Cumin Prevents 17β-Estradiol-Associated Breast Cancer in ACI Rats
Abstract
:1. Introduction
2. Results
2.1. Effect on Body Weight and Food Consumption
2.2. Organ Weight
2.3. Effect on Tumor Incidence, Latency, Multiplicity and Volume
2.4. Effect on Mammary Cell Proliferation
2.5. Effect on Circulating E2 and Prolactin Levels
2.6. Effect on Expression of Select miRNAs
2.7. Effect on Expression Levels of ERα, CYP1A1 and CYP1B1
2.8. Systemic Toxicity
2.9. Phytochemicals Detected in Cumin Extract by GC/MS Analysis
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Diet Preparations
4.3. Animal Study
4.4. Assessment of Cell Proliferation
4.5. Circulating E2 and Prolactin Analysis
4.6. RNA Isolation, qRT-PCR and Analysis of Gene Expression
4.7. Toxicity Assessment
4.8. Analysis of Cumin Extract by GC–MS
4.9. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Noone, A.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2013; National Cancer Institute: Bethesda, MD, USA. Available online: http://seer.cancer.gov/csr/1975_2013/ (accessed on 10 March 2021).
- Dai, X.; Xiang, L.; Li, T.; Bai, Z. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J. Cancer 2016, 7, 1281–1294. [Google Scholar] [CrossRef] [Green Version]
- Fanfani, V.; Zatopkova, M.; Harris, A.L.; Pezzella, F.; Stracquadanio, G. Dissecting the heritable risk of breast cancer: From statistical methods to susceptibility genes. Semin. Cancer Biol. 2020. [Google Scholar] [CrossRef]
- Ellsworth, D.L.; Turner, C.E.; Ellsworth, R.E. A Review of the Hereditary Component of Triple Negative Breast Cancer: High- and Moderate-Penetrance Breast Cancer Genes, Low-Penetrance Loci, and the Role of Nontraditional Genetic Elements. J. Oncol. 2019, 2019, 4382606. [Google Scholar] [CrossRef] [PubMed]
- Vogel, V.G. Update on raloxifene: Role in reducing the risk of invasive breast cancer in postmenopausal women. Breast Cancer 2011, 3, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, H.B.; DeRoo, L.A.; Scharf, D.R.; Sandler, D.P. Risk-benefit profiles of women using tamoxifen for chemoprevention. J. Natl. Cancer Inst. 2015, 107, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.Y.; Kuo, S.J.; Liaw, Y.P.; Avital, I.; Stojadinovic, A.; Man, Y.G.; Mannion, C.; Wang, J.; Chou, M.C.; Tsai, H.D.; et al. Endometrial cancer incidence in breast cancer patients correlating with age and duration of tamoxifen use: A population based study. J. Cancer 2014, 5, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Hillers-Ziemer, L.E.; Arendt, L.M. Weighing the Risk: Effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland. Biol. Neoplasia 2020. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef]
- Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J. 2004, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C. Diet, nutrition, and avoidable cancer. Environ. Health Perspect. 1995, 103 (Suppl. 8), 165–170. [Google Scholar]
- Dale, L.C.; Gotay, C.C. The Relationship between Complementary and Alternative Medicine Use and Breast Cancer Early Detection: A Critical Review. Evid. Based Complement. Altern. Med. 2012, 2012, 506978. [Google Scholar] [CrossRef] [Green Version]
- Wanchai, A.; Armer, J.M.; Stewart, B.R. Complementary and alternative medicine use among women with breast cancer: A systematic review. Clin. J. Oncol. Nurs. 2010, 14, E45–E55. [Google Scholar] [CrossRef] [PubMed]
- Oseni, T.; Patel, R.; Pyle, J.; Jordan, V.C. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008, 74, 1656–1665. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jiang, Y.F. Natural compounds as anticancer agents: Experimental evidence. World J. Exp. Med. 2012, 2, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Sambaiah, K.; Srinivasan, K. Influence of spices and spice principles on hepatic mixed function oxygenase system in rats. Indian J. Biochem. Biophys. 1989, 26, 254–258. [Google Scholar]
