Integrated Systems Analysis of Mixed Neuroglial Cultures Proteome Post Oxycodone Exposure
Abstract
:1. Introduction
2. Results
2.1. Purity of Mixed Neuroglial Cultures
2.2. Cell Death Assay
2.3. Characterization of the Altered Proteome Upon Oxy Exposure
3. Discussion
4. Materials and Methods
4.1. Animals and Ethics Statement
4.2. Isolation of Mixed Neuroglial Cells
4.3. MTT Assay
4.4. Immunolabeling
4.5. Quantitative Proteomics
4.6. Bioinformatic Analyses
4.7. Statistics
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Oxy | Oxycodone |
BBB | Blood brain barrier |
E18 | Embryonic day 18 |
MAP2 | Microtube associated protein 2 |
GFAP | Glial fibrillary acidic protein |
μM | Micro molar |
DEP | Differentially expressed proteins |
GO | Gene ontology |
IPA | Ingenuity pathway analysis |
GNAS | GNAS complex locus |
DIV | Days in vitro |
MTT | (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) |
References
- Wilson, N.; Mbabazi, K.; Puja, S.; Herschel, S.; Davis, N.L. Drug and opioid-involved overdose deaths—United States, 2017–2018. Morb. Mortal. Wkly. Rep. 2020, 69, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Backlund, M.; Lindgren, L.; Kajimoto, Y.; Rosenberg, P.H. Comparison of epidural morphine and oxycodone for pain after abdominal surgery. J. Clin. Anesth. 1997, 9, 30–35. [Google Scholar] [CrossRef]
- Pöyhiä, R.; Seppälä, T. Liposolubility and protein binding of oxycodone in vitro. Pharmacol. Toxicol. 1994, 74, 23–27. [Google Scholar] [CrossRef]
- Odegaard, K.E.; Pendyala, G.; Yelamanchili, S.V. Generational effects of opioid exposure. Encyclopedia 2021, 1, 99–114. [Google Scholar] [CrossRef]
- Shahjin, F.; Guda, R.S.; Schaal, V.L.; Odegaard, K.; Clark, A.; Gowen, A.; Xiao, P.; Lisco, S.J.; Pendyala, G.; Yelamanchili, S.V. Brain-Derived Extracellular Vesicle microRNA Signatures Associated with In Utero and Postnatal Oxycodone Exposure. Cells 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odegaard, K.E.; Schaal, V.L.; Clark, A.R.; Clark, A.R.; Koul, S.; Gowen, A.; Jagadesan, S.; Xiao, P.; Guda, C.; Lisco, S.L.; et al. Characterization of the intergenerational impact of in utero and postnatal oxycodone exposure. Transl. Psychiatry 2020, 10, 329. [Google Scholar] [CrossRef]
- Odegaard, K.E.; Schaal, V.L.; Clark, A.R.; Koul, S.; Sankarasubramanian, J.; Xia, Z.; Mellon, M.; Uberti, M.; Liu, Y.; Stothert, A.; et al. A holistic systems approach to characterize the impact of pre- and post-natal oxycodone exposure on neurodevelopment and behavior. Front. Cell Dev. Biol. 2021, 8, 619199. [Google Scholar] [CrossRef]
- Farhy-Tselnicker, I.; Allen, N.J. Astrocytes, neurons, synapses: A tripartite view on cortical circuit development. Neural Dev. 2018, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Romand, S.; Spaggiari, D.; Marsousi, N.; Samer, C.; Desmeules, J.; Daali, Y.; Rudaz, S. Characterization of oxycodone in vitro metabolism by human cytochromes P450 and UDP-glucuronosyltransferases. J. Pharm. Biomed. Anal. 2017, 144, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanoe, S.; Jensen, G.B.; Sjøgren, P.; Korsgaard, M.P.; Grunnet, M. Oxycodone is associated with dose-dependent QTc prolongation in patients and low-affinity inhibiting of hERG activity in vitro. Br. J. Clin. Pharmacol. 2009, 67, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, R.; Fang, Q.; Jamal, M.; Wang, C.; Wang, Y.; Zhang, Z.; Wu, X.; Song, X. Oxycodone attenuates vascular leak and lung inflammation in a clinically relevant two-hit rat model of acute lung injury. Cytokine 2021, 138, 155346. [Google Scholar] [CrossRef]
- Wlodarczyk-Li, S.A.; Vassoler, F.M.; Byrnes, E.M.; Schonhoff, C.M. Oxycodone decreases dendritic complexity in female but not male rat striatal neurons in vitro. Neurosci. Lett. 2020, 722, 134856. [Google Scholar] [CrossRef]
- Korjamo, T.; Tolonen, A.; Ranta, V.-P.; Turpeinen, M.; Kokki, M. Metabolism of oxycodone in human hepatocytes from different age groups and prediction of hepatic plasma clearance. Front Pharmacol. 2011, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.; Miao, F.; Wu, Y.; Wang, T. Oxycodone suppresses the apoptosis of hippocampal neurons induced by oxygen-glucose deprivation/recovery through caspase-dependent and caspase-independent pathways via κ- and δ-opioid receptors in rats. Brain Res. 2019, 1721, 146319. [Google Scholar] [CrossRef]
