Phenotyping the Prediabetic Population—A Closer Look at Intermediate Glucose Status and Cardiovascular Disease
Abstract
:1. Introduction
2. Definitions of Prediabetes—What Is the Appropriate Definition?
3. A Modifiable, but Often Overlooked Risk Factor?
4. Underlying Pathophysiology Mechanisms in Prediabetes
5. Associations with Other Risk Factors: A Cluster of Bad Omen
5.1. Obesity
5.2. Dyslipidemia
5.3. Hypertension
5.4. Ethnicity
5.5. Gender
5.6. Smoking
5.7. Inflammation
6. The Endgame: Cardiovascular Morbidity and Mortality
6.1. Atherosclerotic Cardiovascular Disease (ASCVD)
6.2. Heart Failure
6.3. Acute ASCVD and Cardiovascular Mortality
7. Who Should Be Screened for Prediabetes? Risk Scores
8. Phenotypes at Risk for Cardiovascular Complications
9. When Should We Act? Prevention
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Richter, B.; Hemmingsen, B.; Metzendorf, M.I.; Takwoingi, Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.J.; Rutters, F.; Rydén, L.; Schnell, O.; Mellbin, L.; Hart, H.E. Risk and management of pre-diabetes. Eur. J. Prev. Cardiol. 2019, 26, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Piller, C. The war on ‘prediabetes’ could be a boon for pharma—But is it good medicine? Science 2019. [Google Scholar] [CrossRef]
- Kyrle, P.A. Predicting recurrent venous thromboembolism in cancer: Is it possible? Thromb. Res. 2014, 133 (Suppl. 2), S17–S22. [Google Scholar] [CrossRef]
- Bays, H.E.; Chapman, R.H.; Grandy, S. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: Comparison of data from two national surveys. Int. J. Clin. Pract. 2007, 61, 737–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes 2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Laukkanen, J.A.; Mäkikallio, T.H.; Ronkainen, K.; Karppi, J.; Kurl, S. Impaired fasting plasma glucose and type 2 diabetes are related to the risk of out-of-hospital sudden cardiac death and all-cause mortality. Diabetes Care 2013, 36, 1166–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeboah, J.; Bertoni, A.G.; Herrington, D.M.; Post, W.S.; Burke, G.L. Impaired fasting glucose and the risk of incident diabetes mellitus and cardiovascular events in an adult population: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2011, 58, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Deedwania, P.; Patel, K.; Fonarow, G.C.; Desai, R.V.; Zhang, Y.; Feller, M.A.; Ovalle, F.; Love, T.E.; Aban, I.B.; Mujib, M.; et al. Prediabetes is not an independent risk factor for incident heart failure, other cardiovascular events or mortality in older adults: Findings from a population-based cohort study. Int. J. Cardiol. 2013, 168, 3616–3622. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Cai, X.; Chen, P.; Mai, W.; Tang, H.; Huang, Y.; Hu, Y. Associations of prediabetes with all-cause and cardiovascular mortality: A meta-analysis. Ann. Med. 2014, 46, 684–692. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.E. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [Green Version]
- Yau, J.W.; Thor, S.M.; Ramadas, A. Nutritional strategies in prediabetes: A scoping review of recent evidence. Nutrients 2020, 12, 2990. [Google Scholar] [CrossRef]
- Barry, E.; Roberts, S.; Oke, J.; Vijayaraghavan, S.; Normansell, R.; Greenhalgh, T. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: Systematic review and meta-analysis of screening tests and interventions. BMJ 2017, 356, i6538. [Google Scholar] [CrossRef] [Green Version]
- Pinelli, N.R.; Jantz, A.S.; Martin, E.T.; Jaber, L.A. Sensitivity and specificity of glycated hemoglobin as a diagnostic test for diabetes and prediabetes in Arabs. J. Clin. Endocrinol. Metab. 2011, 96, E1680–E1683. [Google Scholar] [CrossRef] [Green Version]
- Dagogo-Jack, S. Pitfalls in the use of HbA1c as a diagnostic test. Nat. Rev. Endocrinol. 2011, 7, 1. [Google Scholar] [CrossRef]
- Heianza, Y.; Hara, S.; Arase, Y.; Saito, K.; Fujiwara, K.; Tsuji, H.; Kodama, S.; Hsieh, S.D.; Mori, Y.; Shimano, H.; et al. HbA1c 5·7-6·4 and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): A longitudinal cohort study. Lancet 2011, 378, 147–155. [Google Scholar] [CrossRef]
- Zhang, X.; Gregg, E.W.; Williamson, D.F.; Barker, L.E.; Thomas, W.; Bullard, K.M.K.; Imperatore, G.; Williams, D.E.; Albright, A.L. A1C level and future risk of diabetes: A systematic review. Diabetes Care 2010, 33, 1665–1673. [Google Scholar] [CrossRef] [Green Version]