- Kleiner, H.E.; Vulimiri, S.V.; Miller, L.; Johnson, W.H., Jr.; Whitman, C.P.; DiGiovanni, J. Oral administration of naturally occurring coumarins leads to altered phase I and II enzyme activities and reduced DNA adduct formation by polycyclic aromatic hydrocarbons in various tissues of SENCAR mice. Carcinogenesis 2001, 22, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahana, K.; Nagarajan, S.; Rao, L.J.M. Cumin (Cuminum cyminum L.) Seed Volatile Oil: Chemistry and Role in Health and Disease Prevention. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 417–427. [Google Scholar]
- Shirke, S.S.; Jagtap, A.G. Effects of methanolic extract of Cuminum cyminum on total serum cholesterol in ovariectomized rats. Indian J. Pharmacol. 2009, 41, 92–93. [Google Scholar]
- Shull, J.D.; Spady, T.J.; Snyder, M.C.; Johansson, S.L.; Pennington, K.L. Ovary-intact, but not ovariectomized female ACI rats treated with 17 beta estradiol rapidly develop mammary carcinoma. Carcinogenesis 1997, 18, 1595–1601. [Google Scholar] [CrossRef] [Green Version]
- Blank, E.W.; Wong, P.-Y.; Lakshmanaswamy, R.; Guzman, R.; Nandi, S. Both ovarian hormones estrogen and progesterone are necessary for hormonal mammary carcinogenesis in ovariectomized ACI rats. Proc. Natl. Acad. Sci. USA 2008, 105, 3527–3532. [Google Scholar] [CrossRef] [Green Version]
- Jeyabalan, J.; Aqil, F.; Soper, L.; Schultz, D.J.; Gupta, R.C. Potent Chemopreventive/Antioxidant Activity Detected in Common Spices of the Apiaceae Family. Nutr. Cancer 2015, 67, 1201–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’day, E.; Lal, A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010, 12. [Google Scholar] [CrossRef] [Green Version]
- Munagala, R.; Aqil, F.; Vadhanam, M.V.; Gupta, R.C. MicroRNA ‘signature’ during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett. 2013, 339, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aqil, F.; Jeyabalan, J.; Munagala, R.; Singh, I.P.; Gupta, R.C. Prevention of hormonal breast cancer by dietary jamun. Mol. Nutr. Food Res. 2016, 60, 1470–1481. [Google Scholar] [CrossRef]
- Ravoori, S.; Vadhanam, M.V.; Aqil, F.; Gupta, R.C. Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J. Agric. Food Chem. 2012, 60, 5547–5555. [Google Scholar] [CrossRef] [PubMed]
- Aqil, F.; Jeyabalan, J.; Munagala, R.; Ravoori, S.; Vadhanam, M.V.; Schultz, D.J.; Gupta, R.C. Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices. Int. J. Mol. Sci. 2017, 18, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clevenger, C.V.; Furth, P.A.; Hankinson, S.E.; Schuler, L.A. The role of prolactin in mammary carcinoma. Endocr. Rev. 2003, 24, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose-Hellekant, T.A.; Arendt, L.M.; Schroeder, M.D.; Gilchrist, K.; Sandgren, E.P.; Schuler, L.A. Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene 2003, 22, 4664–4674. [Google Scholar] [CrossRef] [Green Version]
- Ravoori, S.; Vadhanam, M.V.; Sahoo, S.; Srinivasan, C.; Gupta, R.C. Mammary tumor induction in ACI rats exposed to low levels of 17 beta-estradiol. Int. J. Oncol. 2007, 31, 113–120. [Google Scholar] [PubMed]
- Li, S.A.; Weroha, S.J.; Tawfik, O.; Li, J.J. Prevention of solely estrogen-induced mammary tumors in female aci rats by tamoxifen: Evidence for estrogen receptor mediation. J. Endocrinol. 2002, 175, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Weroha, S.J.; Li, S.A.; Tawfik, O.; Li, J.J. Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis 2006, 27, 491–498. [Google Scholar] [CrossRef]
- Liehr, J.G.; Ricci, M.J. 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc. Natl. Acad. Sci. USA 1996, 93, 3294–3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, H.Y.; Norman, B.P.; Lai, K.S.; Rahman, N.; Alitheen, N.B.M.; Osman, M.A. The Regulatory Role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci 2019, 20, 4940. [Google Scholar] [CrossRef] [Green Version]
