Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA
Abstract
:1. Introduction
2. Results and Discussion
2.1. CD Spectra Interaction with c-myc G-Rich DNA
2.2. Docking Results
Comparison with Drug-Like Ligands
2.3. MD Simulations
MD at High Temperature
2.4. Ensemble Docking on Target Conformations Obtained from MD Simulations
3. Material and Methods
3.1. CD Studies
3.2. Docking
3.3. Molecular Dynamics Simulations
3.3.1. Force Field Parameters
3.3.2. Initial Configurations
3.3.3. Equilibration and Production
3.3.4. Analysis
3.4. Compounds Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
16HBE | Human Bronchial Epithelial Cells |
CCRF-CEM | T Lymphoblastoid Cells |
COLO-205 | Colon Cancer Cells |
MCF-7 | Michigan Cancer Foundation-7 Human Breast Cancer Cell |
PBS | Phosphate-buffered saline |
SW-620 | Human Colon Carcinoma Cells |
References
- Balasubramanian, S.; Hurley, L.H.; Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011, 10, 261–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Hurley, L.H. G-quadruplex DNA: A potential target for anti-cancer drug design. Trends Pharmacol. Sci. 2000, 21, 136–142. [Google Scholar] [CrossRef]
- Platella, C.; Guida, S.; Bonmassar, L.; Aquino, A.; Bonmassar, E.; Ravagnan, G.; Montesarchio, D.; Roviello, G.N.; Musumeci, D.; Fuggetta, M.P. Antitumour activity of resveratrol on human melanoma cells: A possible mechanism related to its interaction with malignant cell telomerase. Biochim. Biophys. Acta BBA Gen. Subj. 2017, 1861, 2843–2851. [Google Scholar] [CrossRef] [PubMed]
- Almerico, A.M.; Mingoia, F.; Diana, P.; Barraja, P.; Lauria, A.; Montalbano, A.; Cirrincione, G.; Dattolo, G. 1-Methyl-3H-pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-ones. Design, Synthesis, and Biological Activity of New Antitumor Agents. J. Med. Chem. 2005, 48, 2859–2866. [Google Scholar] [CrossRef]
- Mingoia, F.; Di Sano, C.; Di Blasi, F.; Fazzari, M.; Martorana, A.; Almerico, A.M.; Lauria, A. Exploring the anticancer potential of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives: The effect on apoptosis induction, cell cycle and proliferation. Eur. J. Med. Chem. 2013, 64, 345–356. [Google Scholar] [CrossRef]
- Lauria, A.; Mingoia, F.; García-Argáez, A.N.; DeLisi, R.; Martorana, A.; Via, L.D. New insights into the mechanism of action of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives endowed with anticancer potential. Chem. Biol. Drug Des. 2018, 91, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 2002, 99, 11593–11598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, T.A.; Hurley, L.H. Targeting MYC Expression through G-Quadruplexes. Genes Cancer 2010, 1, 641–649. [Google Scholar] [CrossRef]
- Masiero, S.; Trotta, R.; Pieraccini, S.; De Tito, S.; Perone, R.; Randazzo, A.; Spada, G.P. A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org. Biomol. Chem. 2010, 8, 2683–2692. [Google Scholar] [CrossRef]
- Del Villar-Guerra, R.; Gray, R.D.; Chaires, J.B. Characterization of Quadruplex DNA Structure by Circular Dichroism. Curr. Protoc. Nucleic Acid Chem. 2017, 68, 17.8.1–17.8.16. [Google Scholar] [CrossRef]
- Mekmaysy, C.S.; Petraccone, L.; Garbett, N.C.; Ragazzon, P.A.; Gray, R.; Trent, J.O.; Chaires, J.B. Effect of O6-Methylguanine on the Stability of G-Quadruplex DNA. J. Am. Chem. Soc. 2008, 130, 6710–6711. [Google Scholar] [CrossRef]
- Fik-Jaskółka, M.A.; Mkrtchyan, A.F.; Saghyan, A.S.; Palumbo, R.; Belter, A.; Hayriyan, L.A.; Simonyan, H.; Roviello, V.; Roviello, G.N. Biological macromolecule binding and anticancer activity of synthetic alkyne-containing l-phenylalanine derivatives. Amino Acids 2020, 52, 755–769. [Google Scholar] [CrossRef]
