Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cell Cultures
4.2. Protein Extraction and Sample Preparation for MS Analysis
4.3. Protein Identification
4.4. Data Analysis
4.5. Phagocytosis Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pamies, D.; Bal-Price, A.; Chesné, C.; Coecke, S.; Dinnyes, A.; Eskes, C.; Grillari, R.; Gstraunthaler, G.; Hartung, T.; Jennings, P.; et al. Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX 2018, 35, 353–378. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Z.W.; Kozaki, T.; Ginhoux, F. Studying tissue macrophages in vitro: Are iPSC-derived cells the answer? Nat. Rev. Immunol. 2018, 18, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.L.; Moore, K.J.; Freeman, M.W.; Reed, G.L. Lipopolysaccharide induces scavenger receptor A expression in mouse macrophages: A divergent response relative to human THP-1 monocyte/macrophages. J. Immunol. 2000, 164, 2692–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhry, M.Z.; Kasmapour, B.; Plaza-Sirvent, C.; Bajagic, M.; Casalegno Garduño, R.; Borkner, L.; Lenac Roviš, T.; Scrima, A.; Jonjic, S.; Schmitz, I.; et al. UL36 Rescues Apoptosis Inhibition and In vivo Replication of a Chimeric MCMV Lacking the M36 Gene. Front. Cell. Infect. Microbiol. 2017, 7, 312. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Hartlova, A.; Dill, B.D.; Prescott, A.R.; Gierlinski, M.; Trost, M. High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages. Proteomics 2015, 15, 3169–3174. [Google Scholar] [CrossRef] [Green Version]
- Campbell-Valois, F.X.; Trost, M.; Chemali, M.; Dill, B.D.; Laplante, A.; Duclos, S.; Sadeghi, S.; Rondeau, C.; Morrow, I.C.; Bell, C.; et al. Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol. Cell. Proteomics 2012, 11, M111-016378. [Google Scholar] [CrossRef] [Green Version]
- Trost, M.; English, L.; Lemieux, S.; Courcelles, M.; Desjardins, M.; Thibault, P. The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 2009, 30, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Marcantonio, M.; Trost, M.; Courcelles, M.; Desjardins, M.; Thibault, P. Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses: Application to cell signaling events of interferon-gamma-stimulated macrophages. Mol. Cell. Proteomics 2008, 7, 645–660. [Google Scholar] [CrossRef] [Green Version]
- Bell, C.; English, L.; Boulais, J.; Chemali, M.; Caron-Lizotte, O.; Desjardins, M.; Thibault, P. Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-alpha-activated (TNFalpha) macrophages. Mol. Cell. Proteomics 2013, 12, 2394–2407. [Google Scholar] [CrossRef] [Green Version]
- Adami, C.; Brunda, M.J.; Palleroni, A.V. In vivo immortalization of murine peritoneal macrophages: A new rapid and efficient method for obtaining macrophage cell lines. J. Leukoc. Biol. 1993, 53, 475–478. [Google Scholar] [CrossRef]
- Rusanov, A.L.; Stepanov, A.A.; Zgoda, V.G.; Kaysheva, A.L.; Selinger, M.; Maskova, H.; Loginov, D.; Sterba, J.; Grubhoffer, L.; Luzgina, N.G. Proteome dataset of mouse macrophage cell line infected with tick-borne encephalitis virus. Data Brief 2019, 28, 105029. [Google Scholar] [CrossRef]
- Hume, D.A. The Many Alternative Faces of Macrophage Activation. Front. Immunol. 2015, 6, 370. [Google Scholar] [CrossRef] [Green Version]
- Shkurupiy, V.A.; Tkachev, V.O.; Potapova, O.V.; Luzgina, N.G.; Bugrimova, J.S.; Obedinskaya, K.S.; Zaiceva, N.S.; Chechushkov, A.V. Morphofunctional characteristics of the immune system in CBA and C57BL/6 mice. Bull. Exp. Biol. Med. 2011, 150, 725–728. [Google Scholar] [CrossRef]
