Neuroprotective Effects of Guanosine in Ischemic Stroke—Small Steps towards Effective Therapy
Abstract
:1. Introduction
2. The Physiological Role and Signaling Targets of Endogenous Guanosine in Central Nervous System
2.1. Cellular Location, Release, and Metabolism of Guanine Derivatives in the Brain
2.2. Neurotrophic Effects of Guoanosine in CNS—Role in Neurogenesis, Neuritogenesis, and Cell Differentiation
2.3. Guanine Derivatives and Neuroprotection
2.4. Guanosine-Specific Targets: Receptors and Binding Sites
3. Key Pathophysiological Events of Ischemic Stroke and Targets for Guanosine
3.1. PI3K, MEK, and PKC Are Involved in Guanosine-Mediated Neuroprotection
3.2. Guanosine-Mediated Neuroprotection Depends on BK Channels Activity
3.3. Guanosine Acts Against Glutamate Excitotoxicity
3.4. Guanosine Prevents Mitochondrial Dysfunction
3.5. Guanosine Mediates the Decrease in NO Overproduction
3.6. Guanosine Exerts Antioxidative Effects through the Activation of Heme Oxygenase-1
3.7. Guanosine and Post-translational Processes in Ischemia—The Potential Role of SUMOylation
4. Protective Effects of Guanosine against Ischemic Stroke: Evidence from In Vivo Studies
4.1. Safety and Pharmacokinetics of Exogenous Guanosine in Rodent Models—Implications in Ischemic Stroke
4.2. Neuroprotective and Neurorestorative Effects of Guanosine in Rodent Stroke Models
5. Current Challenges and Limitations of Guanosine Application in Ischemic Stroke
6. Clinical Perspective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donkor, E.S. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, P.B. The global burden of stroke: Persistent and disabling. Lancet Neurol. 2019, 18, 417–418. [Google Scholar] [CrossRef] [Green Version]
- Phipps, M.S.; Cronin, C.A. Management of acute ischemic stroke. BMJ 2020, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2021 Update. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Kuriakose, D.; Xiao, Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef]
- Etherton, M.R.; Gadhia, R.R.; Schwamm, L.H. Thrombolysis beyond 4.5 h in Acute Ischemic Stroke. Curr. Neurol. Neurosci. Rep. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Baron, J.C. Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nat. Rev. Neurol. 2018, 14, 325–337. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Back, T.; Hemmen, T.; Schüler, O.G. Lesion evolution in cerebral ischemia. J. Neurol. 2004, 251, 388–397. [Google Scholar] [CrossRef]
- Goenka, L.; Uppugunduri Satyanarayana, C.R.S.S.K.; George, M. Neuroprotective agents in Acute Ischemic Stroke—A Reality Check. Biomed. Pharm. Ther. 2019, 109, 2539–2547. [Google Scholar] [CrossRef]
- Taylor, C.W. The role of G proteins in transmembrane signalling. Biochem. J. 1990, 272, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ciccarelli, R.; Ballerini, P.; Sabatino, G.; Rathbone, M.P.; D’Onofrio, M.; Caciagli, F.; Di Iorio, P. Involvement of astrocytes in purine-mediated reparative processes in the brain. Int. J. Dev. Neurosci. 2001, 19, 395–414. [Google Scholar] [CrossRef]
- Schmidt, A.P.; Lara, D.R.; Souza, D.O. Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol. Ther. 2007, 116, 401–416. [Google Scholar] [CrossRef]
- Gualix, J.; Pintor, J.; Miras-Portugal, M.T. Characterization of Nucleotide Transport into Rat Brain Synaptic Vesicles. J. Neurochem. 1999, 73, 1098–1104. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.G.; Souza, D.O.; Tasca, C.I. GTP uptake into rat brain synaptic vesicles. Brain Res. 2006, 1070, 71–76. [Google Scholar] [CrossRef]
- Ciccarelli, R.; Iorio, P.D.I.; Giuliani, P.; Alimonte, I.D.; Ballerini, P.; Caciagli, F.; Rathbone, M.P. Rat Cultured Astrocytes Release Guanine-Based Purines in Basal Conditions and After Hypoxia/Hypoglycemia. Glia 1999, 98, 93–98. [Google Scholar] [CrossRef]
- Dos Santos-Rodrigues, A.; Grañé-Boladeras, N.; Bicket, A.; Coe, I.R. Nucleoside transporters in the purinome. Neurochem. Int. 2014, 73, 229–237. [Google Scholar] [CrossRef]
- Zimmermann, H.; Braun, N. Extracellular metabolism of nucleotides in the nervous system. J. Auton. Pharm. Ther. 1996, 16, 397–400. [Google Scholar] [CrossRef]
- Tasca, C.I.; Lanznaster, D.; Oliveira, K.A.; Fernández-dueñas, V.; Ciruela, F.; Jean, R.; Aubert, P. Neuromodulatory Effects of Guanine-Based Purines in Health and Disease. Front. Cellular Neurosci. 2018, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Peña-Altamira, L.E.; Polazzi, E.; Giuliani, P.; Beraudi, A.; Massenzio, F.; Mengoni, I.; Poli, A.; Zuccarini, M.; Ciccarelli, R.; Di Iorio, P.; et al. Release of soluble and vesicular purine nucleoside phosphorylase from rat astrocytes and microglia induced by pro-inflammatory stimulation with extracellular ATP via P2X7 receptors. Neurochem. Int. 2018, 115, 37–49. [Google Scholar] [CrossRef]
- Giuliani, P.; Zuccarini, M.; Buccella, S.; Peña-Altamira, L.E.; Polazzi, E.; Virgili, M.; Monti, B.; Poli, A.; Rathbone, M.P.; Iorio, P.D.; et al. Evidence for purine nucleoside phosphorylase (PNP) release from rat C6 glioma cells. J. Neurochem. 2017, 141, 208–221. [Google Scholar] [CrossRef]