- Warren, B.; Pankow, J.S.; Matsushita, K.; Punjabi, N.M.; Daya, N.R.; Grams, M.; Woodward, M.; Selvin, E. Comparative prognostic performance of definitions of prediabetes: A prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2017, 5, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Vistisen, D.; Witte, D.R.; Brunner, E.J.; Kivimaki, M.; Tabak, A.; Jorgensen, M.E.; Færch, K. Risk of cardiovascular disease and death in individuals with prediabetes defined by different criteria: The whitehall II study. Diabetes Care 2018, 41, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Greiner, G.G.; Emmert-Fees, K.M.F.; Becker, J.; Rathmann, W.; Thorand, B.; Peters, A.; Quante, A.S.; Schwettmann, L.; Laxy, M. Toward targeted prevention: Risk factors for prediabetes defined by impaired fasting glucose, impaired glucose tolerance and increased HbA1c in the population-based KORA study from Germany. Acta Diabetol. 2020, 57, 1481–1491. [Google Scholar] [CrossRef]
- Lee, C.M.Y.; Colagiuri, S.; Woodward, M.; Gregg, E.W.; Adams, R.; Azizi, F.; Gabriel, R.; Gill, T.K.; Gonzalez, C.; Hodge, A.; et al. Comparing different definitions of prediabetes with subsequent risk of diabetes: An individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes. BMJ Open Diabetes Res. Care 2019, 7, e000794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Qiao, Q.; Tuomilehto, J.; Hammar, N.; Ruotolo, G.; Stehouwer, C.D.A.; Eliasson, M.; Zethelius, B.; DECODE Study Group. The impact of dyslipidaemia on cardiovascular mortality in individuals without a prior history of diabetes in the DECODE Study. Atherosclerosis 2009, 206, 298–302. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Abdul-Ghani, M. Assessment and treatment of cardiovascular risk in prediabetes: Impaired glucose tolerance and impaired fasting glucose. Am. J. Cardiol. 2011, 108, 3B–24B. [Google Scholar] [CrossRef]
- Perreault, L.; Pan, Q.; Mather, K.J.; Watson, K.E.; Hamman, R.F.; Kahn, S.E. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: Results from the Diabetes Prevention Program Outcomes Study. Lancet 2012, 379, 2243–2251. [Google Scholar] [CrossRef] [Green Version]
- Knowler, W.; Barrett-Connor, E.; Fowler, S.; Hamman, R.; Lachin, J.; Walker, E.; Nathan, D.M.; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar]
- Norhammar, A.; Tenerz, Å.; Nilsson, G.; Hamsten, A.; Efendíc, S.; Rydén, L.; Malmberg, K. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: A prospective study. Lancet 2002, 359, 2140–2144. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Kleinherenbrink, W.; Osei, E.; den Hertog, H.M.; Zandbergen, A.A.M. Prediabetes and macrovascular disease: Review of the association, influence on outcome and effect of treatment. Eur. J. Intern. Med. 2018, 55, 6–11. [Google Scholar] [CrossRef]
- Dixon, D.L.; Carbone, S. Screening, identification, and management of prediabetes to reduce cardiovascular risk: A missed opportunity? Diabetes Metab. Res. Rev. 2020, 36, 2–4. [Google Scholar] [CrossRef]
- Wagner, R.; Heni, M.; Tabák, A.G.; Machann, J.; Schick, F.; Randrianarisoa, E.; de Angelis, M.H.; Birkenfeld, A.L.; Stefan, N.; Peter, A.; et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 2021, 27, 49–57. [Google Scholar] [CrossRef]
- Esser, N.; Utzschneider, K.M.; Kahn, S.E. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 2020, 63, 2007–2021. [Google Scholar] [CrossRef]
- Staimez, L.R.; Weber, M.B.; Ranjani, H.; Ali, M.K.; Echouffo-Tcheugui, J.B.; Phillips, L.S.; Mohan, V.; Venkat Narayan, K.M. Evidence of reduced β-cell function in Asian Indians with mild dysglycemia. Diabetes Care 2013, 36, 2772–2778. [Google Scholar] [CrossRef] [Green Version]
- Kabadi, U.M. Major pathophysiology in prediabetes and type 2 Diabetes: Decreased insulin in lean and insulin resistance in obese. J. Endocr. Soc. 2017, 1, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Liou, A.P.; Paziuk, M.; Luevano, J.M.; Machineni, S.; Turnbaugh, P.J.; Kaplan, L.M. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 2013, 5, 178ra41. [Google Scholar] [CrossRef] [Green Version]