- Jeyabalan, J.; Aqil, F.; Munagala, R.; Annamalai, L.; Vadhanam, M.V.; Gupta, R.C. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. J. Agric. Food Chem. 2014, 62, 3963–3971. [Google Scholar] [CrossRef]
- Vadhanam, M.V.; Ravoori, S.; Aqil, F.; Gupta, R.C. Chemoprevention of mammary carcinogenesis by sustained systemic delivery of ellagic acid. Eur. J. Cancer Prev. 2011, 20, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Aiyer, H.S.; Srinivasan, C.; Gupta, R.C. Dietary berries and ellagic acid diminish estrogen-mediated mammary tumorigenesis in ACI rats. Nutr. Cancer 2008, 60, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Corrales Sanchez, V.; Nieto-Jimenez, C.; Castro-Osma, J.A.; de Andres, F.; Pacheco-Linan, P.J.; Bravo, I.; Rodriguez Farinas, N.; Niza, E.; Dominguez-Jurado, E.; Lara-Sanchez, A.; et al. Screening and Preliminary Biochemical and Biological Studies of [RuCl(p-cymene)(N,N-bis(diphenylphosphino)-isopropylamine)][BF4] in Breast Cancer Models. ACS Omega 2019, 4, 13005–13014. [Google Scholar] [CrossRef] [Green Version]
- Li, L.L.; He, L.; Wu, Y.L.; Zhang, Y.W. Carvacrol affects breast cancer cells through TRPM7 mediated cell cycle regulation. Life Sci. 2021, 266. [Google Scholar] [CrossRef] [PubMed]
- Gautam, N.; Mantha, A.K.; Mittal, S. Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayyanar, M.; Subash-Babu, P.; Ignacimuthu, S. Syzygium cumini (L.) Skeels., a novel therapeutic agent for diabetes: Folk medicinal and pharmacological evidences. Complement. Ther. Med. 2013, 21, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Time Point | Diet | E2 | Organ/Tissue Weights (Mean ± SD) | ||||
---|---|---|---|---|---|---|---|
Body wt (g) | Liver (g) | Lung (g) | Mammary (g) | Pituitary (mg) | |||
3 weeks | Control | − | 154.0 ± 4.5 | 4.9 ± 0.2 | 0.9 ± 0.2 | 4.3 ± 0.4 | 8.1 ± 1.3 |
Control | + | 155.6 ± 12.7 | 7.4 ± 0.7 | 1.0 ± 0.2 | 5.2 ± 0.6 | 19.2 ± 3.5 | |
5% Cumin | − | 153.5 ± 9.4 | 5.5 ± 0.2 | 1.0 ± 0.1 | 3.7 ± 0.9 | 8.6 ± 0.4 | |
5% Cumin | + | 159.0 ± 13.9 | 7.4 ± 0.4 | 1.0 ± 0.1 | 5.0 ± 0.5 | 15.8 ± 2.3 * | |
7.5% Cumin | − | 153.5 ± 9.4 | 5.9 ± 0.3 | 1.0 ± 0.1 | 3.6 ± 0.1 | 8.1 ± 1.3 | |
7.5% Cumin | + | 151.3 ± 6.2 | 7.8 ± 0.4 | 0.9 ± 0.2 | 4.0 ± 1.0 * | 9.3 ± 1.8 *** | |
26 weeks | Control | − | 191.5 ± 11.6 | 5.9 ± 0.4 | 1.1 ± 0.2 | 4.4 ± 1.2 | 11.1 ± 1.0 |
Control | + | 202.4 ± 8.6 | 6.9 ± 0.6 | 1.0 ± 0.1 | 7.0 ± 0.8 | 49.9 ± 11.4 | |
7.5% Cumin | − | 182.5 ± 14.6 | 5.7 ± 0.6 | 0.9 ± 0.1 | 5.2 ± 0.7 | 8.4 ± 1.5 | |
7.5% Cumin | + | 190.2 ± 10.7 | 6.9 ± 0.6 | 1.0 ± 0.2 | 7.0 ± 0.8 | 38.4 ± 7.5 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqil, F.; Jeyabalan, J.; Munagala, R.; Ahmad, I.; Schultz, D.J.; Gupta, R.C. Cumin Prevents 17β-Estradiol-Associated Breast Cancer in ACI Rats. Int. J. Mol. Sci. 2021, 22, 6194. https://doi.org/10.3390/ijms22126194
Aqil F, Jeyabalan J, Munagala R, Ahmad I, Schultz DJ, Gupta RC. Cumin Prevents 17β-Estradiol-Associated Breast Cancer in ACI Rats. International Journal of Molecular Sciences. 2021; 22(12):6194. https://doi.org/10.3390/ijms22126194
Chicago/Turabian StyleAqil, Farrukh, Jeyaprakash Jeyabalan, Radha Munagala, Iqbal Ahmad, David J. Schultz, and Ramesh C. Gupta. 2021. "Cumin Prevents 17β-Estradiol-Associated Breast Cancer in ACI Rats" International Journal of Molecular Sciences 22, no. 12: 6194. https://doi.org/10.3390/ijms22126194
APA StyleAqil, F., Jeyabalan, J., Munagala, R., Ahmad, I., Schultz, D. J., & Gupta, R. C. (2021). Cumin Prevents 17β-Estradiol-Associated Breast Cancer in ACI Rats. International Journal of Molecular Sciences, 22(12), 6194. https://doi.org/10.3390/ijms22126194