- Giuliani, P.; Zuccarini, M.; Buccella, S.; Rossini, M.; D’Alimonte, I.; Ciccarelli, R.; Marzo, M.; Marzo, A.; Di Iorio, P.; Caciagli, F. Development of a new HPLC method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma. J. Chromatogr. B 2016, 1009–1010, 114–121. [Google Scholar] [CrossRef]
- Miyamoto, S.; Ogava, H.; Shiraki, H.; Nakagava, H. Guanine Deaminase from Rat Brain. Purification, Characteristics, and Contribution to Ammoniagenesis in the Brain. J. Biochem. 1982, 91, 167–176. [Google Scholar] [CrossRef]
- Su, C.; Elfeki, N.; Ballerini, P.; D’Alimonte, I.; Bau, C.; Ciccarelli, R.; Caciagli, F.; Gabriele, J.; Jiang, S. Guanosine improves motor behavior, reduces apoptosis, and stimulates neurogenesis in rats with parkinsonism. J. Neurosci. Res. 2009, 87, 617–625. [Google Scholar] [CrossRef]
- Decker, H.; Piermartiri, T.C.B.; Nedel, C.B.; Romão, L.F.; Francisco, S.S.; Dal-Cim, T.; Boeck, C.R.; Moura-Neto, V.; Tasca, C.I. Guanosine and GMP increase the number of granular cerebellar neurons in culture: Dependence on adenosine A2A and ionotropic glutamate receptors. Purinergic Signal. 2019, 15, 439–450. [Google Scholar] [CrossRef]
- Decker, H.; Francisco, S.S.; Roma, L.F.; Boeck, C.R.; Moura-neto, V.; Tasca, C.I. Guanine Derivatives Modulate Extracellular Matrix Proteins Organization and Improve Neuron-Astrocyte. J. Neurosci. Res. 2007, 1951, 1943–1951. [Google Scholar] [CrossRef]
- Dal-Cim, T.; Martins, W.C.; Santos, A.R.S.; Tasca, C.I. Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca2+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. NSC 2011, 183, 212–220. [Google Scholar] [CrossRef]
- Su, C.; Wang, P.; Jiang, C.; Ballerini, P.; Caciagli, F.; Rathbone, M.P.; Jiang, S. Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J. Biol. Regul. Homeost. Agents 2013, 27, 673–680. [Google Scholar] [PubMed]
- Middlemiss, P.J.; Gysbers, J.W.; Rathbone, M.P. Extracellular guanosine and guanosine-5′-triphosphate increase: NGF synthesis and release from cultured mouse neopallial astrocytes. Brain Res. 1995, 677, 152–156. [Google Scholar] [CrossRef]
- Gysbers, J.W.; Rathbone, M.P. GTP and guanosine synergistically enhance NGF-induced neurite outgrowth from PC12 cells. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 1996, 14, 19–34. [Google Scholar] [CrossRef]
- Piermartiri, T.C.B.B.C.B.; Santos, B.; Barros-aragão, F.G.Q.Q.G.Q.; Prediger, R.D.D.; dos Santos, B.; Barros-aragão, F.G.Q.Q.G.Q.; Prediger, R.D.D.; Tasca, C.I.; Santos, B.; Barros-aragão, F.G.Q.Q.G.Q.; et al. Guanosine Promotes Proliferation in Neural Stem Cells from Hippocampus and Neurogenesis in Adult Mice. Mol. Neurobiol. 2020, 57, 3814–3826. [Google Scholar] [CrossRef]
- Davis, R.J. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 1993, 268, 14553–14556. [Google Scholar] [CrossRef]
- Hu, J.Y.; Chen, Y.; Schacher, S. Multifunctional role of protein kinase C in regulating the formation and maturation of specific synapses. J. Neurosci. 2007, 27, 11712–11724. [Google Scholar] [CrossRef]
- Lin, W.; Wang, S.-M.; Huang, T.-F.; Fu, W.-M. Differential regulation of fibronectin fibrillogenesis by protein kinases A and C. Connect. Tissue Res. 2002, 43, 22–31. [Google Scholar] [CrossRef]
- Yang, R.-S.; Tang, C.-H.; Ling, Q.-D.; Liu, S.-H.; Fu, W.-M. Regulation of fibronectin fibrillogenesis by protein kinases in cultured rat osteoblasts. Mol. Pharm. Ther. 2002, 61, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Nicole, O.; Pacary, E. Camkiiβ in neuronal development and plasticity: An emerging candidate in brain diseases. Int. J. Mol. Sci. 2020, 21, 7272. [Google Scholar] [CrossRef]
- Gysbers, J.W.; Rathbone, M.P. Guanosine enhances NGF-stimulated neurite outgrowth in PC12 cells. Neuroreport 1992, 3, 997–1000. [Google Scholar] [CrossRef]
- Bau, C.; Middlemiss, P.J.; Hindley, S.; Jiang, S.; Ciccarelli, R.; Caciagli, F.; DiIorio, P.; Werstiuk, E.S.; Rathbone, M.P. Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP. Purinergic Signal. 2005, 1, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Thauerer, B.; Zur Nedden, S.; Baier-Bitterlich, G. Vital role of protein kinase C-related kinase in the formation and stability of neurites during hypoxia. J. Neurochem. 2010, 113, 432–446. [Google Scholar] [CrossRef] [Green Version]
- Gudi, T.; Chen, J.C.; Casteel, D.E.; Seasholtz, T.M.; Boss, G.R.; Pilz, R.B. cGMP-dependent protein kinase inhibits serum-response element-dependent transcription by inhibiting rho activation and functions. J. Biol. Chem. 2002, 277, 37382–37393. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, S.; Pilla, R.; Morabito, C.; Sacchetti, S.; Mancinelli, R.; Fanò, G.; Mariggiò, M.A. Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int. J. Dev. Neurosci. 2009, 27, 135–147. [Google Scholar] [CrossRef]
- Uemura, Y.; Miller, J.M.; Matson, W.R.; Beal, M.F. Neurochemical analysis of focal ischemia in rats. Stroke 1991, 22, 1548–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regner, A.; Crestana, R.E.; Friedman, G.; Chemale, I.; Souza, D. Guanine nucleotides are present in human CSF. Neuroreport 2000, 8, 3771–3774. [Google Scholar] [CrossRef] [PubMed]
