Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics
Abstract
:1. Introduction
2. Results
2.1. Study Population and Experimental Design
2.2. iTRAQ-Based Quantitative Glycoproteomics Coupled with Glycopeptide Enrichment via AAL-Affinity Capture Technique for Identification of Plasma Glycobiomarkers
2.3. Selection of Candidate Plasma Glycomarkers of PC through Integrating Expression of Glycopeptides and Their Glycan Compositions
Gene Name | Protein Name | Sequence [N(n) to D_18O] a | Modified Site | M0/GS | M1/GS | Glycan Occupancy | Fucosylated Glycan | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gp b | p c | Gp/p d | Gp | p | Gp/p | ||||||
APOH | Beta-2-glycoprotein 1 | R.VYKPSAGnNSLYR.D | N162 | 1.97 | 1.18 | 1.66 | 3.21 | 1.70 | 1.89 | V | V |
ATRN | Attractin | R.nHSCSEGQISIFR.Y | N731 | 1.89 | 1.20 | 1.57 | 2.35 | 1.54 | 1.53 | V | V |
AZGP1 | Zinc-alpha-2-glycoprotein | R.FGCEIEnNR.S | N127 | 1.36 | 1.20 | 1.14 | 2.28 | 2.00 | 1.14 | ||
CD14 | Monocyte differentiation antigen CD14 | R.nVSWATGR.S | N151 | 1.88 | 1.38 | 1.37 | 2.65 | 1.60 | 1.66 | V | V |
CD163 | Scavenger receptor cysteine-rich type 1 protein M130 | K.APGWAnSSAGSGR.I | N105 | 2.13 | 1.78 | 1.20 | 3.00 | 2.46 | 1.22 | V | V |
CD163 | Scavenger receptor cysteine-rich type 1 protein M130 | K.EDAAVnCTDISVQK.T | N1027 | 1.64 | 1.78 | 0.92 | 2.41 | 2.46 | 0.98 | ||
CTSD | Cathepsin D | K.GSLSYLnVTR.K | N263 | 3.15 | 2.61 | 1.20 | 2.51 | 2.23 | 1.12 | V | |
ICAM1 | Intercellular adhesion molecule 1 | R.LNPTVTYGnDSFSAK.A | N267 | 3.05 | 2.48 | 1.23 | 3.16 | 2.42 | 1.30 | V | V |
IL18BP | Interleukin-18-binding protein | K.ALVLEQLTPALHSTnFSCVLVDPEQVVQR.H | N147 | 2.87 | 1.99 | 1.44 | 4.12 | 1.95 | 2.11 | ||
IL6ST | Interleukin-6 receptor subunit beta | K.EQYTIInR.T | N83 | 1.47 | 1.39 | 1.06 | 2.10 | 1.87 | 1.12 | V | V |
LEPR | Leptin receptor | K.YSEnSTTVIR.E | N276 | 2.41 | 1.64 | 1.47 | 2.28 | 2.00 | 1.14 | ||
LRG1 | Leucine-rich alpha-2-glycoprotein | K.MFSQnDTR.C | N325 | 1.61 | 1.30 | 1.24 | 3.39 | 2.32 | 1.46 | V | |
LRG1 | Leucine-rich alpha-2-glycoprotein | R.KLPPGLLAnFTLLR.T | N186 | 1.57 | 1.30 | 1.21 | 2.96 | 2.32 | 1.28 | V | V |
LRG1 | Leucine-rich alpha-2-glycoprotein | K.LPPGLLAnFTLLR.T | N186 | 1.43 | 1.30 | 1.10 | 2.15 | 2.32 | 0.93 | V | V |
LUM | Lumican | R.LSHNELADSGIPGnSFNVSSLVELDLSYNK.L | N249 | 2.51 | 1.17 | 2.14 | 4.04 | 1.74 | 2.32 | ||
MMRN1 | Multimerin-1 | K.FNPGAESVVLSnSTLK.F | N136 | 2.61 | 0.68 | 3.82 | 3.32 | 0.84 | 3.93 | V | V |
ORM1 | Alpha-1-acid glycoprotein 1 | R.QDQCIYnTTYLNVQR.E | N93 | 2.34 | 2.02 | 1.16 | 5.39 | 4.73 | 1.14 | ||
OSMR | Oncostatin-M-specific receptor subunit beta | R.SVNILFnLTHR.V | N326 | 1.54 | 1.31 | 1.18 | 2.14 | 1.43 | 1.49 | V | V |
PRNP | Major prion protein | K.GEnFTETDVK.M | N197 | 1.42 | N/A e | N/A | 2.70 | N/A | N/A | ||
SERPINA1 | Alpha-1-antitrypsin | K.YLGnATAIFFLPDEGK.L | N271 | 1.87 | 1.57 | 1.19 | 5.22 | 3.74 | 1.40 | V | V |