- Rocca, R.; Moraca, F.; Costa, G.; Nadai, M.; Scalabrin, M.; Talarico, C.; Distinto, S.; Maccioni, E.; Ortuso, F.; Artese, A.; et al. Identification of G-quadruplex DNA/RNA binders: Structure-based virtual screening and biophysical characterization. Biochim. Biophys. Acta BBA Gen. Subj. 2017, 1861, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Alcaro, S.; Musetti, C.; Distinto, S.; Casatti, M.; Zagotto, G.; Artese, A.; Parrotta, L.; Moraca, F.; Costa, G.; Ortuso, F.; et al. Identification and Characterization of New DNA G-Quadruplex Binders Selected by a Combination of Ligand and Structure-Based Virtual Screening Approaches. J. Med. Chem. 2013, 56, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Barthwal, R.; Raje, S.; Pandav, K. Structural basis for stabilization of human telomeric G-quadruplex [d-(TTAGGGT)]4 by anticancer drug adriamycin. J. Biomol. Struct. Dyn. 2021, 39, 795–815. [Google Scholar] [CrossRef]
- Fik-Jaskółka, M.A.; Mkrtchyan, A.F.; Saghyan, A.S.; Palumbo, R.; Belter, A.; Hayriyan, L.A.; Simonyan, H.; Roviello, V.; Roviello, G.N. Spectroscopic and SEM evidences for G4-DNA binding by a synthetic alkyne-containing amino acid with anticancer activity. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 229, 117884. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, M.P.; Peñalver, P.; Gibson, R.S.L.; Morales, J.C.; Galan, M.C. Stiff-Stilbene Ligands Target G-Quadruplex DNA and Exhibit Selective Anticancer and Antiparasitic Activity. Chem. A Eur. J. 2020, 26, 6224–6233. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, U.; Kandemir, I.; Cömert, F.; Akkoç, S.; Coban, B. Synthesis of naphthalimide derivatives with potential anticancer activity, their comparative ds- and G-quadruplex-DNA binding studies and related biological activities. Mol. Biol. Rep. 2020, 47, 1563–1572. [Google Scholar] [CrossRef]
- Musso, L.; Mazzini, S.; Rossini, A.; Castagnoli, L.; Scaglioni, L.; Artali, R.; Di Nicola, M.; Zunino, F.; Dallavalle, S. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach. Biochim. Biophys. Acta BBA Gen. Subj. 2018, 1862, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Marzano, M.; Falanga, A.P.; Marasco, D.; Borbone, N.; D’Errico, S.; Piccialli, G.; Roviello, G.N.; Oliviero, G. Evaluation of an Analogue of the Marine ε-PLL Peptide as a Ligand of G-quadruplex DNA Structures. Mar. Drugs 2020, 18, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumeci, D.; Mokhir, A.; Roviello, G.N. Synthesis and nucleic acid binding evaluation of a thyminyl l-diaminobutanoic acid-based nucleopeptide. Bioorganic Chem. 2020, 100, 103862. [Google Scholar] [CrossRef]
- Muoio, D.; Berardinelli, F.; Leone, S.; Coluzzi, E.; Di Masi, A.; Doria, F.; Freccero, M.; Sgura, A.; Folini, M.; Antoccia, A. Naphthalene diimide-derivatives G-quadruplex ligands induce cell proliferation inhibition, mild telomeric dysfunction and cell cycle perturbation in U251MG glioma cells. FEBS J. 2018, 285, 3769–3785. [Google Scholar] [CrossRef] [PubMed]
- Carella, A.; Roviello, V.; Iannitti, R.; Palumbo, R.; La Manna, S.; Marasco, D.; Trifuoggi, M.; Diana, R.; Roviello, G.N. Evaluating the biological properties of synthetic 4-nitrophenyl functionalized benzofuran derivatives with telomeric DNA binding and antiproliferative activities. Int. J. Biol. Macromol. 2019, 121, 77–88. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Huang, C.; Meng, X.; Zhang, L.; He, J.; Li, J. Quinazoline derivative QPB-15e stabilizes the c-myc promoter G-quadruplex and inhibits tumor growth in vivo. Oncotarget 2016, 7, 34266–34276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebič, M.; Laaksonen, A.; Sponer, J.; Uličný, J.; Mocci, F. Molecular Dynamics Simulation Study of Parallel Telomeric DNA Quadruplexes at Different Ionic Strengths: Evaluation of Water and Ion Models. J. Phys. Chem. B 2016, 120, 7380–7391. [Google Scholar] [CrossRef] [Green Version]
- Mocci, F.; Laaksonen, A. Insight into nucleic acid counterion interactions from inside molecular dynamics simulations is “worth its salt”. Soft Matter 2012, 8, 9268. [Google Scholar] [CrossRef]
- Largy, E.; Mergny, J.-L.; Gabelica, V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. In Metal Ions in Life Sciences; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 16, pp. 203–258. [Google Scholar]
