Natl. Acad. Sci. USA 1995, 92, 9151–9155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwa, J.J.; Ghibaudi, L.; Williams, P.; Chintala, M.; Zhang, R.; Chatterjee, M.; Sybertz, E. Evidence for the Presence of a Proteinase-Activated Receptor Distinct From the Thrombin Receptor in Vascular Endothelial Cells. Circ. Res. 1996, 78, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Saifeddine, M.; Al-Ani, B.; Cheng, C.-H.; Wang, L.; Hollenberg, M.D. Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br. J. Pharmacol. 1996, 118, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; McConalogue, K.; Khitin, L.M.; Hollenberg, M.D.; Payan, D.G.; Böhm, S.K.; Bunnett, N.W. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. USA 1997, 94, 8884–8889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Andrea, M.R.; Rogahn, C.J.; Andrade-Gordon, P. Localization of protease-activated receptors-1 and -2 in human mast cells: Indications for an amplified mast cell degranulation cascade. Biotech. Histochem. 2000, 75, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Nystedt, S.; Ramakrishnan, V.; Sundelin, J. The Proteinase-activated Receptor 2 Is Induced by Inflammatory Mediators in Human Endothelial Cells: Comparison with the thrombin receptor. J. Biol. Chem. 1996, 271, 14910–14915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, L.A.; Chinni, C.; Jenkins, A.L.; Lourbakos, A.; Ally, N.; Pike, R.N.; Mackie, E.J. Expression of protease-activated receptor-2 by osteoblasts. Bone 2000, 26, 7–14. [Google Scholar] [CrossRef]
- Xiang, Y.; Masuko-Hongo, K.; Sekine, T.; Nakamura, H.; Yudoh, K.; Nishioka, K.; Kato, T. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1β, TNF-α and TGF-β. Osteoarthr. Cartil. 2006, 14, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Palmer, H.S.; Kelso, E.B.; Lockhart, J.C.; Sommerhoff, C.P.; Plevin, R.; Goh, F.G.; Ferrell, W.R. Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum. 2007, 56, 3532–3540. [Google Scholar] [CrossRef]
- Boileau, C.; Amiable, N.; Martel-Pelletier, J.; Fahmi, H.; Duval, N.; Pelletier, J.-P. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: A basic science study. Arthritis Res. Ther. 2007, 9, R121. [Google Scholar] [CrossRef] [Green Version]
- Alier, K.A.; Endicott, J.A.; Stemkowski, P.L.; Cenac, N.; Cellars, L.; Chapman, K.; Andrade-Gordon, P.; Vergnolle, N.; Smith, P.A. Intrathecal Administration of Proteinase-Activated Receptor-2 Agonists Produces Hyperalgesia by Exciting the Cell Bodies of Primary Sensory Neurons. J. Pharmacol. Exp. Ther. 2007, 324, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Bohm, S.K.; Kong, W.; Bromme, D.; Smeekens, S.P.; Anderson, D.C.; Connolly, A.; Kahn, M.; Nelken, N.A.; Coughlin, S.R.; Payan, D.G.; et al. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J. 1996, 314 Pt 3, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Belham, C.M.; Tate, R.J.; Scott, P.H.; Pemberton, A.D.; Miller, H.R.P.; Wadsworth, R.M.; Gould, G.W.; Plevin, R. Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochem. J. 1996, 320, 939–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFea, K.A.; Zalevsky, J.; Thoma, M.S.; Dery, O.; Mullins, R.D.; Bunnett, N.W. β-Arrestin–Dependent Endocytosis of Proteinase-Activated Receptor 2 Is Required for Intracellular Targeting of Activated Erk1/2. J. Cell Biol. 2000, 148, 1267–1282. [Google Scholar] [CrossRef] [PubMed]
