RNA Interference by Ingested Dsrna-Expressing Bacteria to Study Porphyrin Pigmentation in Crassostrea gigas
Abstract
:1. Introduction
2. Results
2.1. Plasmid Constructs and Induction Assays
2.2. Impact of RNAi on Phenotypic Change
2.3. Detection of RNAi Product in Mantle Tissues
2.4. Efficiency of RNAi on the Target Gene Transcription
3. Discussion
4. Materials and Methods
4.1. Oyster and Algal Culture
4.2. Vector Construction and Expression of dsRNA
4.3. RNAi Feeding Procedures
4.4. Phenotypic Change Statistical Analyses
4.5. Total RNA Extraction and qPCR Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Cuthill, I.C.; Allen, W.L.; Arbuckle, K.; Caspers, B.; Chaplin, G.; Hauber, M.E.; Hill, G.E.; Jablonski, N.G.; Jiggins, C.D.; Kelber, A.; et al. The biology of color. Science 2017, 357, eaan0221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comfort, A. The pigmentation of molluscan shells. Biol. Rev. 1951, 26, 285–301. [Google Scholar] [CrossRef]
- Williams, S.T. Molluscan shell colour. Biol. Rev. Camb. Philos. Soc. 2017, 92, 1039–1058. [Google Scholar] [CrossRef]
- Kocot, K.M.; Aguilera, F.; McDougall, C.; Jackson, D.J.; Degnan, B.M. Sea shell diversity and rapidly evolving secretomes: Insights into the evolution of biomineralization. Front. Zool. 2016, 13, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.D.; Kennedy, W.J.; Hall, A. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigonacea. Bull. Brit. Mus. Nat. Hist. Zool. 1969, 3, 1–125. [Google Scholar]
- Parvizi, F.; Monsefi, M.; Noori, A.; Ranjbar, M.S. Mantle histology and histochemistry of three pearl oysters: Pinctada persica, Pinctada radiata and Pteria penguin. Molluscan Res. 2017, 38, 11–20. [Google Scholar] [CrossRef]
- Boettiger, A.; Ermentrout, B.; Oster, G. The neural origins of shell structure and pattern in aquatic mollusks. Proc. Natl. Acad. Sci. USA 2009, 106, 6837–6842. [Google Scholar] [CrossRef] [Green Version]
- Budd, A.; McDougall, C.; Green, K.; Degnan, B.M. Control of shell pigmentation by secretory tubules in the abalone mantle. Front. Zool. 2014, 11, 62. [Google Scholar] [CrossRef]
- Williams, S.T.; Lockyer, A.E.; Dyal, P.; Nakano, T.; Churchill, C.K.C.; Speiser, D.I. Colorful seashells: Identification of haem pathway genes associated with the synthesis of porphyrin shell color in marine snails. Ecol. Evol. 2017, 7, 10379–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, D.; Li, Q.; Yu, H.; Kong, L.; Du, S. Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: Characterization of genetic bases regulating shell formation. Sci. Rep. 2017, 7, 45754. [Google Scholar] [CrossRef] [Green Version]
- Lemer, S.; Saulnier, D.; Gueguen, Y.; Planes, S. Identification of genes associated with shell color in the black-lipped pearl oyster, Pinctada margaritifera. BMC Genom. 2015, 16, 568. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Zheng, H.; Lin, J.; Wang, G.; Li, J. Comparative analysis of the transcriptome in tissues secreting purple and white nacre in the Pearl Mussel Hyriopsis cumingii. PLoS ONE 2013, 8, e53617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, D.; Li, Q.; Yu, H.; Kong, L.; Du, S. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci. Rep. 2018, 8, 1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comfort, A. Acid-Soluble pigments of shells 1. The distribution of porphyrin fluorescence in molluscan shells. Biochem. J. 1949, 44, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Comfort, A. Molluscan shells as a practical source of uroporphyrin-I. Science 1950, 112, 279–280. [Google Scholar] [CrossRef]