SERPINC1 | Antithrombin-III | K.SLTFnETYQDISELVYGAK.L | N187 | 1.95 | 1.18 | 1.66 | 2.58 | 1.46 | 1.77 | V | V |
VASN | Vasorin | R.LHEITnETFR.G | N117 | 1.46 | 1.49 | 0.98 | 2.21 | 1.71 | 1.29 | V |
2.4. Removal of Glycans from SERPINA1 Protein by PNGase F Blocks Its AAL Lectin Binding Activity
2.5. Development of AAL-Based Reverse Lectin ELISA for Measuring Glycosylated SERPINA1 Levels
2.6. Changes in SERPINA1 and Fuco-SERPINA1 Levels in Individual Plasma Samples
2.7. Associations of Plasma Levels of Fuco-SERPINA1, SERPINA1 and CA19-9 with Clinicopathological Characteristics of PC Patients
2.8. Receiver Operating Characteristic (ROC) Curve Analysis of Fuco-SERPINA1, SERPINA1 and CA19-9
2.9. Association of Overall Survival (OS) with Fuco-SERPINA1, SERPINA1 and CA19-9
3. Discussion
4. Materials and Methods
4.1. Plasma Samples
4.2. Depletion of High-Abundance Plasma Proteins
4.3. Tryptic Digestion of Plasma Proteins and iTRAQ Labeling
4.4. Glycopeptide Purification and Enzymatic Deglycosylation Integrated with 18O Labeling on Glycosylated Sites
4.5. Two-Dimension LC-MS/MS Analysis
4.6. Mass Spectrometric Data Analysis
4.7. Reverse AAL-Based ELISA
4.8. ELISA for SERPINA1 Protein
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Bond-Smith, G.; Banga, N.; Hammond, T.M.; Imber, C.J. Pancreatic adenocarcinoma. BMJ 2012, 344, e2476. [Google Scholar] [CrossRef] [PubMed]
- Bramhall, S.R.; Allum, W.H.; Jones, A.G.; Allwood, A.; Cummins, C.; Neoptolemos, J.P. Treatment and survival in 13,560 patients with pancreatic cancer, and incidence of the disease, in the West Midlands: An epidemiological study. Br. J. Surg. 1995, 82, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Locker, G.Y.; Hamilton, S.; Harris, J.; Jessup, J.M.; Kemeny, N.; Macdonald, J.S.; Somerfield, M.R.; Hayes, D.F.; Bast, R.C., Jr. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 2006, 24, 5313–5327. [Google Scholar] [CrossRef] [PubMed]
- Kunovsky, L.; Tesarikova, P.; Kala, Z.; Kroupa, R.; Kysela, P.; Dolina, J.; Trna, J. The use of biomarkers in early diagnostics of pancreatic cancer. Can. J. Gastroenterol. Hepatol. 2018, 2018, 5389820. [Google Scholar] [CrossRef] [PubMed]
- Munkley, J.; Elliott, D.J. Hallmarks of glycosylation in cancer. Oncotarget 2016, 7, 35478–35489. [Google Scholar] [CrossRef] [Green Version]
- Terao, N.; Takamatsu, S.; Minehira, T.; Sobajima, T.; Nakayama, K.; Kamada, Y.; Miyoshi, E. Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes. World J. Gastroenterol. 2015, 21, 3876–3887. [Google Scholar] [CrossRef]
- Okuyama, N.; Ide, Y.; Nakano, M.; Nakagawa, T.; Yamanaka, K.; Moriwaki, K.; Murata, K.; Ohigashi, H.; Yokoyama, S.; Eguchi, H.; et al. Fucosylated haptoglobin is a novel marker for pancreatic cancer: A detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int. J. Cancer 2006, 118, 2803–2808. [Google Scholar] [CrossRef]