- Kovács, Z.; Kékesi, K.A.; Dobolyi, Á.; Lakatos, R.; Juhász, G. Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in Wistar Albino Glaxo Rijswijk rats. Neuroscience 2015, 300, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Massari, C.M.; López-Cano, M.; Núñez, F.; Fernández-Dueñas, V.; Tasca, C.I.; Ciruela, F. Antiparkinsonian Efficacy of Guanosine in Rodent Models of Movement Disorder. Front. Pharm. Ther. 2017, 8, 700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanznaster, D.; Mack, J.M.; Coelho, V.; Ganzella, M.; Almeida, R.F.; Dal-Cim, T.; Hansel, G.; Zimmer, E.R.; Souza, D.O.; Prediger, R.D.; et al. Guanosine Prevents Anhedonic-Like Behavior and Impairment in Hippocampal Glutamate Transport Following Amyloid-β1–40 Administration in Mice. Mol. Neurobiol. 2017, 54, 5482–5496. [Google Scholar] [CrossRef] [PubMed]
- Bellaver, B.; Souza, D.O.D.G.; Bobermin, L.D.; Gonçalves, C.-A.; Souza, D.O.D.G.; Quincozes-Santos, A. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal. 2015, 11, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Paniz, L.G.; Calcagnotto, M.E.; Pandolfo, P.; Machado, D.G.; Santos, G.F.; Hansel, G.; Almeida, R.F.; Bruch, R.S.; Brum, L.M.; Torres, F.V.; et al. Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab. Brain Dis. 2014, 29, 645–654. [Google Scholar] [CrossRef]
- Petronilho, F.; Périco, S.R.; Vuolo, F.; Mina, F.; Constantino, L.; Comim, C.M.; Quevedo, J.; Souza, D.O.; Dal-Pizzol, F. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain. Behav. Immun. 2012, 26, 904–910. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Khan, M.I.; Lu, Y.; Wang, J.; Buttigieg, J.; Werstiuk, E.S.; Ciccarelli, R.; Caciagli, F.; Rathbone, M.P. Guanosine promotes myelination and functional recovery in chronic spinal injury. Neuroreport 2003, 14, 2463–2467. [Google Scholar] [CrossRef]
- Jiang, S.; Ballerini, P.; Buccella, S.; Giuliani, P.; Jiang, C.; Huang, X.; Rathbone, M.P. Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine. Purinergic Signal. 2008, 4, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, K.A.; Dal-Cim, T.A.; Lopes, F.G.; Nedel, C.B.; Tasca, C.I. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells. Purinergic Signal. 2017, 13, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Molz, S.; Dal-Cim, T.; Tasca, C.I. Guanosine-5′-monophosphate induces cell death in rat hippocampal slices via ionotropic glutamate receptors activation and glutamate uptake inhibition. Neurochem. Int. 2009, 55, 703–709. [Google Scholar] [CrossRef]
- Torres, F.V.; da Silva Filho, M.; Antunes, C.; Kalinine, E.; Antoniolli, E.; Portela, L.V.C.; Souza, D.O.; Tort, A.B.L. Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp. Neurol. 2010, 221, 296–306. [Google Scholar] [CrossRef]
- Traversa, U.; Bombi, G.; Iorio, P.D.; Ciccarelli, R.; Werstiuk, E.S.; Rathbone, M.P. Specific [3H]-guanosine binding sites in rat brain membranes. Br. J. Pharm. Ther. 2002, 135, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Traversa, U.; Bombi, G.; Camaioni, E.; MacChiarulo, A.; Costantino, G.; Palmieri, C.; Caciagli, F.; Pellicciari, R. Rat brain guanosine binding site: Biological studies and pseudo-Receptor construction. Bioorganic Med. Chem. 2003, 11, 5417–5425. [Google Scholar] [CrossRef]
- Liberto, V.; Di Mudò, G.; Garozzo, R.; Frinchi, M.; Fernandez-dueñas, V.; Iorio, P.; Di Ciccarelli, R.; Caciagli, F.; Condorelli, D.F.; Ciruela, F.; et al. The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation. Front. Pharmacol. 2016, 7, 1–15. [Google Scholar] [CrossRef]
- Volpini, R.; Marucci, G.; Buccioni, M.; DalBen, D.; Lambertucci, C.; Lammi, C.; Mishra, R.C.; Thomas, A.; Cristalli, G. Evidence for the existence of a specific gprotein-coupled receptor activated by guanosine. ChemMedChem 2011, 6, 1074–1080. [Google Scholar] [CrossRef]
- Civelli, O.; Reinscheid, R.K.; Zhang, Y.; Wang, Z.; Fredriksson, R.; Schiöth, H.B. G protein-coupled receptor deorphanizations. Annu. Rev. Pharm. Ther. Toxicol. 2013, 53, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Lanznaster, D.; Dal-Cim, T.; Piermartiri, T.C.B.; Tasca, C.I.; Article, R. Guanosine: A Neuromodulator with Therapeutic Potential in Brain Disorders. Aging Dis. 2016, 7, 657–679. [Google Scholar] [CrossRef] [Green Version]
- Borroto-Escuela, D.O.; Brito, I.; Romero-Fernandez, W.; Di Palma, M.; Oflijan, J.; Skieterska, K.; Duchou, J.; Van Craenenbroeck, K.; Suárez-Boomgaard, D.; Rivera, A.; et al. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int. J. Mol. Sci. 2014, 15, 8570–8590. [Google Scholar] [CrossRef]
- Massari, C.M.; Constantino, L.C.; Marques, N.F.; Binder, L.B.; Valle-León, M.; López-Cano, M.; Fernández-Dueñas, V.; Ciruela, F.; Tasca, C.I. Involvement of adenosine A1 and A2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice. Purinergic Signal. 2020, 16, 379–387. [Google Scholar] [CrossRef]
- Müller, C.E.; Scior, T. Adenosine receptors and their modulators. Pharm. Acta Helv. 1993, 68, 77–111. [Google Scholar] [CrossRef]