- Häring, H.U. Novel phenotypes of prediabetes? Diabetologia 2016, 59, 1806–1818. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Li, X.; Song, P.; Xu, L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov. Ther. 2015, 9, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Horáková, D.; Štěpánek, L.; Janout, V.; Janoutová, J.; Pastucha, D.; Kollárová, H.; Petráková, A.; Štěpánek, L.; Husár, R.; Martiník, K. Optimal homeostasis model assessment of insulin resistance (HOMA-IR) cut-offs: A cross-sectional study in the Czech population. Medicina 2019, 55, 158. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Le Shih, A.Z.; Woo, Y.C.; Fong, C.H.Y.; Leung, O.Y.; Janus, E.; Cheung, B.M.Y.; Lam, K.S.L. Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese. PLoS ONE 2016. [Google Scholar] [CrossRef] [Green Version]
- Weyer, C.; Bogardus, C.; Mott, D.M.; Pratley, R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Investig. 1999, 104, 787–794. [Google Scholar] [CrossRef]
- Færch, K.; Witte, D.R.; Tabák, A.G.; Perreault, L.; Herder, C.; Brunner, E.J.; Kivimaki, M.; Vistisen, D. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: A post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol. 2013, 1, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, H.C.; Santaguida, P.; Raina, P.; Morrison, K.; Balion, C.; Hunt, D.; Yazdi, H.; Booker, L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: A systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 2007, 78, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Hanefeld, M.; Koehler, C.; Fuecker, K.; Henkel, E.; Schaper, F.; Temelkova-Kurktschiev, T. Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose: The risk factor in impaired glucose tolerance for atherosclerosis and diabetes study. Diabetes Care 2003, 26, 868–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Festa, A.; D’Agostino, R.; Hanley, A.J.G.; Karter, A.J.; Saad, M.F.; Haffner, S.M. Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 2004, 53, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B.; American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Zhu, S.; Palaniappan, L.; Heshka, S.; Carnethon, M.R.; Heymsfield, S.B. The metabolic syndrome: Prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch. Intern. Med. 2003, 163, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Morgan, A.R.; Patel, D.; Dhatariya, K.; Greenwood, S.; Newland-Jones, P.; Hicks, D.; Yousef, Z.; Moore, J.; Kelly, B.; et al. Risk Prediction of the Diabetes Missing Million: Identifying Individuals at High Risk of Diabetes and Related Complications. Diabetes Ther. 2021, 12, 87–105. [Google Scholar] [CrossRef]
- Van Pelt, R.E.; Jankowski, C.M.; Gozansky, W.S.; Schwartz, R.S.; Kohrt, W.M. Lower-Body Adiposity and Metabolic Protection in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2005, 90, 4573–4578. [Google Scholar] [CrossRef] [Green Version]
- Thamer, C.; Machann, J.; Staiger, H.; Müssig, K.; Schwenzer, N.; Ludescher, B.; Machicao, F.; Claussen, C.; Fritsche, A.; Schick, F.; et al. Interscapular Fat Is Strongly Associated with Insulin Resistance. J. Clin. Endocrinol. Metab. 2010, 95, 4736–4742. [Google Scholar] [CrossRef] [Green Version]
- Stefan, N.; Kantartzis, K.; Machann, J.; Schick, F.; Thamer, C.; Rittig, K.; Balletshofer, B.; Machicao, F.; Fritsche, A.; Häring, H.U. Identification and characterization of metabol-ically benign obesity in humans. Arch. Intern. Med. 2008, 168, 1609–1616. [Google Scholar] [CrossRef]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, I.; Hammer, R.E.; Ikemoto, S.; Brown, M.S.; Goldstein, J.L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999, 401, 73–76. [Google Scholar] [CrossRef]
- Owei, I.; Umekwe, N.; Wan, J.; Dagogo-Jack, S. Plasma lipid levels predict dysglycemia in a biracial cohort of nondiabetic subjects: Potential mechanisms. Exp. Biol. Med. 2016, 241, 1961–1967. [Google Scholar] [CrossRef] [Green Version]
- Haffner, S.M. The prediabetic problem: Development of non-insulin-dependent diabetes mellitus and related abnormalities. J. Diabetes Complicat. 1997, 11, 69–76. [Google Scholar] [CrossRef]
- Hsu, H.; Hsu, P.; Cheng, M.-H.; Ito, Y.; Kanda, E.; Schaefer, E.J.; Ai, M. Lipoprotein Subfractions and Glucose Homeostasis in Prediabetes and Diabetes in Taiwan. J. Atheroscler. Thromb. 2019, 26, 890–914. [Google Scholar] [CrossRef] [Green Version]