- Seatter, M.J.; Drummond, R.; Kanke, T.; Macfarlane, S.R.; Hollenberg, M.D.; Plevin, R. The role of the C-terminal tail in protease-activated receptor-2-mediated Ca2+ signalling, proline-rich tyrosine kinase-2 activation, and mitogen-activated protein kinase activity. Cell. Signal. 2003, 16, 21–29. [Google Scholar] [CrossRef]
- Ricks, T.K.; Trejo, J.A. Phosphorylation of Protease-activated Receptor-2 Differentially Regulates Desensitization and Internalization. J. Biol. Chem. 2009, 284, 34444–34457. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-R.; Seo, J.B.; Deng, Y.; Asbury, C.L.; Hille, B.; Koh, D.-S. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling. J. Gen. Physiol. 2016, 147, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Roosterman, D.; Schmidlin, F.; Bunnett, N.W. Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am. J. Physiol. Physiol. 2003, 284, C1319–C1329. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Ransjö, M.; Tatarczuch, L.; Pagel, C.N.; Morrison, J.R.; Pike, R.N.; Mackie, E.J.; Song, S.-J. Activation of Protease-Activated Receptor-2 Leads to Inhibition of Osteoclast Differentiation. J. Bone Miner. Res. 2003, 19, 507–516. [Google Scholar] [CrossRef]
- Georgy, S.R.; Pagel, C.N.; Ghasem-Zadeh, A.; Zebaze, R.M.D.; Pike, R.N.; Sims, N.A.; Mackie, E.J. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone 2012, 50, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Amiable, N.; Tat, S.K.; Lajeunesse, D.; Duval, N.; Pelletier, J.-P.; Martel-Pelletier, J.; Boileau, C. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone 2009, 44, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.-H.; Sheu, M.-T.; Liang, Y.-C.; Cheng, H.-T.; Fang, S.-S.; Chen, C.-H. TGF-β inhibits IL-1β-activated PAR-2 expression through multiple pathways in human primary synovial cells. J. Biomed. Sci. 2009, 16, 97. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ni, B.; Xi, Y.; Chu, X.; Zhang, R.; You, H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging 2019, 11, 12532–12545. [Google Scholar] [CrossRef]
- Abe, K.; Aslam, A.; Walls, A.F.; Sato, T.; Inoue, H. Up-regulation of protease-activated receptor-2 by bFGF in cultured human synovial fibroblasts. Life Sci. 2006, 79, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Sawamukai, N.; Yukawa, S.; Saito, K.; Nakayamada, S.; Kambayashi, T.; Tanaka, Y. Mast cell-derived tryptase inhibits apoptosis of human rheumatoid synovial fibroblasts via rho-mediated signaling. Arthritis Rheum. 2010, 62, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Mishiro, T.; Takahara, S.; Yokoi, H.; Hamada, D.; Yukata, K.; Takata, Y.; Goto, T.; Egawa, H.; Yasuoka, S.; et al. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin. Rheumatol. 2007, 26, 1284–1292. [Google Scholar] [CrossRef]
- Crilly, A.; Burns, E.; Nickdel, M.B.; Lockhart, J.C.; Perry, M.E.; Ferrell, P.W.; Baxter, D.; Dale, J.; Dunning, L.; Wilson, H.E.; et al. PAR2expression in peripheral blood monocytes of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2012, 71, 1049–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tindell, A.G.; Kelso, E.B.; Ferrell, W.R.; Lockhart, J.C.; Walsh, D.A.; Dunning, L.; McInnes, I.B. Correlation of protease-activated receptor-2 expression and synovitis in rheumatoid and osteoarthritis. Rheumatol. Int. 2011, 32, 3077–3086. [Google Scholar] [CrossRef] [PubMed]