- Geng, M.; Zhang, X.; Bina, M.; Regnier, F. Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests. J. Chromatogr. B Biomed. Sci Appl. 2001, 752, 293–306. [Google Scholar] [CrossRef]
- Xiong, L.; Regnier, F.E. Use of a lectin affinity selector in the search for unusual glycosylation in proteomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 782, 405–418. [Google Scholar] [CrossRef]
- Nie, S.; Lo, A.; Wu, J.; Zhu, J.; Tan, Z.; Simeone, D.M.; Anderson, M.A.; Shedden, K.A.; Ruffin, M.T.; Lubman, D.M. Glycoprotein biomarker panel for pancreatic cancer discovered by quantitative proteomics analysis. J. Proteome Res. 2014, 13, 1873–1884. [Google Scholar] [CrossRef]
- Chen, S.; LaRoche, T.; Hamelinck, D.; Bergsma, D.; Brenner, D.; Simeone, D.; Brand, R.E.; Haab, B.B. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat. Methods 2007, 4, 437–444. [Google Scholar] [CrossRef]
- Li, Y.; Tao, S.C.; Bova, G.S.; Liu, A.Y.; Chan, D.W.; Zhu, H.; Zhang, H. Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal. Chem. 2011, 83, 8509–8516. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Xie, X.; Liu, Y.; He, J.; Benitez, R.; Buckanovich, R.J.; Lubman, D.M. Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS. J. Proteome Res. 2012, 11, 4541–4552. [Google Scholar] [CrossRef]
- Abraham, R.; Moller, D.; Gabel, D.; Senter, P.; Hellstrom, I.; Hellstrom, K.E. The influence of periodate oxidation on monoclonal antibody avidity and immunoreactivity. J. Immunol. Methods 1991, 144, 77–86. [Google Scholar] [CrossRef]
- Wu, J.; Xie, X.; Nie, S.; Buckanovich, R.J.; Lubman, D.M. Altered expression of sialylated glycoproteins in ovarian cancer sera using lectin-based ELISA assay and quantitative glycoproteomics analysis. J. Proteome Res. 2013, 12, 3342–3352. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, J.; Yin, H.; Buckanovich, R.J.; Lubman, D.M. Analysis of glycan variation on glycoproteins from serum by the reverse lectin-based ELISA assay. J. Proteome Res. 2014, 13, 2197–2204. [Google Scholar] [CrossRef]
- Astrom, E.; Stal, P.; Zenlander, R.; Edenvik, P.; Alexandersson, C.; Haglund, M.; Ryden, I.; Pahlsson, P. Reverse lectin ELISA for detecting fucosylated forms of alpha1-acid glycoprotein associated with hepatocellular carcinoma. PLoS ONE 2017, 12, e0173897. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Mallory, T.; Satomura, S. AFP-L3: A new generation of tumor marker for hepatocellular carcinoma. Clin. Chim. Acta 2001, 313, 15–19. [Google Scholar] [CrossRef]
- Kim, H.; Sohn, A.; Yeo, I.; Yu, S.J.; Yoon, J.H.; Kim, Y. Clinical assay for AFP-L3 by Using Multiple Reaction Monitoring-mass spectrometry for diagnosing hepatocellular carcinoma. Clin. Chem. 2018, 64, 1230–1238. [Google Scholar] [CrossRef]
- Muinelo-Romay, L.; Villar-Portela, S.; Cuevas, E.; Gil-Martin, E.; Fernandez-Briera, A. Identification of alpha(1,6)fucosylated proteins differentially expressed in human colorectal cancer. BMC Cancer 2011, 11, 508. [Google Scholar] [CrossRef] [Green Version]