- Al Amri, T.; Bahijri, S.; Al-Raddadi, R.; Ajabnoor, G.; Al Ahmadi, J.; Jambi, H.; Borai, A.; Tuomilehto, J. The Association between Prediabetes and Dyslipidemia among Attendants of Primary Care Health Centers in Jeddah, Saudi Arabia. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2735–2743. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.; Sun, W.; Agarwala, A.; Virani, S.S.; Nambi, V.; Coresh, J.; Selvin, E.; Boerwinkle, E.; Jones, P.H.; Ballantyne, C.M.; et al. Lipoprotein(a) levels and risk of cardiovascular disease events in individuals with diabetes mellitus or prediabetes: The Atherosclerosis Risk in Communities study. Atherosclerosis 2019, 282, 52–56. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Z.; Yang, P.; Liu, L.; Wu, L.; Wang, Y. The association of subclinical atherosclerosis with prediabetes is stronger in people with dyslipidaemia than in those with normoglycaemia: A cross-sectional study in Chinese adults. Prim. Care Diabetes 2020, 14, 760–767. [Google Scholar] [CrossRef]
- Sánchez, E.; Collaborators, T.I.P.; Betriu, À.; López-Cano, C.; Hernández, M.; Fernández, E.; Purroy, F.; Bermúdez-López, M.; Farràs-Sallés, C.; Barril, S.; et al. Characteristics of atheromatosis in the prediabetes stage: A cross-sectional investigation of the ILERVAS project. Cardiovasc. Diabetol. 2019, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-H.; Cao, Y.-X.; Li, S.; Guo, Y.-L.; Zhu, C.-G.; Wu, N.-Q.; Gao, Y.; Dong, Q.-T.; Zhao, X.; Zhang, Y.; et al. Impacts of Prediabetes Mellitus Alone or Plus Hypertension on the Coronary Severity and Cardiovascular Outcomes. Hypertension 2018, 71, 1039–1046. [Google Scholar] [CrossRef]
- Mahat, R.K.; Singh, N.; Arora, M.; Rathore, V. Health risks and interventions in prediabetes: A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2803–2811. [Google Scholar] [CrossRef]
- Emdin, C.A.; Anderson, S.G.; Woodward, M.; Rahimi, K. Usual blood pressure and risk of new-onset diabetes evidence from 4.1 million adults and a meta-analysis of prospective studies. J. Am. Coll. Cardiol. 2015, 66, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- CDC. National Diabetes Statistics Report 2020. Estimates of Diabetes and Its Burden in the United States; CDC: Atlanta, GA, USA, 2020.
- Cheng, Y.J.; Kanaya, A.M.; Araneta, M.R.G.; Saydah, S.H.; Kahn, H.S.; Gregg, E.W.; Fujimoto, W.Y.; Imperatore, G. Prevalence of Diabetes by Race and Ethnicity in the United States, 2011–2016. JAMA 2019, 322, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Arena, R.; Khunti, K.; Yajnik, C.S.; Jayawardena, R.; Henry, C.J.; Street, S.J.; Soares, M.J.; Misra, A. Epidemiology and determinants of type 2 diabetes in south Asia. Lancet Diabetes Endocrinol. 2018, 6, 966–978. [Google Scholar] [CrossRef]
- Zhu, Y.; Sidell, M.A.; Arterburn, D.; Daley, M.F.; Desai, J.; Fitzpatrick, S.L.; Horberg, M.A.; Koebnick, C.; McCormick, E.; Oshiro, C.; et al. Racial/Ethnic Disparities in the Prevalence of Diabetes and Prediabetes by BMI: Patient Outcomes Research To Advance Learning (PORTAL) Multisite Cohort of Adults in the U.S. Diabetes Care 2019, 42, 2211–2219. [Google Scholar] [CrossRef]
- ADA. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef]
- Siddiqui, S.; Zainal, H.; Harun, S.N.; Sheikh Ghadzi, S.M.; Ghafoor, S. Gender differences in the modifiable risk factors associated with the presence of prediabetes: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1243–1252. [Google Scholar] [CrossRef]
- Beale, A.L.; Meyer, P.M.D.; Marwick, T.H.; Lam, C.S.P.; Kaye, D.M. Sex differences in cardiovascular pathophysiology why women are overrepresented in heart failure with preserved ejection fraction. Circulation 2018, 138, 198–205. [Google Scholar] [CrossRef]
- Gnatiuc, L.; Herrington, W.G.; Halsey, J.; Tuomilehto, J.; Fang, X.; Kim, H.C.; De Bacquer, D.; Dobson, A.J.; Criqui, M.H.; Jacobs, D.R.; et al. Sex-specific relevance of diabetes to occlusive vascular and other mortality: A collaborative meta-analysis of individual data from 980,793 adults from 68 prospective studies. Lancet Diabetes Endocrinol. 2018, 6, 538–546. [Google Scholar] [CrossRef]
- Rubin, K.H.; Glintborg, D.; Nybo, M.; Abrahamsen, B.; Andersen, M. Development and risk factors of type 2 diabetes in a nationwide population of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 3848–3857. [Google Scholar] [CrossRef] [Green Version]
