Reversible Lectin Binding to Glycan-Functionalized Graphene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Functionalized Chitooligomers
2.2. Graphene Synthesis and Functionalization
2.3. The Cu-Catalyzed Alkyne-Azide (CuAAC) Reaction
2.4. Incubation with WGA and Competitor
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, B.; Gu, G.X. Machine Learning-Based Detection of Graphene Defects with Atomic Precision. Nano-Micro Lett. 2020, 12, 181. [Google Scholar] [CrossRef]
- Estrela, P.; Belický, Š.; Katrlík, J.; Tkáč, J. Glycan and Lectin Biosensors. Essays Biochem. 2016, 60, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kveton, F.; Blsakova, A.; Lorencova, L.; Jerigova, M.; Velic, D.; Blixt, O.; Jansson, B.; Kasak, P.; Tkac, J. A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody. Sensors 2019, 19, 5409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damme, E.J.M.V.; Peumans, W.J.; Pusztai, A.; Bardocz, S. Handbook of Plant. Lectins: Properties and Biomedical Applications; John Wiley & Sons: Hoboken, NJ, USA, 1998; ISBN 978-0-471-96445-2. [Google Scholar]
- Bojarová, P.; Křen, V. Sugared Biomaterial Binding Lectins: Achievements and Perspectives. Biomater. Sci. 2016, 4, 1142–1160. [Google Scholar] [CrossRef]
- Laaf, D.; Bojarová, P.; Elling, L.; Křen, V. Galectin–Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol. 2019, 37, 402–415. [Google Scholar] [CrossRef]
- Cordain, L.; Toohey, L.; Smith, M.J.; Hickey, M.S. Modulation of Immune Function by Dietary Lectins in Rheumatoid Arthritis. Br. J. Nutr. 2000, 83, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Akkouh, O.; Ng, T.B.; Singh, S.S.; Yin, C.; Dan, X.; Chan, Y.S.; Pan, W.; Cheung, R.C.F. Lectins with Anti-HIV Activity: A Review. Molecules 2015, 20, 648–668. [Google Scholar] [CrossRef] [PubMed]
- Eisen, S.; Dzwonek, A.; Klein, N.J. Mannose-Binding Lectin in HIV Infection. Future Virol. 2008, 3, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; He, T.; Rong, Y.; Du, F.; Ma, D.; Wei, Y.; Mei, Z.; Wang, Y.; Wang, H.; Zhu, Y.; et al. Association of Mannose-Binding Lectin Polymorphisms with Tuberculosis Susceptibility among Chinese. Sci. Rep. 2016, 6, 36488. [Google Scholar] [CrossRef] [Green Version]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e15. [Google Scholar] [CrossRef]
- Chang, W.-C.; Hartshorn, K.L.; White, M.R.; Moyo, P.; Michelow, I.C.; Koziel, H.; Kinane, B.T.; Schmidt, E.V.; Fujita, T.; Takahashi, K. Recombinant Chimeric Lectins Consisting of Mannose-Binding Lectin and l-Ficolin Are Potent Inhibitors of Influenza A Virus Compared with Mannose-Binding Lectin. Biochem. Pharmacol. 2011, 81, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Barondes, S.H.; Cooper, D.N.; Gitt, M.A.; Leffler, H. Galectins. Structure and Function of a Large Family of Animal Lectins. J. Biol. Chem. 1994, 269, 20807–20810. [Google Scholar] [CrossRef]
- Merino, J.P.; Serna, S.; Criado, A.; Centeno, A.; Napal, I.; Calvo, J.; Zurutuza, A.; Reichardt, N.; Prato, M. Mass Spectrometry of Carbohydrate-Protein Interactions on a Glycan Array Conjugated to CVD Graphene Surfaces. 2D Mater. 2020, 7, 024003. [Google Scholar] [CrossRef]
- Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-Gated Graphene Field-Effect Transistors for Detecting PH and Protein Adsorption. Nano Lett. 2009, 9, 3318–3322. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Hu, S. Electrochemical Sensors Based on Graphene Materials. Microchim. Acta 2011, 175, 1. [Google Scholar] [CrossRef]
- Viswanathan, S.; Narayanan, T.N.; Aran, K.; Fink, K.D.; Paredes, J.; Ajayan, P.M.; Filipek, S.; Miszta, P.; Tekin, H.C.; Inci, F.; et al. Graphene–Protein Field Effect Biosensors: Glucose Sensing. Mater. Today 2015, 18, 513–522. [Google Scholar] [CrossRef]
- He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-Based Electronic Sensors. Chem. Sci. 2012, 3, 1764–1772. [Google Scholar] [CrossRef] [Green Version]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene Based Sensors and Biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and Its Sensor-Based Applications: A Review. Sens. Actuators Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-Based Sensors for Human Health Monitoring. Front. Chem. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Schwefel, D.; Maierhofer, C.; Beck, J.G.; Seeberger, S.; Diederichs, K.; Möller, H.M.; Welte, W.; Wittmann, V. Structural Basis of Multivalent Binding to Wheat Germ Agglutinin. J. Am. Chem. Soc. 2010, 132, 8704–8719. [Google Scholar] [CrossRef] [Green Version]