- Saldova, R.; Fan, Y.; Fitzpatrick, J.M.; Watson, R.W.; Rudd, P.M. Core fucosylation and alpha2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 2011, 21, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Simeone, D.M.; Anderson, M.A.; Brand, R.E.; Xie, X.; Shedden, K.A.; Ruffin, M.T.; Lubman, D.M. Mass spectrometric assay for analysis of haptoglobin fucosylation in pancreatic cancer. J. Proteome Res. 2011, 10, 2602–2611. [Google Scholar] [CrossRef] [Green Version]
- Kaji, H.; Yamauchi, Y.; Takahashi, N.; Isobe, T. Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat. Protoc. 2006, 1, 3019–3027. [Google Scholar] [CrossRef]
- Zhang, H.; Loriaux, P.; Eng, J.; Campbell, D.; Keller, A.; Moss, P.; Bonneau, R.; Zhang, N.; Zhou, Y.; Wollscheid, B.; et al. UniPep--a database for human N-linked glycosites: A resource for biomarker discovery. Genome Biol. 2006, 7, R73. [Google Scholar] [CrossRef] [Green Version]
- Miravitlles, M. Alpha-1-antitrypsin and other proteinase inhibitors. Curr. Opin. Pharmacol. 2012, 12, 309–314. [Google Scholar] [CrossRef]
- Gettins, P.G. Serpin structure, mechanism, and function. Chem. Rev. 2002, 102, 4751–4804. [Google Scholar] [CrossRef]
- DeMeo, D.L.; Silverman, E.K. Alpha1-antitrypsin deficiency. 2: Genetic aspects of alpha(1)-antitrypsin deficiency: Phenotypes and genetic modifiers of emphysema risk. Thorax 2004, 59, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Stockley, R.A. The multiple facets of alpha-1-antitrypsin. Ann. Transl. Med. 2015, 3, 130. [Google Scholar] [CrossRef] [PubMed]
- El-Akawi, Z.J.; Abu-Awad, A.M.; Sharara, A.M.; Khader, Y. The importance of alpha-1 antitrypsin (alpha1-AT) and neopterin serum levels in the evaluation of non-small cell lung and prostate cancer patients. Neuro Endocrinol. Lett. 2010, 31, 113–116. [Google Scholar] [PubMed]
- Hong, W.S.; Hong, S.I. Clinical usefulness of alpha-1-antitrypsin in the diagnosis of hepatocellular carcinoma. J. Korean Med. Sci. 1991, 6, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, P.I.; Chen, C.H.; Hsiao, M.; Wu, D.C.; Lin, C.Y.; Lai, K.H.; Lu, P.J. Diagnosis of gastric malignancy using gastric juice alpha1-antitrypsin. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Perez-Holanda, S.; Blanco, I.; Menendez, M.; Rodrigo, L. Serum concentration of alpha-1 antitrypsin is significantly higher in colorectal cancer patients than in healthy controls. BMC Cancer 2014, 14, 355. [Google Scholar] [CrossRef] [Green Version]
- Tountas, Y.; Sparos, L.; Theodoropoulos, C.; Trichopoulos, D. Alpha 1-antitrypsin and cancer of the pancreas. Digestion 1985, 31, 37–40. [Google Scholar] [CrossRef]