- Glintborg, D.; Rubin, K.H.; Nybo, M.; Abrahamsen, B.; Andersen, M. Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovasc. Diabetol. 2018, 17, 37. [Google Scholar] [CrossRef]
- Venkataramani, M.; Cheng, T.L.; Yeh, H.C.; Bennett, W.L.; Maruthur, N.M. Family-oriented social service touchpoints as opportunities to enhance diabetes screening following a history of gestational diabetes. J. Am. Board Fam. Med. 2020, 33, 616–619. [Google Scholar] [CrossRef]
- Golledge, J.; Quigley, F.; Velu, R.; Walker, P.J.; Moxon, J.V. Association of impaired fasting glucose, diabetes and their management with the presentation and outcome of peripheral artery disease: A cohort study. Cardiovasc. Diabetol. 2014, 13, 147. [Google Scholar] [CrossRef] [Green Version]
- Rein, P.; Beer, S.; Saely, C.H.; Vonbank, A.; Drexel, H. Prevalence of impaired glucose metabolism in individuals with peripheral arterial disease. Int. J. Cardiol. 2010, 144, 243–244. [Google Scholar] [CrossRef]
- Green, F.C.; Levison, R.; Newton, D.J.; Littleford, R.; Stonebridge, P.A.; Belch, J.J.F. Detecting diabetes and impaired glucose tolerance in patients with atherosclerotic peripheral arterial disease. Int. Angiol. 2012, 31, 125–128. [Google Scholar]
- Gentile, N.T.; Vaidyula, V.R.; Kanamalla, U.; DeAngelis, M.; Gaughan, J.; Rao, A.K. Factor VIIa and tissue factor procoagulant activity in diabetes mellitus after acute ischemic stroke: Impact of hyperglycemia. Thromb. Haemost. 2007, 98, 1007–1013. [Google Scholar]
- Flynn, M.C.; Kraakman, M.J.; Tikellis, C.; Lee, M.K.S.; Hanssen, N.M.J.; Kammoun, H.L.; Pickering, R.J.; Dragoljevic, D.; Al-Sharea, A.; Barrett, T.J.; et al. Transient intermittent hyper-glycemia accelerates atherosclerosis by promoting myelopoiesis. Circ. Res. 2020, 127, 877–892. [Google Scholar] [CrossRef]
- Barr, E.L.M.; Zimmet, P.Z.; Welborn, T.A.; Jolley, D.; Magliano, D.J.; Dunstan, D.; Cameron, A.; Dwyer, T.; Taylor, H.R.; Tonkin, A.M.; et al. Risk of Cardiovascular and All-Cause Mortality in Individuals With Diabetes Mellitus, Impaired Fasting Glucose, and Impaired Glucose Tolerance. Circulation 2007, 116, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Brunner, E.J.; Shipley, M.J.; Witte, D.R.; Fuller, J.H.; Marmot, M.G. Relation between blood glucose and coronary mortality over 33 years in the Whitehall study. Diabetes Care 2006, 29, 26–31. [Google Scholar] [CrossRef]
- Sarwar, N.; Aspelund, T.; Eiriksdottir, G.; Gobin, R.; Seshasai, S.R.K.; Forouhi, N.; Sigurdsson, G.; Danesh, J.; Gudnason, V. Markers of Dysglycaemia and Risk of Coronary Heart Disease in People without Diabetes: Reykjavik Prospective Study and Systematic Review. PLoS Med. 2010, 7, e1000278. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, N.; Gao, P.; Kondapally Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; Stampfer, M.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar]
- Madani, N.H.; Ismail-Beigi, F.; Poustchi, H.; Nalini, M.; Sepanlou, S.G.; Malek, M.; Abbasi, M.A.; Khajavi, A.; Khamseh, M.E.; Malekzadeh, R. Impaired fasting glucose and major adverse cardiovascular events by hypertension and dyslipidemia status: The Golestan cohort study. BMC Cardiovasc. Disord. 2020, 20, 113. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Cai, X.; Mai, W.; Li, M.; Hu, Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ 2016, 355, i5953. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef]
- Wu, S.; Liu, W.; Ma, Q.; Yu, W.; Guo, Y.; Zhao, Y.; Shi, D.; Liu, L.; Zhou, Z.; Wang, J.; et al. Association between insulin resistance and coronary plaque vulner-ability in patients with acute coronary syndromes: Insights from optical coherence tomography. Angiology 2019, 70, 539–546. [Google Scholar] [CrossRef]
- Iguchi, T.; Hasegawa, T.; Otsuka, K.; Matsumoto, K.; Yamazaki, T.; Nishimura, S.; Nakata, S.; Ehara, S.; Kataoka, T.; Shimada, K.; et al. Insulin resistance is associated with coronary plaque vulnerability: Insight from optical coherence tomography analysis. Eur. Heart J. Cardiovasc. Imaging 2013, 15, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Farhan, S.; Redfors, B.; Maehara, A.; McAndrew, T.; Ben-Yehuda, O.; De Bruyne, B.; Mehran, R.; Vogel, B.; Giustino, G.; Serruys, P.W.; et al. Relationship between insulin resistance, coronary plaque, and clinical outcomes in patients with acute coronary syndromes: An analysis from the PROSPECT study. Cardiovasc. Diabetol. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Selvin, E.; Lazo, M.; Chen, Y.; Shen, L.; Rubin, J.; McEvoy, J.W.; Hoogeveen, R.C.; Sharrett, A.R.; Ballantyne, C.M.; Coresh, J. Diabetes Mellitus, Prediabetes, and Incidence of Subclinical Myocardial Damage. Circulation 2014, 130, 1374–1382. [Google Scholar] [CrossRef] [Green Version]