- Nicholas, R.E.H.; Comfort, A. Acid-Soluble pigments of molluscan shells.4. Identification of shell porphyrins with particular reference to conchoporphyrin. Biochem. J. 1949, 45, 208–210. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.T.; Ito, S.; Wakamatsu, K.; Goral, T.; Edwards, N.P.; Wogelius, R.A.; Henkel, T.; de Oliveira, L.F.; Maia, L.F.; Strekopytov, S.; et al. Identification of shell colour pigments in marine snails Clanculus pharaonius and C. margaritarius (Trochoidea: Gastropoda). PLoS ONE 2016, 11, e0156664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnard, M. Chemical evidence of rare porphyrins in purple shells of Crassostrea gigas oyster. Sci. Rep. 2020, 10, 12150. [Google Scholar] [CrossRef]
- Hendry, G.A.F.; Jones, O.T.G. Hemes and chlorophylls-comparison of function and formation. J. Med. Genet. 1980, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Besur, S.; Hou, W.; Schmeltzer, P.; Bonkovsky, H.J.M. Clinically important features of porphyrin and heme metabolism and the porphyrias. Metabolites 2014, 4, 977–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibino, A.; Petri, R.; Buechs, J.; Ohtake, H. Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes. Appl. Microbiol. Biotechnol. 2013, 97, 7337–7344. [Google Scholar] [CrossRef]
- To-Figueras, J.; Ducamp, S.; Clayton, J.; Badenas, C.; Delaby, C.; Ged, C.; Lyoumi, S.; Gouya, L.; de Verneuil, H.; Beaumont, C.; et al. ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria. Blood 2011, 118, 1443–1451. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, Q.; Yuan, C.; Zhang, W.; Hu, L.; Wang, X.; Liu, M.; Han, B.; Ding, J.; Chang, Y. Genome-wide identification, characterisation and expression analysis of the ALAS gene in the Yesso scallop (Patinopecten yessoensis) with different shell colours. Gene 2020, 757, 144925. [Google Scholar] [CrossRef]
- Rivera, A.; Hammel, J.; Haen, K.; Danka, E.; Cieniewicz, B.; Winters, I.; Posfai, D.; Wörheide, G.; Lavrov, D.; Knight, S.; et al. RNA interference in marine and freshwater sponges: Actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria. BMC Biotechnol. 2011, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Jiang, L.; Nie, H.; Huo, Z.; Yan, X. Molecular cloning and expression analysis of tyrosinases (tyr) in four shell-color strains of Manila clam Ruditapes philippinarum. PeerJ 2020, 8, e8641. [Google Scholar] [CrossRef] [Green Version]
- Payton, L.; Perrigault, M.; Bourdineaud, J.-P.; Marcel, A.; Massabuau, J.-C.; Tran, D. Trojan horse strategy for non-invasive interference of clock gene in the oyster Crassostrea gigas. Mar. Biotechnol. 2017, 19, 361–371. [Google Scholar] [CrossRef]
- Dupuy, C.; André, V.; Thong, L.; Claude, R.; Nabila, M.; Jacques, L.; Collos, Y.; Solange, L. Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Mar. Ecol. Prog. Ser. 2000, 205, 171–184. [Google Scholar] [CrossRef]