- Rotondo, J.C.; Oton-Gonzalez, L.; Selvatici, R.; Rizzo, P.; Pavasini, R.; Campo, G.C.; Lanzillotti, C.; Mazziotta, C.; De Mattei, M.; Tognon, M.; et al. SERPINA1 gene promoter is differentially methylated in peripheral blood mononuclear cells of pregnant women. Front. Cell Dev. Biol 2020, 8, 550543. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, T.; Thakur, A.; Yu, H.; Gao, L.; Shi, P.; Li, X.; Ren, H.; Jia, L.; Zhang, S.; et al. Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer. Glycobiology 2015, 25, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Comunale, M.A.; Wang, M.; Anbarasan, N.; Betesh, L.; Karabudak, A.; Moritz, E.; Devarajan, K.; Marrero, J.; Block, T.M.; Mehta, A. Total serum glycan analysis is superior to lectin-FLISA for the early detection of hepatocellular carcinoma. Proteomics Clin. Appl. 2013, 7, 690–700. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; An, M.; So, P.K.; Wong, M.Y.; Lubman, D.M.; Yao, Z. The analysis of alpha-1-antitrypsin glycosylation with direct LC-MS/MS. Electrophoresis 2018, 39, 2351–2361. [Google Scholar] [CrossRef]
- Ji, E.S.; Hwang, H.; Park, G.W.; Lee, J.Y.; Lee, H.K.; Choi, N.Y.; Jeong, H.K.; Kim, K.H.; Kim, J.Y.; Lee, S.; et al. Analysis of fucosylation in liver-secreted N-glycoproteins from human hepatocellular carcinoma plasma using liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 7761–7774. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.; Li, C.; Benitez, R.; Fu, S.; Marrero, J.; Lubman, D.M. Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations. J. Proteome Res. 2010, 9, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Loong, J.H.; Wong, T.L.; Tong, M.; Sharma, R.; Zhou, L.; Ng, K.Y.; Yu, H.J.; Li, C.H.; Man, K.; Lo, C.M.; et al. Glucose deprivation induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma. J. Clin. Investig. 2021, 131, e143377. [Google Scholar] [CrossRef]
- Powlesland, A.S.; Barrio, M.M.; Mordoh, J.; Hitchen, P.G.; Dell, A.; Drickamer, K.; Taylor, M.E. Glycoproteomic characterization of carriers of the CD15/Lewisx epitope on Hodgkin’s Reed-Sternberg cells. BMC Biochem. 2011, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Patwa, T.H.; Qiu, W.; Shedden, K.; Hinderer, R.; Misek, D.E.; Anderson, M.A.; Simeone, D.M.; Lubman, D.M. Glycoprotein microarrays with multi-lectin detection: Unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J. Proteome Res. 2007, 6, 1864–1874. [Google Scholar] [CrossRef]
- Chang, S.C.; Lin, W.L.; Chang, Y.F.; Lee, C.T.; Wu, J.S.; Hsu, P.H.; Chang, C.F. Glycoproteomic identification of novel plasma biomarkers for oral cancer. J. Food Drug Anal. 2019, 27, 483–493. [Google Scholar] [CrossRef]
- Shinozaki, E.; Tanabe, K.; Akiyoshi, T.; Tsuchida, T.; Miyazaki, Y.; Kojima, N.; Igarashi, M.; Ueno, M.; Suenaga, M.; Mizunuma, N.; et al. Serum leucine-rich alpha-2-glycoprotein-1 with fucosylated triantennary N-glycan: A novel colorectal cancer marker. BMC Cancer 2018, 18, 406. [Google Scholar] [CrossRef]
- Matsumoto, H.; Shinzaki, S.; Narisada, M.; Kawamoto, S.; Kuwamoto, K.; Moriwaki, K.; Kanke, F.; Satomura, S.; Kumada, T.; Miyoshi, E. Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clin. Chem. Lab. Med. 2010, 48, 505–512. [Google Scholar] [CrossRef]