- Lanznaster, D.; Massari, C.M.; Marková, V.; Šimková, T.; Duroux, R.; Jacobson, K.A.; Fernández-Dueñas, V.; Tasca, C.I.; Ciruela, F. Adenosine A1-A2A Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects. Cells 2019, 8, 1630. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.F.; Comasseto, D.D.; Ramos, D.B.; Hansel, G.; Zimmer, E.R.; Loureiro, S.O.; Ganzella, M.; Souza, D.O. Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems. Mol. Neurobiol. 2017, 54, 423–436. [Google Scholar] [CrossRef]
- Dobrachinski, F.; Gerbatin, R.R.; Sartori, G.; Golombieski, R.M.; Antoniazzi, A.; Nogueira, C.W.; Royes, L.F.; Fighera, M.R.; Porciúncula, L.O.; Cunha, R.A.; et al. Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. Mol. Neurobiol. 2019, 56, 3145–3158. [Google Scholar] [CrossRef]
- Gerbatin, R.R.; Dobrachinski, F.; Cassol, G.; Soares, F.A.A.; Royes, L.F.F. A 1 rather than A 2A adenosine receptor as a possible target of Guanosine effects on mitochondrial dysfunction following Traumatic Brain Injury in rats. Neurosci. Lett. 2019, 704, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Dal-Cim, T.; Ludka, F.K.K.; Martins, W.C.C.; Reginato, C.; Parada, E.; Egea, J.; López, M.G.; Tasca, C.I.I.; Lõpez, M.G.; Tasca, C.I.I. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J. Neurochem. 2013, 126, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Frinchi, M.; Verdi, V.; Plescia, F.; Ciruela, F.; Grillo, M.; Garozzo, R.; Condorelli, D.F.; Iorio, P.; Di Caciagli, F.; Ciccarelli, R.; et al. Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A 1 and A 2A Receptors. Int. J. Mol. Sci. 2020, 21, 9281. [Google Scholar] [CrossRef] [PubMed]
- Nwaobi, S.E.; Cuddapah, V.A.; Patterson, K.C.; Randolph, A.C.; Olsen, M.L. The role of glial-specific Kir4. 1 in normal and pathological states of the CNS. Acta Neuropathol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Benfenati, V.; Caprini, M.; Nobile, M.; Rapisarda, C.; Ferroni, S. Guanosine promotes the up-regulation of inward rectifier potassium current mediated by Kir4. 1 in cultured rat cortical astrocytes. J. Neurochem. 2006, 430–445. [Google Scholar] [CrossRef]
- Dal-cim, T.; Molz, S.; Egea, J.; Parada, E.; Romero, A.; Budni, J.; Martín, M.D.; Saavedra, D.; Tasca, C.I.; López, M.G. Neurochemistry International Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3 b pathway. Neurochem. Int. 2012, 61, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Chavarria, A.; Perez-H, J.; Garcia, E.; Carrillo-Salgado, C.; Ruiz-Mar, G.; Perez-Tamayo, R. Poster Sessions Tuesday/Wednesday. J. Neurochem. 2013, 125, 194–280. [Google Scholar] [CrossRef]
- Schmidt, A.P.; Böhmer, A.E.; Schallenberger, C.; Antunes, C.; Tavares, R.G.; Wofchuk, S.T.; Elisabetsky, E.; Souza, D.O. Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice. Br. J. Pharm. Ther. 2010, 159, 1247–1263. [Google Scholar] [CrossRef] [Green Version]
- Dal-Cim, T.; Martins, W.C.; Thomaz, D.T.; Coelho, V.; Poluceno, G.G.; Lanznaster, D.; Vandresen-Filho, S.; Tasca, C.I. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation. Neurotox. Res. 2016, 29, 460–468. [Google Scholar] [CrossRef]
- Bettio, L.E.B.; Freitas, A.E.; Neis, V.B.; Santos, D.B.; Ribeiro, C.M.; Rosa, P.B.; Farina, M.; Rodrigues, A.L.S. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharm. Ther. Biochem. Behav. 2014, 127, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Bettio, L.E.B.; Cunha, M.P.; Budni, J.; Pazini, F.L.; Oliveira, Á.; Colla, A.R.; Rodrigues, A.L.S. Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav. Brain Res. 2012, 234, 137–148. [Google Scholar] [CrossRef]
- Lee, J.M.; Grabb, M.C.; Zipfel, G.J.; Choi, D.W. Brain tissue responses to ischemia. J. Clin. Investig. 2000, 106, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Yoo, A.J.; Hu, R.; Hakimelahi, R.; Lev, M.H.; Nogueira, R.G.; Hirsch, J.A.; González, R.G.; Schaefer, P.W. CT angiography source images acquired with a fast-acquisition protocol overestimate infarct core on diffusion weighted images in acute ischemic stroke. J. Neuroimaging 2012, 22, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, M.D. The new language of cerebral ischemia. Am. J. Neuroradiol. 1997, 18, 1435–1445. [Google Scholar]
- Pan, J.; Konstas, A.-A.; Bateman, B.; Ortolano, G.A.; Pile-Spellman, J. Reperfusion injury following cerebral ischemia: Pathophysiology, MR imaging, and potential therapies. Neuroradiology 2007, 49, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.W. Excitotoxic cell death. J. Neurobiol. 1992, 23, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Hazell, A.S. Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochem. Int. 2007, 50, 941–953. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, X.N.; Yenari, M.A. The inflammatory response in stroke. J. Neuroimmunol. 2007, 184, 53–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iadecola, C.; Anrather, J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011, 17, 796–808. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef]
- Becker, K.J. Inflammation and acute stroke. Curr. Opin. Neurol. 1998, 11, 45–49. [Google Scholar] [CrossRef]
- Stanimirovic, D.; Shapiro, A.; Wong, J.; Hutchison, J.; Durkin, J. The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion. J. Neuroimmunol. 1997, 76, 193–205. [Google Scholar] [CrossRef]