- Cole, J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 2003, 13, 291–314. [Google Scholar] [CrossRef]
- Tosteson, T.; Ballantine, D.; Tosteson, C.; Hensley, V.; Bardales, A. Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus. Appl. Environ. Microbiol. 1989, 55, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doucette, G. Interactions between bacteria and harmful algae: A review. Nat. Toxins. 1995, 3, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Li, Q.; Yu, H. RNA interference by ingested dsrna-expressing bacteria to study shell biosynthesis and pigmentation in Crassostrea gigas. Mar. Biotechnol. 2019, 21, 526–536. [Google Scholar] [CrossRef]
- Schumpert, C.A.; Dudycha, J.L.; Patel, R.C. Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia. BMC Biotechnol. 2015, 15, 91. [Google Scholar] [CrossRef] [Green Version]
- Timmons, L.; Court, D.L.; Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001, 263, 103–112. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, X.; Li, Q. Genome-wide identification and characterization of long intergenic noncoding RNAs and their potential association with larval development in the Pacific oyster. Sci. Rep. 2016, 6, 20796. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Li, Q. Mendelian inheritance of orange shell color in the Pacific oyster Crassostrea gigas. Aquaculture 2020, 516. [Google Scholar] [CrossRef]
- Hu, B.; Li, Q.; Yu, H.; Du, S. Identification and characterization of key haem pathway genes associated with the synthesis of porphyrin in Pacific oyster (Crassostrea gigas). Comp. Biochem. Physio. B Biochem. Mol. Biol. 2021, 255, 110595. [Google Scholar] [CrossRef]
- Fabioux, C.; Corporeau, C.; Quillien, V.; Favrel, P.; Huvet, A. In vivo RNA interference in oyster -vasa silencing inhibits germ cell development. FEBS J. 2009, 276, 2566–2573. [Google Scholar] [CrossRef] [Green Version]
- Huvet, A.; Béguel, J.-P.; Cavaleiro, N.; Thomas, Y.; Quillien, V.; Boudry, P.; Alunno-bruscia, M.; Fabioux, C. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas. J. Exp. Biol. 2015, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, G.A.; Ferreira, G.C. 5-aminolevulinate synthase: Catalysis of the first step of heme biosynthesis. Cell. Mol. Biol. 2009, 55, 102–110. [Google Scholar]
- Siersema, P.D.; Derooij, F.W.M.; Edixhoven-Bosdijk, A.; Wilson, J.H.P. Erythrocyte porphobilinogen deaminase activity in porphyria-cutanea-tarda. Clin. Chem. 1990, 36, 1779–1783. [Google Scholar] [CrossRef]
- Bayliss, R.I.S. The metabolic basis of inherited disease. Am. J. Hum. Genet. 1967, 58, 600–601. [Google Scholar]
- Papadakis, S.; Abdul Malek, S.; Kamdem, R.E.; Yam, K. A versatile and inexpensive technique for measuring color of foods. Food Technol. 2000, 54, 48–51. [Google Scholar]
- Yam, K.L.; Papadakis, S.E. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
Group | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
ALAS | Day 15 | − | − | − | − | + | − | − | − | − | − |
Day 30 | + | − | − | − | + | − | + | + | + | + | |
ALAD | Day 15 | − | + | + | − | + | − | − | − | + | − |
Day 30 | + | + | − | − | + | + | + | − | − | − | |
PBGD | Day 15 | + | − | + | − | − | + | − | + | − | − |