- Rebič, M.; Mocci, F.; Uličný, J.; Lyubartsev, A.P.; Laaksonen, A. Coarse-Grained Simulation of Rodlike Higher-Order Quadruplex Structures at Different Salt Concentrations. ACS Omega 2017, 2, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Mocci, F.; Laaksonen, A.; Lyubartsev, A.; Saba, G. Molecular Dynamics Investigation of23Na NMR Relaxation in Oligomeric DNA Aqueous Solution. J. Phys. Chem. B 2004, 108, 16295–16302. [Google Scholar] [CrossRef]
- Marincola, F.C.; Virno, A.; Randazzo, A.; Mocci, F.; Saba, G.; Lai, A. Competitive binding exchange between alkali metal ions (K+, Rb+, and Cs+) and Na+ions bound to the dimeric quadruplex [d(G4T4G4)]2: A 23Na and 1H NMR study. Magn. Reson. Chem. 2009, 47, 1036–1042. [Google Scholar] [CrossRef]
- Winnerdy, F.R.; Bakalar, B.; Das, P.; Heddi, B.; Marchand, A.; Rosu, F.; Gabelica, V.; Phan, A.T. Unprecedented hour-long residence time of a cation in a left-handed G-quadruplex. Chem. Sci. 2021, 12, 7151–7157. [Google Scholar] [CrossRef]
- Wong, A.; Ida, R.; Wu, G. Direct NMR detection of the “invisible” alkali metal cations tightly bound to G-quadruplex structures. Biochem. Biophys. Res. Commun. 2005, 337, 363–366. [Google Scholar] [CrossRef]
- Havrila, M.; Stadlbauer, P.; Islam, B.; Otyepka, M.; Sponer, J. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. J. Chem. Theory Comput. 2017, 13, 3911–3926. [Google Scholar] [CrossRef]
- Atzori, A.; Liggi, S.; Laaksonen, A.; Porcu, M.; Lyubartsev, A.P.; Saba, G.; Mocci, F. Base sequence specificity of counterion binding to DNA: What can MD simulations tell us? Can. J. Chem. 2016, 94, 1181–1188. [Google Scholar] [CrossRef]
- Alonso, D.O.; Alm, E.; Daggett, V. Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: Implications for domain swapping. Structure 2000, 8, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Day, R.; Bennion, B.J.; Ham, S.; Daggett, V. Increasing Temperature Accelerates Protein Unfolding Without Changing the Pathway of Unfolding. J. Mol. Biol. 2002, 322, 189–203. [Google Scholar] [CrossRef]
- Todde, G.; Hovmöller, S.; Laaksonen, A.; Mocci, F. Glucose oxidase from Penicillium amagasakiense: Characterization of the transition state of its denaturation from molecular dynamics simulations. Proteins Struct. Funct. Bioinform. 2014, 82, 2353–2363. [Google Scholar] [CrossRef]
- Stadlbauer, P.; Islam, B.; Otyepka, M.; Chen, J.; Monchaud, D.; Zhou, J.; Mergny, J.-L.; Šponer, J. Insights into G-Quadruplex–Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. J. Chem. Theory Comput. 2021, 17, 1883–1899. [Google Scholar] [CrossRef] [PubMed]
- Mulholland, K.; Siddiquei, F.; Wu, C. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. Phys. Chem. Chem. Phys. 2017, 19, 18685–18694. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, H.-J.; Readmond, C.; Radicella, C.; Persad, V.; Fasano, T.J.; Wu, C. Binding of Telomestatin, TMPyP4, BSU6037, and BRACO19 to a Telomeric G-Quadruplex–Duplex Hybrid Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. ACS Omega 2018, 3, 14788–14806. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, H.-J.; Chen, B.; Wu, C. Molecular Dynamics Study on the Binding of an Anticancer DNA G-Quadruplex Stabilizer, CX-5461, to Human Telomeric, c-KIT1, and c-Myc G-Quadruplexes and a DNA Duplex. J. Chem. Inf. Model. 2020, 60, 5203–5224. [Google Scholar] [CrossRef] [PubMed]
- Machireddy, B.; Kalra, G.; Jonnalagadda, S.; Ramanujachary, K.; Wu, C. Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields. J. Chem. Inf. Model. 2017, 57, 2846–2864. [Google Scholar] [CrossRef]
- Machireddy, B.; Sullivan, H.-J.; Wu, C. Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019, 24, 1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, D.; Mu, Y. All-Atomic Simulations on Human Telomeric G-Quadruplex DNA Binding with Thioflavin T. J. Phys. Chem. B 2015, 119, 4955–4967. [Google Scholar] [CrossRef]
- Carvalho, J.; Queiroz, J.A.; Cruz, C. Circular Dichroism of G-Quadruplex: A Laboratory Experiment for the Study of Topology and Ligand Binding. J. Chem. Educ. 2017, 94, 1547–1551. [Google Scholar] [CrossRef]
- Schrödinger Maestro|Schrödinger. Schrödinger Release 2016–4; Epik, Schrödinger, LLC: New York, NY, USA, 2016.