- Kelso, E.B.; Ferrell, W.R.; Lockhart, J.C.; Elias-Jones, I.; Hembrough, T.; Dunning, L.; Gracie, J.A.; McInnes, I.B. Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: Ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum. 2007, 56, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Ding, H.; Peng, J.; Wang, X.; Pang, C.; Wei, J.; Wei, J.; Chen, H. Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-κB signaling pathway in vivo and in vitro. Biosci. Rep. 2020, 40, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ferrell, W.R.; Lockhart, J.C.; Kelso, E.B.; Dunning, L.; Plevin, R.; Meek, S.E.; Smith, A.J.; Hunter, G.D.; McLean, J.S.; McGarry, F.; et al. Essential role for proteinase-activated receptor-2 in arthritis. J. Clin. Investig. 2003, 111, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Lucena, F.; McDougall, J.J. Pain responses to protease-activated receptor-2 stimulation in the spinal cord of naïve and arthritic rats. Neurosci. Lett. 2020, 739, 135391. [Google Scholar] [CrossRef]
- Borbély, É.; Sándor, K.; Markovics, A.; Kemény, Á.; Pintér, E.; Szolcsányi, J.; Quinn, J.P.; McDougall, J.J.; Helyes, Z. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees. Inflamm. Res. 2016, 65, 725–736. [Google Scholar] [CrossRef]
- McDougall, J.J.; McConnell, M.; Reid, A.R. Intracellular versus extracellular inhibition of calpain I causes differential effects on pain in a rat model of joint inflammation. Mol. Pain 2021, 17, 17448069211016141. [Google Scholar] [CrossRef]
- Kelso, E.B.; Lockhart, J.C.; Hembrough, T.A.; Dunning, L.; Plevin, R.; Hollenberg, M.D.; Sommerhoff, C.P.; McLean, J.S.; Ferrell, W.R. Therapeutic Promise of Proteinase-Activated Receptor-2 Antagonism in Joint Inflammation. J. Pharmacol. Exp. Ther. 2005, 316, 1017–1024. [Google Scholar] [CrossRef]
- Busso, N.; Frasnelli, M.; Feifel, R.; Cenni, B.; Steinhoff, M.; Hamilton, J.; So, A. Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum. 2006, 56, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Crilly, A.; Palmer, H.; Nickdel, M.B.; Dunning, L.; Lockhart, J.C.; Plevin, R.; McInnes, I.B.; Ferrell, W.R. Immunomodulatory role of proteinase-activated receptor-2. Ann. Rheum. Dis. 2012, 71, 1559–1566. [Google Scholar] [CrossRef] [Green Version]
- Ferrell, W.R.; Kelso, E.B.; Lockhart, J.C.; Plevin, R.; McInnes, I.B. Protease-activated receptor 2: A novel pathogenic pathway in a murine model of osteoarthritis. Ann. Rheum. Dis. 2010, 69, 2051–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiable, N.; Martel-Pelletier, J.; Lussier, B.; Tat, S.K.; Pelletier, J.-P.; Boileau, C. Proteinase-activated Receptor-2 Gene Disruption Limits the Effect of Osteoarthritis on Cartilage in Mice: A Novel Target in Joint Degradation. J. Rheumatol. 2011, 38, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.T.; Moradi, B.; Zaki, S.; Smith, M.M.; McCracken, S.; Smith, S.M.; Jackson, C.J.; Little, C.B. Depletion of Protease-Activated Receptor 2 but Not Protease-Activated Receptor 1 May Confer Protection Against Osteoarthritis in Mice Through Extracartilaginous Mechanisms. Arthritis Rheumatol. 2014, 66, 3337–3348. [Google Scholar] [CrossRef] [PubMed]
- Huesa, C.; Ortiz, A.C.; Dunning, L.; McGavin, L.; Bennett, L.; McIntosh, K.; Crilly, A.; Kurowska-Stolarska, M.; Plevin, R.; Hof, R.V.; et al. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology. Ann. Rheum. Dis. 2015, 75, 1989–1997. [Google Scholar] [CrossRef] [Green Version]
- Muley, M.M.; Krustev, E.; Reid, A.R.; McDougall, J.J. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J. Neuroinflam. 2017, 14, 1–12. [Google Scholar] [CrossRef]