Day 30 | + | − | − | + | − | + | − | + | − | − | |
UROS | Day 15 | + | + | − | − | + | − | − | − | + | + |
Day 30 | − | + | + | + | − | − | + | − | − | − | |
UROD | Day 15 | + | + | − | + | − | − | − | + | − | − |
Day 30 | − | + | + | − | + | − | + | + | + | − | |
EGFP | Day 15 | − | − | − | − | + | + | − | + | − | − |
Day 30 | + | + | + | − | + | + | + | + | − | − |
Experiment | Primer Names | Primer Sequences | Product Length |
---|---|---|---|
Plasmid construction | |||
ALAS-RNAi-F | CTCGAGCCCTCTCCATGAGGGGCTAG | 436 bp | |
ALAS-RNAi-R | CTAGAGTCCCTCTGCCCTACTCCTGC | ||
ALAD-RNAi-F | AGCTTCAACTCTTCAGAGTGGGATCCATC | 395 bp | |
ALAD-RNAi-R | GCCGCATACCACAATGTCCATGACATGTATATG | ||
PBGD-RNAi-F | AGCTTATTGATGCCTTGTCAGCTGCA | 425 bp | |
PBGD-RNAi-R | GCCGCCCAGTTTCTGTAGGCGCATGT | ||
UROS-RNAi-F | CTCGAGAGACAGTGAGCAGGCAAAGAACC | 437 bp | |
UROS-RNAi-R | CTAGAGGATACATGGTACATTGGTTTAGGG | ||
UROD-RNAi-F | AGCTTTTAGGGATAGGAATAGAAATTGAAGAAG | 388 bp | |
UROD-RNAi-R | GCCGCATTACTGTCAAACACCTGGAGCAA | ||
EGFP-RNAi-F | AGCTTAGCAAGGGCGAGGAGCTG | 714 bp | |
EGFP-RNAi-R | GCCGCTTACTTGTACAGCTCGTCCATGCC | ||
Quantitative real-time PCR | |||
ALAS-Q-I-F | ATGAGGGGCTAGAGGCTGAGATAG | 184 bp | |
ALAS-Q-I-F | ATGAGGGGCTAGAGGCTGAGATAG | ||
ALAD-Q-I-F | AGGTACGGCATCAACACACTACG | 213 bp | |
ALAD-Q-I-F | AGGTACGGCATCAACACACTACG | ||
PBGD-Q-I-F | AGACAGTCCTTATGATGTGGTAGTGATG | 161 bp | |
PBGD-Q-I-F | AGACAGTCCTTATGATGTGGTAGTGATG | ||
UROS-Q-I-F | GAGAGACAGTGAGCAGGCAAAG | 211 bp | |
UROS-Q-I-F | GAGAGACAGTGAGCAGGCAAAG | ||
UROD-Q-I-F | GGAATAGAAATTGAAGAAGGAAAGGGAATG | 179 bp | |
UROD-Q-I-R | CCAGCGAAGCCGATGAGAGG | ||
ALAS-Q-O-F | CTTCATCTTCACCACCAGTCTCC | 211 bp | |
ALAS-Q-O-R | GCATAAGGCAGCATCACCAAC | ||
ALAD-Q-O-F | GGGCGGGATACGGGAACAG | 217 bp | |
ALAD-Q-O-R | GCTAGACCAGGCTTAACCATCAG | ||
PBGD-Q-O-F | CACAGCGAAATGGGAAAGGAGAG | 182 bp | |
PBGD-Q-O-R | CGTGGATACTTTGGCGGTAATAAGC | ||
UROS-Q-O-F | AAAGGCTTTAGAGAGTCATGGTTACG | 183 bp | |
UROS-Q-O-R | AGTGGAGTGTCTGTTGAGTTGAGG | ||
UROD-Q-O-F | CGACTCACGGAACAGAACATAGAAC | 199 bp | |
UROD-Q-O-R | TGGAATACAGCATACATGGATCAAGG | ||
EGFP-Q-F | GTGCTTCAGCCGCTACCC | 202 bp | |
EGFP-Q-R | GATGTTGCCGTCCTCCTTG | ||
EFI-F | CAAGAACGGAGATGCTGGTATGG | 175 bp | |
EF1-R | GGTGACTTTGCCCTGTGATGG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Li, Q.; Yu, H. RNA Interference by Ingested Dsrna-Expressing Bacteria to Study Porphyrin Pigmentation in Crassostrea gigas. Int. J. Mol. Sci. 2021, 22, 6120. https://doi.org/10.3390/ijms22116120
Hu B, Li Q, Yu H. RNA Interference by Ingested Dsrna-Expressing Bacteria to Study Porphyrin Pigmentation in Crassostrea gigas. International Journal of Molecular Sciences. 2021; 22(11):6120. https://doi.org/10.3390/ijms22116120
Chicago/Turabian StyleHu, Biyang, Qi Li, and Hong Yu. 2021. "RNA Interference by Ingested Dsrna-Expressing Bacteria to Study Porphyrin Pigmentation in Crassostrea gigas" International Journal of Molecular Sciences 22, no. 11: 6120. https://doi.org/10.3390/ijms22116120
APA StyleHu, B., Li, Q., & Yu, H. (2021). RNA Interference by Ingested Dsrna-Expressing Bacteria to Study Porphyrin Pigmentation in Crassostrea gigas. International Journal of Molecular Sciences, 22(11), 6120. https://doi.org/10.3390/ijms22116120