- Whelton, S.P.; McEvoy, J.W.; Lazo, M.; Coresh, J.; Ballantyne, C.M.; Selvin, E. High-sensitivity cardiac troponin T (hs-cTnT) as a predictor of incident diabetes in the atherosclerosis risk in communities study. Diabetes Care 2017, 40, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Turrini, F.; Scarlini, S.; Mannucci, C.; Messora, R.; Giovanardi, P.; Magnavacchi, P.; Cappelli, C.; Evandri, V.; Zanasi, A.; Romano, S.; et al. Does coronary Atherosclerosis Deserve to be Diagnosed earlY in Diabetic patients? The DADDY-D trial. Screening diabetic patients for unknown coronary disease. Eur. J. Intern. Med. 2015, 26, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Petursson, P.; Herlitz, J.; Lindqvist, J.; Sjöland, H.; Gudbjörnsdottir, S. Prevalence and severity of abnormal glucose regulation and its relation to long-term prognosis after coronary artery bypass grafting. Coron. Artery Dis. 2013, 24, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.L.; Kalyani, R.R.; Golden, S.; Stearns, S.C.; Wruck, L.; Yeh, H.C.; Coresh, J.; Selvin, E. Diabetes and Prediabetes and Risk of Hospitalization: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 2016, 39, 772–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutinho, M.; Gerstein, H.C.; Wang, Y.; Yusuf, S. The relationship between glucose and incident cardiovascular events: A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999, 22, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Laichuthai, N.; Abdul-Ghani, M.; Kosiborod, M.; Parksook, W.W.; Kerr, S.J.; Defronzo, R.A. Newly discovered abnormal glucose tolerance in patients with acute myocardial infarction and cardiovascular outcomes: A meta-analysis. Diabetes Care 2020, 43, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.S.; Dagenais, G.R.; Mohan, V.; Diaz, R.; Probstfield, J.; Freeman, R.; Shaw, J.; Lanas, F.; Avezum, A.; Budaj, A.; et al. Glucose levels are associated with cardiovascular disease and death in an international cohort of normal glycaemic and dysglycaemic men and women: The EpiDREAM cohort study. Eur. J. Prev. Cardiol. 2012, 19, 755–764. [Google Scholar] [CrossRef]
- Baranowska-Jurkun, A.; Matuszewski, W.; Bandurska-Stankiewicz, E. Chronic microvascular complications in prediabetic states—An overview. J. Clin. Med. 2020, 9, 3289. [Google Scholar] [CrossRef]
- Demmer, R.T.; Allison, M.A.; Cai, J.; Kaplan, R.C.; Desai, A.A.; Hurwitz, B.E.; Newman, J.C.; Shah, S.J.; Swett, K.; Talavera, G.A.; et al. Association of impaired glucose regulation and insulin resistance with cardiac structure and function: Results from ECHO-SOL (Echocardiographic Study of Latinos). Circ. Cardiovasc. Imaging 2016, 9, e005032. [Google Scholar] [CrossRef] [Green Version]
- Davarpasand, T.; Hosseinsabet, A. Prediabetes, heart mechanics, and echocardiography: A narrative review. Echocardiography 2020, 38, 304–313. [Google Scholar] [CrossRef]
- Berry, C.; Brett, M.; Stevenson, K.; McMurray, J.J.V.; Norrie, J. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute heart failure. Heart 2008, 94, 296–304. [Google Scholar] [CrossRef]
- Matsue, Y.; Suzuki, M.; Nakamura, R.; Abe, M.; Ono, M.; Yoshida, S.; Seya, M.; Iwatsuka, R.; Mizukami, A.; Setoguchi, M.; et al. Prevalence and Prognostic Implications of Pre-Diabetic State in Patients With Heart Failure. Circ. J. 2011, 75, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Ezekowitz, J.A. Diabetes, impaired fasting glucose, and heart failure: It’s not all about the sugar. Eur. J. Heart Fail. 2014, 16, 1153–1156. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Preiss, D.; Jhund, P.S.; Squire, I.; Cardoso, J.S.; Merkely, B.; Martinez, F.; Starling, R.C.; Desai, A.S.; Lefkowitz, M.P.; et al. Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: Insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ. Heart Fail. 2016. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Swedberg, K.; Carlsson, J.; McMurray, J.J.V.; Michelson, E.L.; Olofsson, B.; Pfeffer, M.A.; Yusuf, S.; CHARM Program Investigators. The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure: An analysis of the candesartan in heart failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Arch. Intern. Med. 2008, 168, 1699–1704. [Google Scholar]