- Kaneva, M.K.; Muley, M.M.; Krustev, E.; Reid, A.R.; Souza, P.R.; Dell’Accio, F.; McDougall, J.J.; Perretti, M. Alpha-1-antitrypsin reduces inflammation and exerts chondroprotection in arthritis. FASEB J. 2021, 35, e21472. [Google Scholar] [CrossRef]
- Connolly, A.J.; Ishihara, H.; Kahn, M.L.; Farese, R.V.; Coughlin, S.R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 1996, 381, 516–519. [Google Scholar] [CrossRef]
- Ishihara, H.; Connolly, A.J.; Zeng, D.; Kahn, M.L.; Zheng, Y.W.; Timmons, C.; Tram, T.; Coughlin, S.R. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 1997, 386, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.K.; Saifeddine, M.; Hollenberg, M.D. Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology 2004, 112, 183–190. [Google Scholar] [CrossRef]
- McLaughlin, J.N.; Patterson, M.M.; Malik, A.B. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc. Natl. Acad. Sci. USA 2007, 104, 5662–5667. [Google Scholar] [CrossRef] [Green Version]
- Bah, A.; Chen, Z.; Bush-Pelc, L.A.; Mathews, F.S.; Di Cera, E. Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors PAR3 and PAR4. Proc. Natl. Acad. Sci. USA 2007, 104, 11603–11608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Liu, A.P.; Smith, T.H.; Trejo, J.A. Cofactoring and Dimerization of Proteinase-Activated Receptors. Pharmacol. Rev. 2013, 65, 1198–1213. [Google Scholar] [CrossRef] [Green Version]
- Mwirigi, J.; Kume, M.; Hassler, S.N.; Ahmad, A.; Ray, P.R.; Jiang, C.; Chamessian, A.; Mseeh, N.; Ludwig, B.P.; Rivera, B.D.; et al. A Role for Protease Activated Receptor Type 3 (PAR3) in Nociception Demonstrated Through Development of a Novel Peptide Agonist. J. Pain 2021, 22, 692–706. [Google Scholar] [CrossRef] [PubMed]
- Kahn, M.L.; Zheng, Y.-W.; Huang, W.; Bigornia, V.; Zeng, D.; Moff, S.; Farese, R.V., Jr.; Tam, C.; Coughlin, S.R. A dual thrombin receptor. Nature 1998, 394, 11–15. [Google Scholar] [CrossRef]
- Xu, W.-F.; Andersen, H.; Whitmore, T.E.; Presnell, S.R.; Yee, D.P.; Ching, A.; Gilbert, T.; Davie, E.W.; Foster, D.C. Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. USA 1998, 95, 6642–6646. [Google Scholar] [CrossRef] [Green Version]
- French, S.L.; Hamilton, J.R. Protease-activated receptor 4: From structure to function and back again. Br. J. Pharmacol. 2016, 173, 2952–2965. [Google Scholar] [CrossRef] [Green Version]
- Rudinga, G.R.; Khan, G.J.; Kong, Y. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy. Int. J. Mol. Sci. 2018, 19, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, M.J.; Weiss, E.J.; Faruqi, T.R.; Coughlin, S.R. Protease-activated Receptors 1 and 4 Are Shut off with Distinct Kinetics after Activation by Thrombin. J. Biol. Chem. 2000, 275, 25216–25221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covic, L.; Gresser, A.L.; Kuliopulos, A. Biphasic Kinetics of Activation and Signaling for PAR1 and PAR4 Thrombin Receptors in Platelets†. Biochemistry 2000, 39, 5458–5467. [Google Scholar] [CrossRef]
- Kim, Y.; Ghil, S. Regulators of G-protein signaling, RGS2 and RGS4, inhibit protease-activated receptor 4-mediated signaling by forming a complex with the receptor and Gα in live cells. Cell Commun. Signal. 2020, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.R.; McIntosh, K.A.; Pediani, J.D.; Robben, J.; Cooke, A.E.; Nilsson, M.; Gould, G.W.; Mundell, S.; Milligan, G.; Plevin, R. Novel Role for Proteinase-activated Receptor 2 (PAR2) in Membrane Trafficking of Proteinase-activated Receptor 4 (PAR4). J. Biol. Chem. 2012, 287, 16656–16669. [Google Scholar] [CrossRef] [Green Version]