- Morioka, T.; Kalehua, A.N.; Streit, W.J. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J. Comp. Neurol. 1993, 327, 123–132. [Google Scholar] [CrossRef]
- Danton, G.H.; Dietrich, W.D. Inflammatory Mechanisms after Ischemia and Stroke. J. Neuropathol. Exp. Neurol. 2003, 62, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Leak, R.K.; Shi, Y.; Suenaga, J.; Gao, Y.; Zheng, P.; Chen, J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol. 2015, 11, 56–64. [Google Scholar] [CrossRef]
- Baeuerle, P.A.; Henkel, T. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 1994, 12, 141–179. [Google Scholar] [CrossRef]
- Chariot, A. 20 years of NF-kappaB. Biochem. Pharm. Ther. 2006, 72, 1051–1053. [Google Scholar] [CrossRef]
- Hoffmann, A.; Baltimore, D. Circuitry of nuclear factor kappaB signaling. Immunol. Rev. 2006, 210, 171–186. [Google Scholar] [CrossRef]
- Shirley, R.; Ord, E.N.J.; Work, L.M. Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidant 2014, 3, 472–501. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.-Q.; Mou, R.-T.; Feng, D.-X.; Wang, Z.; Chen, G. The role of nitric oxide in stroke. Med. Gas Res. 2017, 7, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Thomazi, A.P.P.; Boff, B.; Pires, T.D.D.; Godinho, G.; Battú, C.E.E.; Gottfried, C.; Souza, D.O.O.; Salbego, C.; Wofchuk, S.T.T. Profile of glutamate uptake and cellular viability in hippocampal slices exposed to oxygen and glucose deprivation: Developmental aspects and protection by guanosine. Brain Res. 2007, 8, 233–240. [Google Scholar] [CrossRef]
- Lossi, L.; Merighi, A. Neuronal cell death: Methods and protocols. Neuronal Cell Death Methods Protoc. 2014, 1254, 1–368. [Google Scholar] [CrossRef]
- Oleskovicz, S.P.B.; Martins, W.C.; Leal, R.B.; Tasca, C.I. Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen–glucose deprivation. Neurochem. Int. 2008, 52, 411–418. [Google Scholar] [CrossRef]
- Pap, M.; Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 1998, 273, 19929–19932. [Google Scholar] [CrossRef] [Green Version]
- Egea, J.; Romero, A.; Barrio, L.; Rodrigues, A.L.S.; Tasca, C.I.; Molz, S.; Dal-Cim, T.; Budni, J.; Martín-de-Saavedra, M.D.; Egea, J.; et al. Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/ glycogen synthase kinase 3β pathway activation and inducible nitric oxide synthase inhibition. J. Neurosci. Res. 2011, 89, 1400–1408. [Google Scholar] [CrossRef]
- Dal-cim, T.; Poluceno, G.G.; Lanznaster, D.; Oliveira, K.A.; De Nedel, C.B.; Tasca, C.I.; de Oliveira, K.A.; Nedel, C.B.; Tasca, C.I. Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: Involvement of A(1) and A(2A) adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal. 2019, 15, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Quincozes-santos, A.; Bobermin, L.D. Gliopreventive effects of guanosine against glucose deprivation in vitro. Purinergic Signal. 2013, 643–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pivonkova, H.; Benesova, J.; Butenko, O.; Chvatal, A.; Anderova, M. Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus. Neurochem. Int. 2010, 57, 783–794. [Google Scholar] [CrossRef]
- Steiner, E.; Enzmann, G.U.; Lin, S.; Ghavampour, S.; Hannocks, M.-J.; Zuber, B.; Rüegg, M.A.; Sorokin, L.; Engelhardt, B. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia 2012, 60, 1646–1659. [Google Scholar] [CrossRef]
- Köller, H.; Schroeter, M.; Jander, S.; Stoll, G.; Siebler, M. Time course of inwardly rectifying K(+) current reduction in glial cells surrounding ischemic brain lesions. Brain Res. 2000, 872, 194–198. [Google Scholar] [CrossRef]
- Quincozes-Santos, A.; Bobermin, L.G.; Souza, D.; Bellaver, B.; Gonçalves, C.-A.; Souza, D. Guanosine protects C6 astroglial cells against azide-induced oxidative damage: A putative role of heme oxygenase 1. J. Neurochem. 2014, 130. [Google Scholar] [CrossRef]
- Gribkoff, V.K.; Starrett, J.E.J.; Dworetzky, S.I.; Hewawasam, P.; Boissard, C.G.; Cook, D.A.; Frantz, S.W.; Heman, K.; Hibbard, J.R.; Huston, K.; et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med. 2001, 7, 471–477. [Google Scholar] [CrossRef]
- Yamada, K.; Inagaki, N. Neuroprotection by KATP channels. J. Mol. Cell. Cardiol. 2005, 38, 945–949. [Google Scholar] [CrossRef]
- Em, M.; Frizzo, S.; Lara, D.R.; Souza, A.D.; Vargas, C.R.; Salbego, C.G.; Souza, D.O. Guanosine Enhances Glutamate Uptake in Brain Cortical Slices at Normal and Excitotoxic Conditions. Cell. Molecul. Neurobiol. 2002, 22, 353–363. [Google Scholar]
- Em, M.; Schwalm, D.; Frizzo, J.K.K.; Frizzo, M.E.; Schwalm, F.D.; Frizzo, J.K.K.; Soares, F.A.; Souza, D.O. Guanosine Enhances Glutamate Transport Capacity in Brain Cortical Slices. Cell. Mol. Neurobiol. 2005, 25, 913–921. [Google Scholar] [CrossRef]
- Oliveira, D.L.; De Horn, J.F.; Rodrigues, J.M.; Frizzo, M.E.S.; Moriguchi, E.; Souza, D.O.; Wofchuk, S. Quinolinic acid promotes seizures and decreases glutamate uptake in young rats: Reversal by orally administered guanosine. Brain Res. 2004, 1018, 48–54. [Google Scholar] [CrossRef]