- Heinz, S.; Romanoski, C.E.; Benner, C.; Allison, K.A.; Kaikkonen, M.U.; Orozco, L.D.; Glass, C.K. Effect of natural genetic variation on enhancer selection and function. Nature 2013, 503, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Raza, S.; Barnett, M.W.; Barnett-Itzhaki, Z.; Amit, I.; Hume, D.A.; Freeman, T.C. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J. Leukoc. Biol. 2014, 96, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Wells, C.A.; Ravasi, T.; Faulkner, G.J.; Carninci, P.; Okazaki, Y.; Hayashizaki, Y.; Sweet, M.; Wainwright, B.J.; Hume, D.A. Genetic control of the innate immune response. BMC Immunol. 2003, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Aderem, A.; Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 1999, 17, 593–623. [Google Scholar] [CrossRef]
- Pustylnikov, S.; Sagar, D.; Jain, P.; Khan, Z.K. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J. Pharm. Pharm. Sci. 2014, 17, 371–392. [Google Scholar] [CrossRef] [Green Version]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [Green Version]
- Mogilenko, D.A.; Kudriavtsev, I.V.; Trulioff, A.S.; Shavva, V.S.; Dizhe, E.B.; Missyul, B.V.; Zhakhov, A.V.; Ischenko, A.M.; Perevozchikov, A.P.; Orlov, S.V. Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. J. Biol. Chem. 2012, 287, 5954–5968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, C.-C.; Ge, Q.; Li, Y.; Li, X.-D.; Chen, D.-R.; Ji, K.-D.; Wu, Y.-J.; Sheng, L.-J.; Yan, C.; Zhu, D.-L.; et al. Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. Arter. Thromb. Vasc. Biol. 2015, 35, 598–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal Khan, M.; Assiri, A.M.; Broering, D.C. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J. Biomed. Sci. 2015, 22, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrander, L.; Skarman, P.; Rasmussen, B.; Witke, W.; Lew, D.P.; Krause, K.H.; Stendahl, O.; Nüsse, O. Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. J. Immunol. 2000, 165, 2451–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, D.G.; Daugherty, G.L.; Martin, W.J. 2nd. Clathrin-coated pit-associated proteins are required for alveolar macrophage phagocytosis. J. Immunol. 1999, 162, 380–386. [Google Scholar] [PubMed]
- Cheng, Y.-L.; Kuo, C.-F.; Lu, S.-L.; Hiroko, O.; Wu, Y.-N.; Hsieh, C.-L.; Noda, T.; Wu, S.-R.; Anderson, R.; Lin, C.-F.; et al. Group A Streptococcus Induces LAPosomes via SLO/β1 Integrin/NOX2/ROS Pathway in Endothelial Cells That Are Ineffective in Bacterial Killing and Suppress Xenophagy. mBio 2019, 10, e02148-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawk, C.S.; Coelho, C.; Lima de Oliveira, D.S.; Paredes, V.; Albuquerque, P.; Bocca, A.L.; Dos Santos, A.C.; Rusakova, V.; Holemon, H.; Silva-Pereira, I.; et al. Integrin β1 Promotes the Interaction of Murine IgG3 with Effector Cells. J. Immunol. 2019, 202, 2782–2794. [Google Scholar] [CrossRef]
- Guo, M.; Härtlova, A.; Gierliński, M.; Prescott, A.; Castellvi, J.; Losa, J.H.; Petersen, S.K.; Wenzel, U.A.; Dill, B.D.; Emmerich, C.H.; et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019, 38, e100299. [Google Scholar] [CrossRef]
- Willingham, S.B.; Volkmer, J.P.; Gentles, A.J.; Sahoo, D.; Dalerba, P.; Mitra, S.S.; Wang, J.; Contreras-Trujillo, H.; Martin, R.; Cohen, J.D.; et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 6662–6667. [Google Scholar] [CrossRef] [Green Version]
- Okazawa, H.; Motegi, S.; Ohyama, N.; Ohnishi, H.; Tomizawa, T.; Kaneko, Y.; Oldenborg, P.-A.; Ishikawa, O.; Matozaki, T. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol. 2005, 174, 2004–2011. [Google Scholar] [CrossRef] [Green Version]
- Gauss, K.A.; Bunger, P.L.; Crawford, M.A.; McDermott, B.E.; Swearingen, R.; Nelson-Overton, L.K.; Siemsen, D.W.; Kobayashi, S.D.; Deleo, F.R.; Quinn, M.T. Variants of the 5′-untranslated region of human NCF2: Expression and translational efficiency. Gene 2006, 366, 169–179. [Google Scholar] [CrossRef]