- Kovaříček, P.; Vrkoslav, V.; Plšek, J.; Bastl, Z.; Fridrichová, M.; Drogowska, K.; Kalbáč, M. Extended Characterization Methods for Covalent Functionalization of Graphene on Copper. Carbon 2017, 118, 200–207. [Google Scholar] [CrossRef]
- Bojarová, P.; Chytil, P.; Mikulová, B.; Bumba, L.; Konefał, R.; Pelantová, H.; Krejzová, J.; Slámová, K.; Petrásková, L.; Kotrchová, L.; et al. Glycan-Decorated HPMA Copolymers as High-Affinity Lectin Ligands. Polym. Chem. 2017, 8, 2647–2658. [Google Scholar] [CrossRef] [Green Version]
- Bojarová, P.; Kulik, N.; Hovorková, M.; Slámová, K.; Pelantová, H.; Křen, V. The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules 2019, 24, 599. [Google Scholar] [CrossRef] [Green Version]
- Hallam, T.; Berner, N.C.; Yim, C.; Duesberg, G.S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces 2014, 1, 1400115. [Google Scholar] [CrossRef]
- Kalbac, M.; Frank, O.; Kavan, L. The Control of Graphene Double-Layer Formation in Copper-Catalyzed Chemical Vapor Deposition. Carbon 2012, 50, 3682–3687. [Google Scholar] [CrossRef] [Green Version]
- Kovaříček, P.; Bastl, Z.; Valeš, V.; Kalbáč, M. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy. Chem. Eur. J. 2016, 22, 5404–5408. [Google Scholar] [CrossRef]
- Plšek, J.; Kovaříček, P.; Valeš, V.; Kalbáč, M. Tuning the Reactivity of Graphene by Surface Phase Orientation. Chem. Eur. J. 2017, 23, 1839–1845. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Zaoralová, D.; Medved’, M.; Banáš, P.; Błoński, P.; Otyepka, M. Variability of C–F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes. J. Phys. Chem. C 2019, 123, 27896–27903. [Google Scholar] [CrossRef]
- Hong, V.; Presolski, S.I.; Ma, C.; Finn, M.G. Analysis and Optimization of Copper-Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 2009, 48, 9879–9883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A.V.; Yavari, F.; Shi, Y.; Ajayan, P.M.; Koratkar, N.A. Wetting Transparency of Graphene. Nat. Mater. 2012, 11, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Kozbial, A.; Zhou, F.; Li, Z.; Liu, H.; Li, L. Are Graphitic Surfaces Hydrophobic? Acc. Chem. Res. 2016, 49, 2765–2773. [Google Scholar] [CrossRef]
- She, C.Y.; Dinh, N.D.; Tu, A.T. Laser Raman Scattering of Glucosamine, N-Acetylglucosamine, and Glucuronic Acid. Biochim. Biophys. Acta Gen. Subj. 1974, 372, 345–357. [Google Scholar] [CrossRef]
- Bansil, R.; Yannas, I.V.; Stanley, H.E. Raman Spectroscopy: A Structural Probe of Glycosaminoglycans. Biochim. Biophys. Acta Gen. Subj. 1978, 541, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Carron, K.T.; Hurley, L.G. Axial and Azimuthal Angle Determination with Surface-Enhanced Raman Spectroscopy: Thiophenol on Copper, Silver, and Gold Metal Surfaces. J. Phys. Chem. 1991, 95, 9979–9984. [Google Scholar] [CrossRef]
- Moullier, P.; Daveloose, D.; Leterrier, F.; Hoebeke, J. Comparative Binding of Wheat Germ Agglutinin and Its Succinylated Form on Lymphocytes. Eur. J. Biochem. 1986, 161, 197–204. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koukalová, T.; Kovaříček, P.; Bojarová, P.; Guerra, V.L.P.; Vrkoslav, V.; Navara, L.; Jirka, I.; Cebecauer, M.; Křen, V.; Kalbáč, M. Reversible Lectin Binding to Glycan-Functionalized Graphene. Int. J. Mol. Sci. 2021, 22, 6661. https://doi.org/10.3390/ijms22136661
Koukalová T, Kovaříček P, Bojarová P, Guerra VLP, Vrkoslav V, Navara L, Jirka I, Cebecauer M, Křen V, Kalbáč M. Reversible Lectin Binding to Glycan-Functionalized Graphene. International Journal of Molecular Sciences. 2021; 22(13):6661. https://doi.org/10.3390/ijms22136661
Chicago/Turabian StyleKoukalová, Tereza, Petr Kovaříček, Pavla Bojarová, Valentino L. P. Guerra, Vladimír Vrkoslav, Lukáš Navara, Ivan Jirka, Marek Cebecauer, Vladimír Křen, and Martin Kalbáč. 2021. "Reversible Lectin Binding to Glycan-Functionalized Graphene" International Journal of Molecular Sciences 22, no. 13: 6661. https://doi.org/10.3390/ijms22136661
APA StyleKoukalová, T., Kovaříček, P., Bojarová, P., Guerra, V. L. P., Vrkoslav, V., Navara, L., Jirka, I., Cebecauer, M., Křen, V., & Kalbáč, M. (2021). Reversible Lectin Binding to Glycan-Functionalized Graphene. International Journal of Molecular Sciences, 22(13), 6661. https://doi.org/10.3390/ijms22136661