- Vinadé, E.R.; Schmidt, A.P.; Frizzo, M.E.S.; Portela, L.V.; Soares, F.A.; Schwalm, F.D.; Elisabetsky, E.; Izquierdo, I.; Souza, D.O. Effects of chronic administered guanosine on behavioral parameters and brain glutamate uptake in rats. J. Neurosci. Res. 2005, 79, 248–253. [Google Scholar] [CrossRef]
- Tavares, R.G.; Schmidt, A.P.; Abud, J.; Tasca, C.I.; Souza, D.O. In vivo quinolinic acid increases synaptosomal glutamate release in rats: Reversal by guanosine. Neurochem. Res. 2005, 30, 439–444. [Google Scholar] [CrossRef]
- Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol. 2014, 115, 157–188. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Njapo, S.A.N.; Rastogi, V.; Hedna, V.S. Taming glutamate excitotoxicity: Strategic pathway modulation for neuroprotection. Cns Drugs 2015, 29, 153–162. [Google Scholar] [CrossRef]
- Belov Kirdajova, D.; Kriska, J.; Tureckova, J.; Anderova, M. Ischemia-Triggered Glutamate Excitotoxicity from the Perspective of Glial Cells. Front. Cell. Neurosci. 2020, 14, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Nonose, Y.; Pieper, L.Z.; Silva, J.S.; Longoni, A.; Apel, R.V.; Meira-martins, L.A. Guanosine enhances glutamate uptake and oxidation, preventing oxidative stress in mouse hippocampal slices submitted to high glutamate levels. Brain Res. 2020, 1748, 147080. [Google Scholar] [CrossRef]
- Swanson, R.A. Astrocyte glutamate uptake during chemical hypoxia in vitro. Neurosci. Lett. 1992, 147, 143–146. [Google Scholar] [CrossRef]
- Swanson, R.A.; Farrell, K.; Simon, R.P. Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J. Cereb. Blood Flow Metab. 1995, 15, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Hansel, G.; Tonon, A.C.C.; Guella, F.L.L.; Pettenuzzo, L.F.F.; Duarte, T.; Duarte, M.M.M.F.; Oses, J.P.P.; Achaval, M.; Souza, D.O.; Maria, M.; et al. Guanosine Protects Against Cortical Focal Ischemia. Involvement of Inflammatory Response. Mol. Neurobiol. 2015, 52, 1791–1803. [Google Scholar] [CrossRef] [PubMed]
- Gegelashvili, G.; Dehnes, Y.; Danbolt, N.C.; Schousboe, A. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem. Int. 2000, 37, 163–170. [Google Scholar] [CrossRef]
- Sims, K.D.; Straff, D.J.; Robinson, M.B. Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 2000, 275, 5228–5237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castilho, R.F.; Kowaltowski, A.J.; Vercesi, A.E. 3,5,3′-Triiodothyronine Induces Mitochondrial Permeability Transition Mediated by Reactive Oxygen Species and Membrane Protein Thiol Oxidation. Arch. Biochem. Biophys. 1998, 354, 151–157. [Google Scholar] [CrossRef]
- Jaiswal, M.K.; Zech, W.-D.; Goos, M.; Leutbecher, C.; Ferri, A.; Zippelius, A.; Carrì, M.T.; Nau, R.; Keller, B.U. Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. Bmc Neurosci. 2009, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Christophe, M.; Nicolas, S. Mitochondria: A target for neuroprotective interventions in cerebral ischemia-reperfusion. Curr. Pharm. Des. 2006, 12, 739–757. [Google Scholar] [CrossRef]
- Courtes, A.A.; Carvalho, N.R.; De Gonçalves, D.F.; Duarte, D.; Carvalho, P.; Dobrachinski, F.; Luis, J.; Onofre, D.; Souza, G.D.; Alexandre, F.; et al. Biomedicine & Pharmacotherapy Guanosine protects against Ca 2 + -induced mitochondrial dysfunction in rats. Biomed. Pharm. Ther. 2019, 111, 1438–1446. [Google Scholar] [CrossRef]
- Wang, W.; Gong, G.; Wang, X.; Wei-LaPierre, L.; Cheng, H.; Dirksen, R.; Sheu, S.-S. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. Antioxid. Redox Signal. 2016, 25, 534–549. [Google Scholar] [CrossRef]
- Thomaz, D.T.; Dal-cim, T.A.; Martins, W.C.; Cunha, M.P.; Lanznaster, D.; Bem, A.F. De Guanosine prevents nitroxidative stress and recovers mitochondrial membrane potential disruption in hippocampal slices subjected to oxygen/glucose deprivation. Purinergic Signal. 2016, 707–718. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Wang, L.; Liu, J.; Xie, F.; Su, B.; Wang, X. Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidant 2017, 6, 25. [Google Scholar] [CrossRef]
- Brustovetsky, N.; Brustovetsky, T.; Purl, K.J.; Capano, M.; Crompton, M.; Dubinsky, J.M. Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J. Neurosci. 2003, 23, 4858–4867. [Google Scholar] [CrossRef] [Green Version]
- Janikiewicz, J.; Szymański, J.; Malinska, D.; Patalas-Krawczyk, P.; Michalska, B.; Duszyński, J.; Giorgi, C.; Bonora, M.; Dobrzyn, A.; Wieckowski, M.R. Mitochondria-associated membranes in aging and senescence: Structure, function, and dynamics. Cell Death Dis. 2018, 9, 332. [Google Scholar] [CrossRef]
- Terpolilli, N.A.; Moskowitz, M.A.; Plesnila, N. Nitric oxide: Considerations for the treatment of ischemic stroke. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2012, 32, 1332–1346. [Google Scholar] [CrossRef] [Green Version]
- Esplugues, J. V NO as a signalling molecule in the nervous system. Br. J. Pharm. Ther. 2002, 135, 1079–1095. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.C. Nitric oxide and neuronal death. Nitric Oxide Biol. Chem. 2010, 23, 153–165. [Google Scholar] [CrossRef]