- Thomas, D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017, 192, 88–96. [Google Scholar] [CrossRef]
- Pradip, D.; Peng, X.; Durden, D.L. Rac2 specificity in macrophage integrin signaling: Potential role for Syk kinase. J. Biol. Chem. 2003, 278, 41661–41669. [Google Scholar] [CrossRef] [Green Version]
- Chiriaco, M.; Salfa, I.; Di Matteo, G.; Rossi, P.; Finocchi, A. Chronic granulomatous disease: Clinical, molecular, and therapeutic aspects. Pediatr. Allergy Immunol. 2016, 27, 242–253. [Google Scholar] [CrossRef]
- Marikovsky, M.; Ziv, V.; Nevo, N.; Harris-Cerruti, C.; Mahler, O. Cu/Zn superoxide dismutase plays important role in immune response. J. Immunol. 2003, 170, 2993–3001. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Tindle, C.; Pranadinata, R.F.; Reed, S.; Eckmann, L.; Stappenbeck, T.S.; Ernst, P.B.; Das, S. ELMO1 Regulates Autophagy Induction and Bacterial Clearance During Enteric Infection. J. Infect. Dis. 2017, 216, 1655–1666. [Google Scholar] [CrossRef]
- Gong, P.; Chen, S.; Zhang, L.; Hu, Y.; Gu, A.; Zhang, J.; Wang, Y. RhoG-ELMO1-RAC1 is involved in phagocytosis suppressed by mono-butyl phthalate in TM4 cells. Environ. Sci. Pollut. Res. Int. 2018, 25, 35440–35450. [Google Scholar] [CrossRef]
- Katoh, H.; Hiramoto, K.; Negishi, M. Activation of Rac1 by RhoG regulates cell migration. J. Cell Sci. 2006, 119, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Csépányi-Kömi, R.; Sirokmány, G.; Geiszt, M.; Ligeti, E. ARHGAP25, a novel Rac GTPase-activating protein, regulates phagocytosis in human neutrophilic granulocytes. Blood 2012, 119, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Csépányi-Kömi, R.; Lévay, M.; Ligeti, E. Rho/RacGAPs Embarras de richesse? Small GTPases 2012, 3, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, A.P.; Wells, C.M.; Smith, S.D.; Vega, F.M.; Henderson, R.B.; Tybulewicz, V.L.; Ridley, A.J. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. Cell Sci. 2006, 119 (Pt 13), 2749–2757. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, A.D.; Swanson, J.A. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell 2004, 15, 3509–3519. [Google Scholar] [CrossRef]
- Park, H.; Chan, M.M.; Iritani, B.M. Hem-1: Putting the “WAVE” into actin polymerization during an immune response. FEBS Lett. 2010, 584, 4923–4932. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Cox, D. Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol. Biol. Cell 2009, 20, 4500–4508. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Staehling-Hampton, K.; Appleby, M.W.; Brunkow, M.E.; Habib, T.; Zhang, Y.; Ramsdell, F.; Liggitt, H.D.; Freie, B.; Tsang, M.; et al. A point mutation in the murine Hem1 gene reveals an essential role for Hematopoietic protein 1 in lymphopoiesis and innate immunity. J. Exp. Med. 2008, 205, 2899–2913. [Google Scholar] [CrossRef]
- Chan, M.M.; Wooden, J.M.; Tsang, M.; Gilligan, D.M.; Hirenallur-S, D.K.; Finney, G.L.; Rynes, E.; Maccoss, M.; Ramirez, J.A.; Park, H.; et al. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes. PLoS ONE 2013, 8, e54902. [Google Scholar] [CrossRef] [Green Version]
- Roskoski, R., Jr. Src protein-tyrosine kinase structure and regulation. Biochem. Biophys. Res. Commun. 2004, 324, 1155–1164. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Src kinase regulation by phosphorylation and dephosphorylation. Biochem. Biophys. Res. Commun. 2005, 331, 1–14. [Google Scholar] [CrossRef]
- Tardif, M.; Savard, M.; Flamand, L.; Gosselin, J. Impaired protein kinase C activation/translocation in Epstein-Barr virus-infected monocytes. J. Biol. Chem. 2002, 277, 24148–24154. [Google Scholar] [CrossRef] [Green Version]