- Ueda, K.; Takami, S.; Saichi, N.; Daigo, Y.; Ishikawa, N.; Kohno, N.; Katsumata, M.; Yamane, A.; Ota, M.; Sato, T.A.; et al. Development of serum glycoproteomic profiling technique; Simultaneous identification of glycosylation sites and site-specific quantification of glycan structure changes. Mol. Cell Proteom. 2010, 9, 1819–1828. [Google Scholar] [CrossRef]
- Kaji, H.; Saito, H.; Yamauchi, Y.; Shinkawa, T.; Taoka, M.; Hirabayashi, J.; Kasai, K.; Takahashi, N.; Isobe, T. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 2003, 21, 667–672. [Google Scholar] [CrossRef]
- Kuster, B.; Mann, M. 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal. Chem. 1999, 71, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Narimatsu, H.; Sawaki, H.; Kuno, A.; Kaji, H.; Ito, H.; Ikehara, Y. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J. 2010, 277, 95–105. [Google Scholar] [CrossRef]
- Wu, C.C.; Lin, J.D.; Chen, J.T.; Chang, C.M.; Weng, H.F.; Hsueh, C.; Chien, H.P.; Yu, J.S. Integrated analysis of fine-needle-aspiration cystic fluid proteome, cancer cell secretome, and public transcriptome datasets for papillary thyroid cancer biomarker discovery. Oncotarget 2018, 9, 12079–12100. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.; Chen, Y.T.; Hsieh, Y.J.; Wu, C.C.; Huang, M.C.; Hsu, Y.C.; Wu, C.T.; Chen, C.K.; Dash, S.; Yu, J.S. Association of urinary ketamine and APOA1 levels with bladder dysfunction in ketamine abusers revealed via proteomics and targeted metabolite analyses. Sci. Rep. 2021, 11, 9583. [Google Scholar] [CrossRef]
- Wang, G.; Wu, W.W.; Zhang, Z.; Masilamani, S.; Shen, R.F. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Anal. Chem. 2009, 81, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
Characteristics | Gallstones (GS) | Non-Metastatic PC (M0) | Metastatic PC (M1) | |
---|---|---|---|---|
(For Discovery Experiment, n = 30) | - | - | - | |
Gender | Female | 6 | 5 | 1 |
Male | 4 | 5 | 9 | |
Age (years) a | 62.9 ± 11.0 | 61.5 ± 9.8 | 59.9 ± 9.3 | |
Tumor size (T) | T3 | - | 4 | 4 |
T4 | - | 6 | 6 | |
Lymph node metastasis (N) | Yes | - | 8 | 8 |
No | - | 2 | 2 | |
Distant metastasis (M) | Yes | - | 0 | 10 |
No | - | 10 | 0 | |
Stage | I–II | - | 4 | 0 |
III–IV | - | 6 | 10 | |
(Total enrolled subjects, n = 121) | - | - | - | |
Gender | Female | 29 | 12 | 12 |
Male | 21 | 15 | 32 | |
Age (years) | 54.4 ± 13.2 | 61.3 ± 12.2 | 62.4 ± 9.9 | |
Tumor size (T) | T1 | - | 1 | 0 |
T2 | - | 1 | 4 | |
T3 | - | 15 | 23 | |
T4 | - | 10 | 16 | |
Lymph node metastasis (N) | Yes | - | 21 | 37 |
No | - | 6 | 7 | |
Distant metastasis (M) | Yes | - | 0 | 44 |
No | - | 27 | 0 | |
Stage | I–II | - | 17 | 0 |
III–IV | - | 10 | 44 |
Identified Proteins, Peptides and Glycopeptides | Quantitative Proteome Profiling | Quantitative Glycoproteome Profiling | ||||
---|---|---|---|---|---|---|