- Bolaños, J.; Moro, M.; Lizasoain, I.; Almeida, A. Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implications. Adv. Drug Deliv. Rev. 2009, 61, 1299–1315. [Google Scholar] [CrossRef]
- Bolanos, J.; Heales, S. Persistent mitochondrial damage by nitric oxide and its derivatives: Neuropathological implications. Front. Neuroenergetics 2010, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Martín-de-Saavedra, M.D.; del Barrio, L.; Cañas, N.; Egea, J.; Lorrio, S.; Montell, E.; Vergés, J.; García, A.G.; López, M.G. Chondroitin sulfate reduces cell death of rat hippocampal slices subjected to oxygen and glucose deprivation by inhibiting p38, NFκB and iNOS. Neurochem. Int. 2011, 58, 676–683. [Google Scholar] [CrossRef]
- Thomaz, D.T.; Rafognatto, R.; Luisa, A.; Binder, B.; Scheffer, L.; Willms, A.; Fátima, C.; Mena, R.; Silva, B.; Tasca, C.I. Guanosine Neuroprotective Action in Hippocampal Slices Subjected to Oxygen and Glucose Deprivation Restores ATP Levels, Lactate Release and Glutamate Uptake Impairment: Involvement of Nitric Oxide. Neurochem. Res. 2020, 45, 2217–2229. [Google Scholar] [CrossRef]
- Gourdin, M.; Dubois, P. Impact of Ischemia on Cellular Metabolism. Artery Bypass 2013, 54509, 3–18. [Google Scholar]
- Magistretti, P.J.; Pellerin, L.; Rothman, D.L.; Shulman, R.G. Energy on demand. Science 1999, 283, 496–497. [Google Scholar] [CrossRef]
- Bolaños, J.P. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J. Neurochem. 2016, 139 (Suppl. 2), 115–125. [Google Scholar] [CrossRef]
- Schurr, A.; Gozal, E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress. Front. Pharm. Ther. 2011, 2, 96. [Google Scholar] [CrossRef] [Green Version]
- Pellerin, L.; Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 1994, 91, 10625–10629. [Google Scholar] [CrossRef] [Green Version]
- Stocker, R.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Antioxidant activities of bile pigments: Biliverdin and bilirubin. Methods Enzym. Ther. 1990, 186, 301–309. [Google Scholar] [CrossRef]
- Harder, Y.; Amon, M.; Schramm, R.; Rücker, M.; Scheuer, C.; Pittet, B.; Erni, D.; Menger, M.D. Ischemia-induced up-regulation of heme oxygenase-1 protects from apoptotic cell death and tissue necrosis. J. Surg. Res. 2008, 150, 293–303. [Google Scholar] [CrossRef]
- Scapagnini, G.; Butterfield, D.A.; Colombrita, C.; Sultana, R.; Pascale, A.; Calabrese, V. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid. Redox Signal. 2004, 6, 811–818. [Google Scholar] [CrossRef]
- Lu, X.; Gu, R.; Hu, W.; Sun, Z.; Wang, G.; Wang, L.; Xu, Y. Upregulation of heme oxygenase-1 protected against brain damage induced by transient cerebral ischemia-reperfusion injury in rats. Exp. Ther. Med. 2018, 15, 4629–4636. [Google Scholar] [CrossRef] [PubMed]
- Sethi, G.; Sung, B.; Aggarwal, B.B. Nuclear factor-kappaB activation: From bench to bedside. Exp. Biol. Med. 2008, 233, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Tulpule, K.; Dringen, R. Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes. Glia 2012, 60, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Zanella, C.A.; Tasca, C.I.; Henley, J.M.; Wilkinson, K.A. Guanosine modulates SUMO2/3-ylation in neurons and astrocytes via adenosine receptors. Purinergic Signal. 2020, 439–450. [Google Scholar] [CrossRef]
- Geiss-Friedlander, R.; Melchior, F. Concepts in sumoylation: A decade on. Nat. Rev. Mol. Cell Biol. 2007, 8, 947–956. [Google Scholar] [CrossRef]
- Wilkinson, K.A.; Henley, J.M. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 2010, 428, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Henley, J.M.; Craig, T.J.; Wilkinson, K.A. Neuronal SUMOylation: Mechanisms, physiology, and roles in neuronal dysfunction. Physiol. Rev. 2014, 94, 1249–1285. [Google Scholar] [CrossRef]
- Cimarosti, H.; Ashikaga, E.; Jaafari, N.; Dearden, L.; Rubin, P.; Wilkinson, K.A.; Henley, J.M. Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurones. J. Cereb. Blood Flow Metab. 2012, 32, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Mou, Y.; Klimanis, D.; Bernstock, J.D.; Hallenbeck, J.M. Global SUMOylation is a molecular mechanism underlying hypothermia-induced ischemic tolerance. Front. Cell. Neurosci. 2014, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huang, D.; Zhou, J.; Yue, Y.; Wang, X. SUMOylation participates in induction of ischemic tolerance in mice. Brain Res. Bull. 2019, 147, 159–164. [Google Scholar] [CrossRef]
- Pardridge, W.M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRx 2005, 2, 3–14. [Google Scholar] [CrossRef]
- Soares, F.A.; Schmidt, A.P.; Farina, M.; Frizzo, M.E.S.; Tavares, R.G.; Portela, L.V.C.; Lara, D.R.; Souza, D.O. Anticonvulsant effect of GMP depends on its conversion to guanosine. Brain Res. 2004, 1005, 182–186. [Google Scholar] [CrossRef]
- Ganzella, M.; Dias, E.; Oliveira, A.; De Diniz, D.; Fernanda, C. Effects of chronic guanosine treatment on hippocampal damage and cognitive impairment of rats submitted to chronic cerebral hypoperfusion. Neurolog. Sci. 2012, 985–997. [Google Scholar] [CrossRef]