- Mongraw-Chaffin, M.; LaCroix, A.Z.; Sears, D.D.; Garcia, L.; Phillips, L.S.; Salmoirago-Blotcher, E.; Zaslavsky, O.; Anderson, C.A. A prospective study of low fasting glucose with cardiovascular disease events and all-cause mortality: The Women’s Health Initiative. Metabolism 2017, 70, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Borch-Johnsen, K.; Neil, A.; Balkau, B.; Larsen, S.; Nissinen, A.; Pekkanen, J.; Tuomilehto, J.; Jousilahti, P.; Lindstrom, J.; Pyorala, M.; et al. Glucose Tolerance and Cardiovascular Mortality. Arch. Intern. Med. 2001, 161, 397–405. [Google Scholar] [CrossRef]
- Tang, O.; Matsushita, K.; Coresh, J.; Sharrett, A.R.; McEvoy, J.W.; Windham, B.G.; Ballantyne, C.M.; Selvin, E. Mortality Implications of Prediabetes and Diabetes in Older Adults. Diabetes Care 2020, 43, 382–388. [Google Scholar] [CrossRef]
- Loehr, L.R.; Meyer, M.; Poon, A.K.; Selvin, E.; Palta, P.; Tanaka, H.; Pankow, J.S.; Wright, J.D.; Griswold, M.E.; Wagenknecht, L.E.; et al. Prediabetes and Diabetes Are Associated With Arterial Stiffness in Older Adults: The ARIC Study. Am. J. Hypertens. 2016, 29, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Rooney, M.R.; Rawlings, A.M.; Pankow, J.S.; Tcheugui, J.B.E.; Coresh, J.; Sharrett, A.R.; Selvin, E. Risk of Progression to Diabetes Among Older Adults With Prediabetes. JAMA Intern. Med. 2021, 181, 511. [Google Scholar] [CrossRef]
- Haffner, S.M. Glucose-tolerance testing in acute myocardial infarction. Lancet 2002, 359, 2127–2128. [Google Scholar] [CrossRef]
- Capes, S.E.; Hunt, D.; Malmberg, K.; Gerstein, H.C. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: A systematic overview. Lancet 2000, 355, 773–778. [Google Scholar] [CrossRef]
- Cheung, N.W.; Wong, K.Y.C.; Kovoor, P.; McLean, M. Stress hyperglycemia: A prospective study examining the relationship between glucose, cortisol and diabetes in myocardial infarction. J. Diabetes Complicat. 2019, 33, 329–334. [Google Scholar] [CrossRef]
- Pararajasingam, G.; Høfsten, D.E.; Løgstrup, B.B.; Egstrup, M.; Henriksen, F.L.; Hangaard, J.; Egstrup, K. Newly detected abnormal glucose regulation and long-term prognosis after acute myocardial infarction: Comparison of an oral glucose tolerance test and glycosylated haemoglobin A1c. Int. J. Cardiol. 2016, 214, 310–315. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; George, A.; John, J.; Sathyapalan, T. Newly diagnosed abnormal glucose tolerance determines post-MI prognosis in patients with hospital related hyperglycaemia but without known diabetes. J. Diabetes Complicat. 2020, 34, 107518. [Google Scholar] [CrossRef]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Rajput, R.; Garg, K.; Rajput, M. Prediabetes Risk Evaluation Scoring System [PRESS]: A simplified scoring system for detecting undiagnosed prediabetes. Prim. Care Diabetes 2019, 13, 11–15. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Pérez-Sousa, M.Á.; González-Ruíz, K.; Cano-Gutierrez, C.A.; Schmidt-RioValle, J.; Correa-Rodríguez, M.; Izquierdo, M.; Romero-García, J.A.; Campos-Rodríguez, A.Y.; Triana-Reina, H.R.; et al. Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients 2019, 11, 2654. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-L.; Liu, L.; Lo, K.; Huang, J.-Y.; Yu, Y.-L.; Huang, Y.-Q.; Feng, Y.-Q. Association between Triglyceride Glucose Index and Risk of New-Onset Diabetes among Chinese Adults: Findings from the China Health and Retirement Longitudinal Study. Front. Cardiovasc. Med. 2020, 7, 610322. [Google Scholar] [CrossRef]
- Wen, J.; Wang, A.; Liu, G.; Wang, M.; Zuo, Y.; Li, W.; Zhai, Q.; Mu, Y.; Gaisano, H.Y.; He, Y.; et al. Elevated triglyceride-glucose (TyG) index predicts incidence of Prediabetes: A prospective cohort study in China. Lipids Health Dis. 2020, 19, 226. [Google Scholar] [CrossRef]