GS + M0 + M1 | M0/GS | M1/GS | GS + M0 + M1 | M0/GS | M1/GS | |
Total proteins | 1707 | 1489 | 1472 | 2160 | 1749 | 1953 |
N to D_18O proteins | - | - | - | 145 | 133 | 130 |
Total peptides | 10,102 | 8621 | 8304 | 10,572 | 8453 | 8872 |
N to D_18O peptides | - | - | - | 333 | 281 | 267 |
Ratio (N to D_18O peptides/total peptides) | - | - | - | 3.15% | 3.32% | 3.01% |
N to D_18O and NXS/T/C peptides | - | - | - | 284 | 244 | 232 |
Ratio (N to D_18O and NXS/T/C peptides/N to D_18O peptides) | - | - | - | 85.29% | 86.83% | 86.89% |
Characteristics | Number | Fucosylated SERPINA1 (ng/mL) | p-Value | SERPINA1 protein (µg/mL) | p-Value | CA19-9 (U/mL) | p-Value |
---|---|---|---|---|---|---|---|
Gender a | - | - | - | - | - | - | - |
Male | 47 | 332.6 ± 482.1 | 0.949 | 142.1 ± 28.5 | 0.450 | 3329 ± 10,192 | 0.693 |
Female | 24 | 267.8 ± 438.8 | - | 135.6 ± 31.4 | - | 2854 ± 4884 | - |
Age (years) a <62 c | - 35 | - 302.5 ± 422.2 | - 0.862 | - 140.8 ± 29.8 | - 0.905 | - 4572 ± 11,843 | - 0.844 |
≥62 | 36 | 318.7 ± 509.3 | - | 139 ± 29.5 | - | 1804 ± 3488 | - |
TNM stage b Stage I and II | - 17 | - 201.1.7 ± 418.4 | - 0.024 d | - 130.2 ± 36.5 | - 0.060 | - 781.1 ± 1191 | - 0.222 |
Stage III | 10 | 275.3 ± 423.2 | - | 129 ± 31.7 | - | 1495 ± 2753 | - |
Stage IV | 44 | 361.1 ± 491.8 | - | 146.1 ± 24.5 | - | 4471 ± 10,827 | - |
Tumor stage b T1 and T2 | - 6 | - 267.0 ± 508.0 | - 0.300 | - 137.2 ± 32.6 | - 0.774 | - 319 ± 371 | - 0.336 |
T3 | 38 | 281.3 ± 444.2 | - | 141.7 ± 30.7 | - | 4516 ± 11,447 | - |
T4 | 26 | 301.8 ± 395.7 | - | 137.8 ± 28.4 | - | 1976 ± 3565 | - |
Lymph node metastasis a N0 | - 13 | - 327.2 ± 573.2 | - 0.610 | - 136.4 ± 36.9 | - 0.994 | - 5447 ± 13,704 | - 0.799 |
N1 | 58 | 307 ± 443.2 | - | 140.7 ± 27.8 | - | 2658 ± 7248 | - |
Distant metastasis a M0 | - 27 | - 228.6 ± 413.6 | - 0.043 d | - 129.7 ± 34.2 | - 0.017 d | - 1045 ± 1903 | - 0.097 |
M1 | 44 | 361.1 ± 491.8 | - | 146.1 ± 24.5 | - | 4471 ± 10,827 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; Lu, Y.-T.; Yeh, T.-S.; Chan, Y.-H.; Dash, S.; Yu, J.-S. Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics. Int. J. Mol. Sci. 2021, 22, 6079. https://doi.org/10.3390/ijms22116079
Wu C-C, Lu Y-T, Yeh T-S, Chan Y-H, Dash S, Yu J-S. Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics. International Journal of Molecular Sciences. 2021; 22(11):6079. https://doi.org/10.3390/ijms22116079
Chicago/Turabian StyleWu, Chia-Chun, Yu-Ting Lu, Ta-Sen Yeh, Yun-Hsin Chan, Srinivas Dash, and Jau-Song Yu. 2021. "Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics" International Journal of Molecular Sciences 22, no. 11: 6079. https://doi.org/10.3390/ijms22116079
APA StyleWu, C. -C., Lu, Y. -T., Yeh, T. -S., Chan, Y. -H., Dash, S., & Yu, J. -S. (2021). Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics. International Journal of Molecular Sciences, 22(11), 6079. https://doi.org/10.3390/ijms22116079