- Ambrus, A.; Chen, D.; Dai, J.; Jones, R.A.; Yang, D. Solution Structure of the Biologically Relevant G-Quadruplex Element in the Human c-MYC Promoter. Implications for G-Quadruplex Stabilization. Biochemistry 2005, 44, 2048–2058. [Google Scholar] [CrossRef]
- Schrödinger LigPrep. Schrödinger Release 2016–4; Schrödinger, LLC: New York, NY, USA, 2016.
- Harder, E.; Damm, W.; Maple, J.R.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Schrödinger Release 2016–4: QM-Polarized Ligand Docking Protocol; Glide, Schrödinger, LLC: New York, NY, USA; Jaguar, Schrödinger, LLC: New York, NY, USA; QSite, Schrödinger, LLC: New York, NY, USA, 2016.
- Cho, A.E.; Guallar, V.; Berne, B.J.; Friesner, R. Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem. 2005, 26, 915–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the Role of the Crystal Environment in Determining Protein Side-chain Conformations. J. Mol. Biol. 2002, 320, 597–608. [Google Scholar] [CrossRef]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins: Struct. Funct. Bioinform. 2004, 55, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Šponer, J.; Bussi, G.; Stadlbauer, P.; Kührová, P.; Banáš, P.; Islam, B.; Haider, S.; Neidle, S.; Otyepka, M. Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim. Biophys. Acta BBA Gen. Subj. 2017, 1861, 1246–1263. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Murillo, R.; Robertson, J.C.; Zgarbová, M.; Sponer, J.; Otyepka, M.; Jurečka, P.; Cheatham, I.T.E. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. [Google Scholar] [CrossRef] [PubMed]
- Krepl, M.; Zgarbová, M.; Stadlbauer, P.; Otyepka, M.; Banáš, P.; Koča, J.; Cheatham, T.E.; Jurečka, P.; Šponer, J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zgarbová, M.; Sponer, J.; Otyepka, M.; Cheatham, I.T.E.; Galindo-Murillo, R.; Jurečka, P. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Marchán, I.; Svozil, D.; Sponer, J.; Cheatham, T.E.; Laughton, C.A.; Orozco, M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007, 92, 3817–3829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zgarbová, M.; Luque, F.J.; Sponer, J.; Cheatham, T.E.; Otyepka, M.; Jurečka, P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. [Google Scholar] [CrossRef]
- Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Joung, I.S.; Iii, T.E.C. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joung, I.S.; Cheatham, I.T.E. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B 2009, 113, 13279–13290. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995, 91, 1–41. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 198–210. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces. The Jerusalem Symposia on Quantum Chemistry and Biochemistry; Springer: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Roe, D.R.; Cheatham, I.T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
Compounds | Tm (ΔTm)/°C ± 0.2 a | ΔLD260nm/deg b | TopoII-Inhib.c | Cell Cycle d | Apoptosis e EC50 µM | MCF-7 f IC50/µM | 16-HBE f IC50/µM |
---|---|---|---|---|---|---|---|
8,9-di-Cl | 69.2 (+4.0) | 0.151 | Y | S Phase | 2–4 | 13.9 | 13,5 |