- Thorslund, S.E.; Edgren, T.; Pettersson, J.; Nordfelth, R.; Sellin, M.E.; Ivanova, E.; Francis, M.S.; Isaksson, E.L.; Wolf-Watz, H.; Fällman, M. The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLoS ONE 2011, 6, e16784. [Google Scholar] [CrossRef] [Green Version]
- McCahill, A.; Warwicker, J.; Bolger, G.B.; Houslay, M.D.; Yarwod, S.J. The RACK1 scaffold protein: A dynamic cog in cell response mechanisms. Mol. Pharmacol. 2002, 62, 1261–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Yamauchi, M.; Muramatsu, M.; Osawa, T.; Tsuchida, R.; Shibuya, M. RACK1 regulates VEGF/Flt1-mediated cell migration via activation of a PI3K/Akt pathway. J. Biol. Chem. 2011, 286, 9097–9106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tait, J.F.; Frankenberry, D.A.; Miao, C.H.; Killary, A.M.; Adler, D.A.; Disteche, C.M. Chromosomal localization of the human annexin III (ANX3) gene. Genomics 1991, 10, 441–448. [Google Scholar] [CrossRef]
- Diakonova, M.; Gerke, V.; Ernst, J.; Liautard, J.P.; van der Vusse, G.; Griffiths, G. Localization of five annexins in J774 macrophages and on isolated phagosomes. J. Cell Sci. 1997, 110, 1199–1213. [Google Scholar] [CrossRef]
- Ye, W.; Li, Y.; Fan, L.; Zhao, Q.; Yuan, H.; Tan, B.; Zhang, Z. Effect of annexin A7 suppression on the apoptosis of gastric cancer cells. Mol. Cell. Biochem. 2017, 429, 33–43. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Ren, Y.; Geng, H.; Zhang, Q.; Cao, L.; Meng, Z.; Wu, X.; Xu, M.; Xu, K. Cancer-associated fibroblasts contribute to cisplatin resistance by modulating ANXA3 in lung cancer cells. Cancer Sci. 2019, 110, 1609–1620. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, S.; Kreft, S.; Etich, J.; Frie, C.; Stermann, J.; Grskovic, I.; Frey, B.; Mielenz, D.; Pöschl, E.; Gaipl, U.; et al. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif. J. Biol. Chem. 2011, 286, 5708–5716. [Google Scholar] [CrossRef] [Green Version]
- Shirakabe, K.; Hattori, S.; Seiki, M.; Koyasu, S.; Okada, Y. VIP36 protein is a target of ectodomain shedding and regulates phagocytosis in macrophage Raw 264.7 cells. J. Biol. Chem. 2011, 286, 43154–43163. [Google Scholar] [CrossRef] [Green Version]
- Otani, Y.; Yamaguchi, Y.; Sato, Y.; Furuichi, T.; Ikenaka, K.; Kitani, H.; Baba, H. PLD4 is involved in phagocytosis of microglia: Expression and localization changes of PLD4 are correlated with activation state of microglia. PLoS ONE 2011, 6, e27544. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, Y.; Zhou, S.-X.; Yu, X.-J.; Xu, J.-M.; Zuo, L.; Luo, Y.-H.; Li, X.-A. PLD4 promotes M1 macrophages to perform antitumor effects in colon cancer cells. Oncol. Rep. 2017, 37, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Click, R.E. Review: 2-mercaptoethanol alteration of in vitro immune functions of species other than murine. J. Immunol. Methods 2014, 402, 1–8. [Google Scholar] [CrossRef]
- Walker, J.M. (Ed.) The bicinchoninic acid (BCA) assay for protein quantitation. In Basic Protein and Peptide Protocols, 1st ed.; Humana Press: Totowa, NJ, USA, 1994; pp. 5–8. [Google Scholar]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Barsnes, H.; Vaudel, M. A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines. Proteome Res. 2018, 17, 2552–2555. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [Green Version]
- YIshihama, Y.; Oda, T.; Tabata, T.; Sato, T.; Nagasu, J.; Rappsilber, M. Mann, Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 2005, 4, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Morris, J.H.; Apeltsin, L.; Newman, A.M.; Baumbach, J.; Wittkop, T.; Su, G.; Bader, G.D.; Ferrin, T.E. clusterMaker: A multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 2011, 12, 436. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.G.W.; Kearney, J.; Zasłona, Z.; Williams, M.A.; O’Neill, L.A.J.; Corr, S.C. MicroRNA-21 Limits Uptake of Listeria monocytogenes by Macrophages to Reduce the Intracellular Niche and Control Infection. Front. Cell. Infect. Microbiol. 2017, 7, 201. [Google Scholar] [CrossRef]
- Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef] [Green Version]
Accession in UniProtKB | Protein Name | Gene Name | p-Value * | Fold Change | Function/Effect ** |
---|---|---|---|---|---|
Upregulated proteins: | |||||
Q9QYX7 | Protein piccolo | Pclo | 2.52 × 10−7 | 3727.85 | Scaffold protein of the presynaptic cytomatrix at the active zone. Participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles. Mediates a synapse communication to the nucleus, leading to a reconfiguration of gene expression by association with the transcriptional corepressor CTBP1 and by subsequent reduction in its pool available for a nuclear import. |
P30204 | Macrophage scavenger receptor types I and II | Msr1 | 2.28 × 10−6 | 839.75 | Involved in phagocytosis, engulfment. |
Q2XU92 | Long-chain-fatty-acid-CoA ligase ACSBG2 | Acsbg2 | 4.01 × 10−7 | 314.92 | Involved in cell differentiation, fatty acid metabolic process. |
Q8CGN8 | Small proline-rich protein 4 | Sprr4 | 4.36 × 10−6 | 303.20 | Involved in keratinization. |
Q91WM1 | Spermatid perinuclear RNA-binding protein | Strbp | 1.17 × 10−3 | 262.87 | Plays a role in the cell growth regulation (by similarity). Binds to double-stranded DNA and RNA. |
Q9WV27 | Sodium/potassium-transporting ATPase subunit alpha-4 | Atp1a4 | 2.07 × 10−8 | 191.24 | Catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. Responsible for the creation of the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. |
Q62383 | Transcription elongation factor SPT6 | Supt6 | 4.50 × 10−5 | 190.45 | Binds to histone H3 and plays a key role in the regulation of transcription elongation and mRNA processing. |
Q6GQT1 | Alpha-2-macroglobulin-P | A2m | 1.64 × 10−5 | 179.54 | Serine protease inhibitor, involved in tumor necrosis factor binding. |
A2AQ07 | Tubulin beta-1 chain | Tubb1 | 1.73 × 10−6 | 112.87 | Structural constituent of cytoskeleton, mitotic cell cycle. |
Q6ZQ06 | Centrosomal protein of 162 kDa | Cep162 | 3.77 × 10−15 | 95.63 | Required to promote assembly of the transition zone in primary cilia. Acts by specifically recognizing and binding the axonemal microtubule. |
Q6IFX2 | Keratin, type I cytoskeletal 42 | Krt42 | 8.83 × 10−8 | 95.14 | Part of intermediate filament, structural molecule activity. |
Q8BI79 | Coiled-coil domain-containing protein 40 | Ccdc40 | 6.66 × 10−16 | 73.11 | Plays a central role in motility in cilia and flagella. |
Q99LB6 | Methionine adenosyltransferase 2 subunit beta | Mat2b | 2.24 × 10−7 | 71.02 | Methionine adenosyltransferase regulator activity, interacts with diverse chromatin regulators and methyltransferases, serves as a transcriptional corepressor of Maf oncoprotein. |
Q7TMM9 | Tubulin beta-2A chain | Tubb2a | 7.42 × 10−5 | 66.53 | Microtubule cytoskeleton organization, structural constituent of cytoskeleton, involved in mitotic cell cycle. |
P01027 | Complement C3 | C3 | 4.00 × 10−12 | 61.62 | Involved in a positive regulation of phagocytosis and apoptotic cell clearance. |
Downregulated proteins: | |||||
Q9D903 | Probable rRNA-processing protein EBP2 | Ebna1bp2 | 6.93 × 10−8 | −1562.14 | Involved in ribosomal large subunit biogenesis, rRNA processing. |
Q80VJ3 | 2′-deoxynucleoside 5′-phosphate N-hydrolase 1 | Dnph1 | 3.45 × 10−7 | −436.33 | Involved in a nucleoside metabolic process, cell differentiation, positive regulation of cell growth. |