- Standifer, K.M.; Pasternak, G.W. G proteins and opioid receptor-mediated signalling. Cell Signal 1997, 9, 237–248. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamarra, J.O.; Williams, S.M. Neuroscience. In G-Proteins and Their Molecular Targets, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Li, Z.W.; Sun, B.; Gong, T.; Guo, S.; Zhang, J.; Wang, J.; Sugawara, A.; Jiang, M.; Yang, M.; Yan, J.; et al. GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology 2019, 156, 2297–2312. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Chan, Z.; Lu, E.; Wang, Z.; Duan, J.; Tian, W.; Wang, Y.; You, L.; Zou, Y.; et al. Gαi1 and Gαi3 regulate macrophage polarization by forming a complex containing CD14 and Gab1. Proc. Natl. Acad. Sci. USA 2015, 112, 4731–4736. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Williams, D.L.; Zingarelli, B.; Breuel, K.F.; Giuseppe, T.; Tempel, G.E.; Spicher, K.; Boulay, G.; Birnbaumer, L.; Halushka, P.V.; et al. Differential regulation of lipopolysaccharide and Gram-positive bacteria induced cytokine and chemokine production in splenocytes by Galphai proteins. Biochim. Biophys. Acta 2006, 1763, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Huang, X.; Han, Y.; Wan, Y.; Birnbaumer, L.; Feng, G.-S.; Marshall, J.; Jiang, M.; Chu, W.-M. Galpha(i1) and Galpha(i3) are required for epidermal growth factor-mediated activation of the Akt-mTORC1 pathway. Sci. Signal 2009, 2, ra17. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dela Cruz, R.; Ji, F.; Guo, S.; Zhang, J.; Wang, Y.; Feng, G.-S.; Birnbaumer, L.; Jiang, M.; Chu, W.-M. G(i)α proteins exhibit functional differences in the activation of ERK1/2, Akt and mTORC1 by growth factors in normal and breast cancer cells. Cell Commun. Signal 2014, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Lutz, B.M.; Nia, S.; Xiong, M.; Tao, Y.-X.; Bekker, A. mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Mol. Pain 2015, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, L.; Pan, C.; He, S.-M.; Lang, B.; Gao, G.-D.; Wang, X.-L.; Wang, Y. The ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front. Mol. Neurosci. 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Mendes, K.L.; Lelis, D.F.; Santos, S.H.S. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev. 2017, 38, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Dang, W.; Du, Y.; Zhou, Q.; Jiao, K.; Lui, Z. SIRT2 is involved in the modulation of depressive behaviors. Sci. Rep. 2015, 5, 8415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, D.; Koo, J.W.; Feng, J.; Heller, E.; Rabkin, J.; Heshmati, M.; Renthal, W.; Neve, R.; Liu, X.; Shao, N.; et al. Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action. J. Neurosci. 2013, 33, 16088–16098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echavarría, R.; Garcia, D.; Figueroa, F.; Franco-Acevedo, A.; Palomino, J.; Portilla-Debuen, E.; Goldaraz-Monraz, M.P.; Moreno-Carranza, B.; Melo, Z. Anesthetic preconditioning increases sirtuin 2 gene expression in a renal ischemia reperfusion injury model. Minerva Urol. Nefrol. 2020, 72, 243–249. [Google Scholar] [CrossRef]
- Egea, J.; Klein, R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 2007, 17, 230–238. [Google Scholar] [CrossRef]
- Kullander, K.; Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol. 2002, 3, 475–486. [Google Scholar] [CrossRef]
- Jongbloets, B.C.; Pasterkamp, R.J. Semaphorin signalling during development. Development 2014, 141, 3292–3297. [Google Scholar] [CrossRef] [Green Version]
- Pasterkamp, R.J.; Giger, R.J. Semaphorin function in neural plasticity and disease. Curr. Opin. Neurobiol. 2009, 19, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Yuferov, V.; Zhang, Y.; Liang, Y.; Zhao, C.; Randesi, M.; Kreek, M.J. Oxycodone self-administration induces alterations in expression of integrin, semaphorin and ephrin genes in the mouse striatum. Front. Psychiatry 2018, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Paciotti, S.; Persichetti, E.; Klein, K.; Tasegian, A.; Duvet, S.; Hartmann, D.; Gieselmann, V.; Beccari, T. Accumulation of free oligosaccharides and tissue damage in cytosolic α-mannosidase (Man2c1)-deficient mice. J. Biol. Chem. 2014, 289, 9611–9622. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Ren, Y.; Wang, S.; Zeng, M.; Han, S.; Li, J.; Han, R. The role of caveolin-1 in morphine-induced structural plasticity in primary cultured mouse cerebral cortical neurons. Neurosci. Lett. 2018, 665, 38–42. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Chang, A.; Liu, N.J.; Gintzler, A.R. Chronic opioid treatment augments caveolin-1 scaffolding: Relevance to stimulatory μ-opioid receptor adenylyl cyclase signaling. J. Neurochem. 2016, 139, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Wen, A.; Guo, A.; Chen, Y.L. Mu-opioid signaling modulates biphasic expression of TrkB and IκBα genes and neurite outgrowth in differentiating and differentiated human neuroblastoma cells. Biochem. Biophys. Res. Commun. 2013, 432, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Naghshvarian, M.; Zarrindast, M.R.; Mehr, S.E.; Ommati, M.M.; Sajjadi, S.F. Effect of exercise and morphine on psychological and physical dependencies, BDNF and TrkB gene expression in rat's hippocampus. Pak. J. Med. Sci. 2017, 33, 603–609. [Google Scholar] [CrossRef]
- Lamberts, J.T.; Rosenthal, L.D.; Jutkiewicz, E.M.; Traynor, J.R. Role of the guanine nucleotide binding protein, Gα. Psychopharmacology 2018, 235, 71–82. [Google Scholar] [CrossRef]
- Fonseca, F.; Gratacòs, M.; Escaramís, G.; De Cid, R.; Martín-Santos, R.; Farré, M.; Estivill, X.; Torrens, M. ALDH5A1 variability in opioid dependent patients could influence response to methadone treatment. Eur. Neuropsychopharmacol. 2014, 24, 420–424. [Google Scholar] [CrossRef]
- Ehrig, T.; Bosron, W.F.; Li, T.K. Alcohol and aldehyde dehydrogenase. Alcohol Alcohol. 1990, 25, 105–116. [Google Scholar] [CrossRef]
- Sanchez, A.B.; Varano, G.P.; de Rozieres, C.M.; Maung, R.; Catalan, I.C.; Dowling, C.C.; Sejbuk, N.E.; Hoefer, M.M.; Kaul, M. Antiretrovirals, Methamphetamine, and HIV-1 Envelope Protein gp120 Compromise Neuronal Energy Homeostasis in Association with Various Degrees of Synaptic and Neuritic Damage. Antimicrob. Agents Chemother. 2015, 60, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Pendyala, G.; Buescher, J.L.; Fox, H.S. Methamphetamine and inflammatory cytokines increase neuronal Na+/K+-ATPase isoform 3: Relevance for HIV associated neurocognitive disorders. PLoS ONE 2012, 7, e37604. [Google Scholar] [CrossRef]
- Chand, S.; Jo, A.; Vellichirammal, N.N.; Gowen, A.; Guda, C.; Schaal, V.; Odegaard, K.; Lee, H.; Pendyala, G.; Yelamanchili, S.V. Comprehensive characterization of nanosized extracellular vesicles from central and peripheral organs: Implications for preclinical and clinical applications. ACS Appl. Nano Mater. 2020, 3, 8906–8919. [Google Scholar] [CrossRef]
- Charntikov, S.; Pittenger, S.T.; Thapa, I.; Bastola, D.R.; Bevins, R.A.; Pendyala, G. Ibudilast reverses the decrease in the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (PEBP1) produced by chronic methamphetamine intake in rats. Drug Alcohol Depend. 2015, 152, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Pendyala, G.; Ninemire, C.; Fox, H.S. Protective role for the disulfide isomerase PDIA3 in methamphetamine neurotoxicity. PLoS ONE 2012, 7, e38909. [Google Scholar] [CrossRef] [Green Version]
- Pittenger, S.T.; Schaal, V.L.; Moore, D.; Guda, R.S.; Koul, S.; Yelamanchili, S.V.; Bevins, R.A.; Pendyala, G. MicroRNA cluster miR199a/214 are differentially expressed in female and male rats following nicotine self-administration. Sci. Rep. 2018, 8, 17464. [Google Scholar] [CrossRef] [Green Version]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Xia, J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. Metabolites 2020, 10, 186. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guda, R.S.; Odegaard, K.E.; Tan, C.; Schaal, V.L.; Yelamanchili, S.V.; Pendyala, G. Integrated Systems Analysis of Mixed Neuroglial Cultures Proteome Post Oxycodone Exposure. Int. J. Mol. Sci. 2021, 22, 6421. https://doi.org/10.3390/ijms22126421
Guda RS, Odegaard KE, Tan C, Schaal VL, Yelamanchili SV, Pendyala G. Integrated Systems Analysis of Mixed Neuroglial Cultures Proteome Post Oxycodone Exposure. International Journal of Molecular Sciences. 2021; 22(12):6421. https://doi.org/10.3390/ijms22126421
Chicago/Turabian StyleGuda, Rahul S., Katherine E. Odegaard, Chengxi Tan, Victoria L. Schaal, Sowmya V. Yelamanchili, and Gurudutt Pendyala. 2021. "Integrated Systems Analysis of Mixed Neuroglial Cultures Proteome Post Oxycodone Exposure" International Journal of Molecular Sciences 22, no. 12: 6421. https://doi.org/10.3390/ijms22126421
APA StyleGuda, R. S., Odegaard, K. E., Tan, C., Schaal, V. L., Yelamanchili, S. V., & Pendyala, G. (2021). Integrated Systems Analysis of Mixed Neuroglial Cultures Proteome Post Oxycodone Exposure. International Journal of Molecular Sciences, 22(12), 6421. https://doi.org/10.3390/ijms22126421