8-Cl | 67.1 (+1.9) | 0.118 | N | - | 4–8 | 20.5 | 17.7 |
8,9-di-Me | 65.3 (+0.1) | 0.025 | N | S Phase | 3–5 | 46.7 | 38.9 |
9-Cl | 65.1 (−0.1) | 0.203 | Y | - | 4–10 | 29.5 | 27.5 |
8-Me | 64.2 (−1.0) | 0 | N | - | 3–5 | 42.6 | 36.3 |
8-H | 63.2 (−2.0) | - | - | - | - | 54.9 | ND |
8-CN | 63.1 (−2.1) | - | - | - | - | 35.9 | 46.7 |
8-CF3 | 63.0 (−2.2) | - | - | - | 2–3 | >100 | 30.9 |
Time (ns) | MMGBSA dG Bind (kcal/mol) |
---|---|
40 | −19.06 |
45 | −17.16 |
50 | −32.75 |
MD Source | Time (ns) | 8-CF3 | 8-CN | 8-H | 8-Me | 9-Cl | 8.9-di-Me | 8-Cl | 8,9-di-Cl |
---|---|---|---|---|---|---|---|---|---|
| 900 | −1.90 | −1.58 | - | - | - | - | −1.83 | −2.01 |
| 600 | - | - | −0.27 | −0.15 | - | - | - | - |
900 | −4.46 | −1,13 | −4.59 | −3.87 | −4.24 | −3.98 | −4.12 | −4.60 | |
1000 | - | −3.74 | - | - | - | - | −4.15 | −5.11 | |
| 300 | −5.21 | −5.05 | −4.92 | −5.80 | −5.26 | −5.50 | −5.09 | −5.40 |
900 | −4.82 | −4.69 | −4.78 | −4.82 | −4.59 | −5.20 | −5.38 | −4.97 | |
1000 | −3.09 | −3.14 | −3.14 | −3.36 | −3.28 | −3.19 | −3.09 | −3.10 |
MD Source | Time (ns) | 8-CF3 | 8-CN | 8-H | 8-Me | 9-Cl | 8.9-di-Me | 8-Cl | 8,9-di-Cl |
---|---|---|---|---|---|---|---|---|---|
| 900 | −14.94 | −22.23 | - | - | - | - | −16.80 | −15.90 |
| 600 | - | - | −3.69 | 0,06 | - | - | - | - |
900 | −26.68 | −8.55 | −30.57 | −29.03 | −32.12 | −22.08 | −32.94 | −30.12 | |
1000 | - | −26.83 | - | - | - | - | −26.95 | −37.11 | |
| 300 | −27.17 | −29.26 | −25.20 | −25.79 | −27.63 | −26.48 | −29.10 | −34.06 |
900 | −20.71 | −24.27 | −18.22 | −19.56 | −25.07 | −20.44 | −30.89 | −26.42 | |
1000 | −15.47 | −16.23 | −17.44 | −20.25 | −14.34 | −17.79 | −21.50 | −12.80 |
Temp. (K) | Production Length (ns) | Ensemble |
---|---|---|
300 | 1000 | NVT |
350 | 1000 | NPT |
350 | 200 | NVT |
500 | (sim. 1) 200 (sim. 2) 200 (sim. 3) 200 | NVT |
550 | (sim. 1) 200 (sim. 2) 200 (sim. 3) 200 | NVT |
600 | (sim. 1) 200 (sim. 2) 200 (sim. 3) 200 | NVT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulliri, S.; Laaksonen, A.; Spanu, P.; Farris, R.; Farci, M.; Mingoia, F.; Roviello, G.N.; Mocci, F. Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA. Int. J. Mol. Sci. 2021, 22, 6028. https://doi.org/10.3390/ijms22116028
Mulliri S, Laaksonen A, Spanu P, Farris R, Farci M, Mingoia F, Roviello GN, Mocci F. Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA. International Journal of Molecular Sciences. 2021; 22(11):6028. https://doi.org/10.3390/ijms22116028
Chicago/Turabian StyleMulliri, Simone, Aatto Laaksonen, Pietro Spanu, Riccardo Farris, Matteo Farci, Francesco Mingoia, Giovanni N. Roviello, and Francesca Mocci. 2021. "Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA" International Journal of Molecular Sciences 22, no. 11: 6028. https://doi.org/10.3390/ijms22116028
APA StyleMulliri, S., Laaksonen, A., Spanu, P., Farris, R., Farci, M., Mingoia, F., Roviello, G. N., & Mocci, F. (2021). Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA. International Journal of Molecular Sciences, 22(11), 6028. https://doi.org/10.3390/ijms22116028