Q7TNC4 | Putative RNA-binding protein Luc7-like 2 | Luc7l2 | 1.81 × 10−5 | −385.67 | Involved in enzyme binding, mRNA binding, mRNA splice site selection. |
O70318 | Band 4.1-like protein 2 | Epb41l2 | 6.03 × 10−9 | −301.68 | Involved in actin cytoskeleton organization, cell cycle, cell division. |
Q91VM5 | RNA binding motif protein, X-linked-like-1 | Rbmxl1 | 5.82 ×10−8 | −297.73 | Involved in mRNA processing, mRNA splicing, mRNA splice site selection. |
P13541 | Myosin-3 | Myh3 | 7.65 × 10−6 | −229.84 | Enables actin filament binding, involved in skeletal muscle contraction, ATP binding. |
Q8K1J6 | CCA tRNA nucleotidyltransferase 1, mitochondrial | Trnt1 | 1.39 × 10−6 | −195.84 | Adds and repairs the conserved 3′-CCA sequence necessary for the attachment of amino acids to the 3′ terminus of tRNA molecules, involved in tRNA processing. |
Q91YP2 | Neurolysin, mitochondrial | Nln | 1.95 × 10−7 | −186.82 | Hydrolyzes oligopeptides, involved in a regulation of gluconeogenesis. |
Q8C052 | Microtubule-associated protein 1S | Map1s | 9.31 × 10−7 | −162.55 | Mediates aggregation of mitochondria resulting in the cell death and genomic destruction. |
O70591 | Prefoldin subunit 2 | Pfdn2 | 7.68 × 10−5 | −124.24 | Involved in protein folding, positive regulation of cytoskeleton organization. |
P28658 | Ataxin-10 | Atxn10 | 1.38 × 10−5 | −123.10 | May play a role in the maintenance of a critical intracellular glycosylation level and homeostasis. |
P62983 | Ubiquitin-40S ribosomal protein S27a | Rps27a | 7.02 × 10−4 | −81.40 | Involved in protein ubiquitination, translation. |
E9PYG6 | Protein Rasa1 | Rasa1 | 4.98 ×10−5 | −77.80 | Involved in regulation of GTPase activity, negative regulation of apoptotic process. |
Q99P72 | Reticulon-4 | Rtn4 | 7.85 × 10−7 | −71.74 | Required to induce the formation and stabilization of endoplasmic reticulum tubules. |
Q8JZM0 | Dimethyladenosine transferase 1, mitochondrial | Tfb1m | 8.12 ×10−3 | −71.35 | Specifically dimethylates mitochondrial 12S rRNA at the conserved stem loop, required for basal transcription of mitochondrial DNA, stimulates transcription independently of the methyltransferase activity. |
Cell Line | PM | PMJ2-R | PMJ2-R+IFNyγ |
---|---|---|---|
Percentage of phagocytic cells, % | 79.6 ± 6.7 | 5.1 ± 2.4 * | 21.5 ± 7.7 *,# |
Zymosan granules per phagocytic cell | 9.2 ± 3.2 | 1.7 ± 0.7 * | 4.1 ± 1.1 *,# |
RFI of FITC-dextran per cell | 1.00 ± 0.19 | 0.27 ± 0.15 * | 0.32 ± 0.17 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusanov, A.L.; Kozhin, P.M.; Tikhonova, O.V.; Zgoda, V.G.; Loginov, D.S.; Chlastáková, A.; Selinger, M.; Sterba, J.; Grubhoffer, L.; Luzgina, N.G. Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages. Int. J. Mol. Sci. 2021, 22, 6323. https://doi.org/10.3390/ijms22126323
Rusanov AL, Kozhin PM, Tikhonova OV, Zgoda VG, Loginov DS, Chlastáková A, Selinger M, Sterba J, Grubhoffer L, Luzgina NG. Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages. International Journal of Molecular Sciences. 2021; 22(12):6323. https://doi.org/10.3390/ijms22126323
Chicago/Turabian StyleRusanov, Alexander L., Peter M. Kozhin, Olga V. Tikhonova, Victor G. Zgoda, Dmitry S. Loginov, Adéla Chlastáková, Martin Selinger, Jan Sterba, Libor Grubhoffer, and Nataliya G. Luzgina. 2021. "Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages" International Journal of Molecular Sciences 22, no. 12: 6323. https://doi.org/10.3390/ijms22126323
APA StyleRusanov, A. L., Kozhin, P. M., Tikhonova, O. V., Zgoda, V. G., Loginov, D. S., Chlastáková, A., Selinger, M., Sterba, J., Grubhoffer, L., & Luzgina, N. G. (2021). Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages. International Journal of Molecular Sciences, 22(12), 6323. https://doi.org/10.3390/ijms22126323