- Ramdas Nayak, V.K.; Nayak, K.R.; Vidyasagar, S.; Rekha, P. Predictive performance of traditional and novel lipid combined anthropometric indices to identify prediabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1265–1272. [Google Scholar] [CrossRef]
- Wallace, A.S.; Wang, D.; Shin, J.I.; Selvin, E. Screening and diagnosis of prediabetes and diabetes in us children and adolescents. Pediatrics 2020, 146, e20200265. [Google Scholar] [CrossRef]
- Selvin, E.; Halushka, M.; Rawlings, A.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Astor, B.C. sRAGE and Risk of Diabetes, Cardiovascular Disease, and Death. Diabetes 2013, 62, 2116–2121. [Google Scholar] [CrossRef] [Green Version]
- Vistisen, D.; Kivimäki, M.; Perreault, L.; Hulman, A.; Witte, D.R.; Brunner, E.J.; Tabák, A.; Jørgensen, M.E.; Færch, K. Reversion from prediabetes to normo-glycaemia and risk of cardiovascular disease and mortality: The Whitehall II cohort study. Diabetologia 2019, 62, 1385–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shou, J.; Chen, P.-J.; Xiao, W.-H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.H.; Kim, D.H.; Lee, E.K.; Kim, N.D.; Im, D.S.; Lee, J.; Yu, B.P.; Chung, H.Y. Age-related inflammation and insulin resistance: A review of their intricate interdependency. Arch. Pharmacal Res. 2014, 37, 1507–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and cardiovascular disease: Pathophysiology and interventions for prevention and risk reduction ben. Physiol. Behav. 2018, 47, 33–50. [Google Scholar]
- Galaviz, K.I.; Weber, M.B.; Straus, A.; Haw, J.S.; Venkat Narayan, K.M.; Ali, M.K. Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care 2018, 41, 1526–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, R.; Abdelkader, N.B.; Acosta, T.; Gilis-Januszewska, A.; Gómez-Huelgas, R.; Makrilakis, K.; Kamenov, Z.; Paulweber, B.; Satman, I.; Djordjevic, P.; et al. Early prevention of diabetes microvascular complications in people with hyperglycaemia in Europe. ePREDICE randomized trial. Study protocol, recruitment and selected baseline data. PLoS ONE 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.S.P.; Chandramouli, C.; Ahooja, V.; Verma, S. SGLT-2 inhibitors in heart failure: Current management, unmet needs, and therapeutic prospects. J. Am. Heart Assoc. 2019, 8, e013389. [Google Scholar] [CrossRef]
- Lechea, E.; Popescu, M.; Dimulescu, D.; Godoroja, D.; Copaescu, C. The impact of bariatric surgery on diabetes and other cardiovascular risk factors. Chirurgia 2019, 114, 725–731. [Google Scholar] [CrossRef]
Definition | Criteria | Prediabetes Range |
---|---|---|
ADA | IFG | 100–125 mg/dL (5.6–6.9 mmol/L) |
IGT | 140–199 mg/dL (7.8–11.0 mmol/L) | |
HbA1c | 5.7–6.4% (39–47 mmol/mol) | |
WHO | IFG | 110–125 mg/dL (6.1–6.9 mmol/L) |
IGT | 140–199 mg/dL (7.8–11.0 mmol/L) | |
IEC | HbA1c | 6–6.4% (42–47 mmol/mol) |
|
Predictor | Association to Diabetes Progression |
---|---|
IFG | Exponential progression in the top quartile |
IGT | Linear increase in progression to diabetes |
HbA1c | Good predictor for the young population |
Race | Hispanic, Mexican-Americans, Pima, Nauruan populations |
High BMI | Good predictor in low-risk populations |
Weight gain | Progression to diabetes in African Americans |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, E.; Popescu, M.-R.; Popescu, A.-C.; Balanescu, S.-M. Phenotyping the Prediabetic Population—A Closer Look at Intermediate Glucose Status and Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 6864. https://doi.org/10.3390/ijms22136864
Barbu E, Popescu M-R, Popescu A-C, Balanescu S-M. Phenotyping the Prediabetic Population—A Closer Look at Intermediate Glucose Status and Cardiovascular Disease. International Journal of Molecular Sciences. 2021; 22(13):6864. https://doi.org/10.3390/ijms22136864
Chicago/Turabian StyleBarbu, Elena, Mihaela-Roxana Popescu, Andreea-Catarina Popescu, and Serban-Mihai Balanescu. 2021. "Phenotyping the Prediabetic Population—A Closer Look at Intermediate Glucose Status and Cardiovascular Disease" International Journal of Molecular Sciences 22, no. 13: 6864. https://doi.org/10.3390/ijms22136864
APA StyleBarbu, E., Popescu, M. -R., Popescu, A. -C., & Balanescu, S. -M. (2021). Phenotyping the Prediabetic Population—A Closer Look at Intermediate Glucose Status and Cardiovascular Disease. International Journal of Molecular Sciences, 22(13), 6864. https://doi.org/10.3390/ijms22136864