- Arachiche, A.; De La Fuente, M.; Nieman, M.T. Calcium Mobilization and Protein Kinase C Activation Downstream of Protease Activated Receptor 4 (PAR4) Is Negatively Regulated by PAR3 in Mouse Platelets. PLoS ONE 2013, 8, e55740. [Google Scholar] [CrossRef]
- Arachiche, A.; Mumaw, M.M.; de la Fuente, M.; Nieman, M.T. Protease-activated Receptor 1 (PAR1) and PAR4 Heterodimers Are Required for PAR1-enhanced Cleavage of PAR4 by α-Thrombin. J. Biol. Chem. 2013, 288, 32553–32562. [Google Scholar] [CrossRef] [Green Version]
- Russell, F.A.; Veldhoen, V.E.; Tchitchkan, D.; McDougall, J.J. Proteinase-Activated Receptor-4 (PAR4) Activation Leads to Sensitization of Rat Joint Primary Afferents Via a Bradykinin B2 Receptor-Dependent Mechanism. J. Neurophysiol. 2010, 103, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Russell, F.A.; Zhan, S.; Dumas, A.; Lagarde, S.; Pouliot, M.; McDougall, J.J. The pronociceptive effect of proteinase-activated receptor-4 stimulation in rat knee joints is dependent on mast cell activation. Pain 2011, 152, 354–360. [Google Scholar] [CrossRef]
- Asfaha, S.; Cenac, N.; Houle, S.; Altier, C.; Papez, M.D.; Nguyen, C.; Steinhoff, M.; Chapman, K.; Zamponi, G.W.; Vergnolle, N. Protease-activated receptor-4: A novel mechanism of inflammatory pain modulation. Br. J. Pharmacol. 2007, 150, 176–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PAR | Activating Proteases | Synthetic Activating Peptides | Effect in Joints |
---|---|---|---|
PAR-1 | Thrombin | SFLLRN-NH2 | Chondroprotection [23] |
Granzyme A | TFLLRN-NH2 | Bone repair [24] | |
Plasmin | Pannus formation [25] | ||
Activating protein C | Anti-allodynic via an opioid mechanism [26] | ||
Trypsin | |||
Factor Xa | |||
Kallikrein- 4, 5, 6, 14 | |||
MMP-1 | |||
Cathepsin G | |||
Proatherocytin | |||
Pen C 13 | |||
Chymase | |||
PAR-2 | Trypsin | SLIGRL-NH2 | Cartilage degeneration [27] |
Mast cell tryptase | FLIGRL-NH2 | Synovial hyperaemia and increased leukocyte trafficking [28] | |
Factor Xa: Factor VIIa | TRPV1-dependent afferent sensitization and pain [29,30] | ||
Acrosin | |||
Matriptase | |||
Serine 11D | |||
Trypsin | |||
Granzyme A | |||
Kallikrein-2, 4, 5, 6, 14 | |||
PAR-3 | Thrombin | N/A | N/A |
PAR-4 | Thrombin | AYPGKF-NH2 | Joint damage [31] |
Trypsin | GYPGKF-NH2 | Joint hyperaemia and oedema [32] | |
Cathepsin G | Afferent sensitization and pain via mast cell degranulation and bradykinin activation [32] | ||
Trypsin IV | |||
Mannin-binding SP-1 | |||
Plasmin | |||
Factor Xa | |||
Kallikrein-1, 14 | |||
C4a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucena, F.; McDougall, J.J. Protease Activated Receptors and Arthritis. Int. J. Mol. Sci. 2021, 22, 9352. https://doi.org/10.3390/ijms22179352
Lucena F, McDougall JJ. Protease Activated Receptors and Arthritis. International Journal of Molecular Sciences. 2021; 22(17):9352. https://doi.org/10.3390/ijms22179352
Chicago/Turabian StyleLucena, Flora, and Jason J. McDougall. 2021. "Protease Activated Receptors and Arthritis" International Journal of Molecular Sciences 22, no. 17: 9352. https://doi.org/10.3390/ijms22179352
APA StyleLucena, F., & McDougall, J. J. (2021). Protease Activated Receptors and Arthritis. International Journal of Molecular Sciences, 22(17), 9352. https://doi.org/10.3390/ijms22179352