- Ramos, D.B.; Muller, G.C.; Botter, G.; Rocha, M.; Dellavia, G.H.; Almeida, R.F.; Pettenuzzo, L.F.; Loureiro, S.O.; Hansel, G.; Cássio, Â.; et al. Intranasal guanosine administration presents a wide therapeutic time window to reduce brain damage induced by permanent ischemia in rats. Purinergic Signal. 2016, 149–159. [Google Scholar] [CrossRef]
- Jiang, S.; Fischione, G.; Guiliani, P.; Romano, S.; Caciagli, F.; Diiorio, P. Metabolism and distribution of guanosine given intraperitoneally: Implications for spinal cord injury. Nucleosides Nucleotides Nucleic Acids 2008, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Loureiro, S.O.; Pettenuzzo, L.F.; Almeida, R.F.; Ynumaru, E.Y.; Guazzelli, P.A.; Meyer, F.S.; Pasquetti, M.V.; Ganzella, M.; Calcagnotto, M.E.; et al. Effects of intranasal guanosine administration on brain function in a rat model of ischemic stroke. Purinergic Signal. 2021, 17, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.M.; Swanson, R.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia 2000, 32, 1–14. [Google Scholar] [CrossRef]
- Vinadé, E.R.; Schmidt, A.P.; Frizzo, M.E.S.; Izquierdo, I.; Elisabetsky, E.; Souza, D.O. Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res. 2003, 977, 97–102. [Google Scholar] [CrossRef]
- Kelly, K.J.; Plotkin, Z.; Dagher, P.C. Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J. Clin. Investig. 2001, 108, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.; Paniz, L.; Schallenberger, C.; Bo, A.E.; Wofchuk, S.T.; Elisabetsky, E.; Portela, L.V.C.; Souza, D.O.; Program, G. Guanosine Prevents Thermal Hyperalgesia in a Rat Model of Peripheral Mononeuropathy. J. Power Sources 2010, 11, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Saute, J.A.M.; da Silveira, L.E.; Soares, F.A.; Martini, L.H.; Souza, D.O.; Ganzella, M. Amnesic effect of GMP depends on its conversion to guanosine. Neurobiol. Learn. Mem. 2006, 85, 206–212. [Google Scholar] [CrossRef]
- Vinadé, E.R.; Izquierdo, I.; Lara, D.R.; Schmidt, A.P.; Souza, D.O. Oral administration of guanosine impairs inhibitory avoidance performance in rats and mice. Neurobiol. Learn. Mem. 2004, 81, 137–143. [Google Scholar] [CrossRef]
- Pereira, G.S.; Rossato, J.I.; Sarkis, J.J.F.; Cammarota, M.; Bonan, C.D.; Izquierdo, I. Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiol. Learn. Mem. 2005, 83, 217–223. [Google Scholar] [CrossRef]
- Jackson, E.K.; Mi, Z. The guanosine-adenosine interaction exists in vivo. J. Pharm. Exp. Ther. 2014, 350, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Varaschini, L.; Roberto, T.; Almeida, F.; Rohden, F.; Anderson, L.; Martins, M.; Teixeira, L.V.; Almeida, R.F.; Rohden, F.; Martins, L.A.M.; et al. Neuroprotective Effects of Guanosine Administration on In Vivo Cortical Focal Ischemia in Female and Male Wistar Rats. Neurochem. Res. 2018, 43, 1476–1489. [Google Scholar] [CrossRef]
- Suzuki, S.; Brown, C.M.; Wise, P.M. Neuroprotective effects of estrogens following ischemic stroke. Front. Neuroendocr. Ther. 2009, 30, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Moretto, M.B.; Boff, B.; Lavinsky, D.; Netto, C.A.; Rocha, J.B.T.; Souza, D.O.; Wofchuk, S.T. Importance of schedule of administration in the therapeutic efficacy of guanosine: Early intervention after injury enhances glutamate uptake in model of hypoxia-ischemia. J. Mol. Neurosci. 2009, 38, 216–219. [Google Scholar] [CrossRef]
- Chang, R.; Algird, A.; Bau, C.; Rathbone, M.P.; Jiang, S. Neuroprotective effects of guanosine on stroke models in vitro and in vivo. Neurosci. Lett. 2008, 431, 101–105. [Google Scholar] [CrossRef]
- Rathbone, M.P.; Saleh, T.M.; Connell, B.J.; Chang, R.; Su, C.; Worley, B.; Kim, M.; Jiang, S. Systemic administration of guanosine promotes functional and histological improvement following an ischemic stroke in rats. Brain Res. 2011, 1407, 79–89. [Google Scholar] [CrossRef]
- Souza, G.; Hansel, G.; Ramos, D.B.; Delgado, C.A.; Souza, D.O.; Almeida, F.; Portela, L.V. The Potential Therapeutic Effect of Guanosine after Cortical Focal Ischemia in Rats. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Connell, B.J.; Iorio, P.; Di Sayeed, I.; Ballerini, P.; Saleh, M.C.; Giuliani, P.; Saleh, T.M.; Rathbone, M.P.; Su, C.; Jiang, S. Guanosine Protects Against Reperfusion Injury in Rat Brains After Ischemic Stroke. J. Neurosci. Res. 2013, 272, 262–272. [Google Scholar] [CrossRef]
- Bettio, L.E.B.; Gil-mohapel, J.; Rodrigues, A.L.S. Guanosine and its role in neuropathologies. Purinergic Signal. 2016, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.L.; Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 2009, 4, 461–470. [Google Scholar] [CrossRef]
- Chen, H.; Yoshioka, H.; Kim, G.S.; Jung, J.E.; Okami, N.; Sakata, H.; Maier, C.M.; Narasimhan, P.; Goeders, C.E.; Chan, P.H. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid. Redox Signal. 2011, 14, 1505–1517. [Google Scholar] [CrossRef] [Green Version]
- Crack, P.J.; Taylor, J.M. Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med. 2005, 38, 1433–1444. [Google Scholar] [CrossRef]
- Moretto, M.B.; Arteni, N.S.; Lavinsky, D.; Netto, C.A.; Rocha, J.B.T. Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: Prevention by guanosine. Exp. Neurol. 2005, 195, 400–406. [Google Scholar] [CrossRef]
- Wang, Y.; Briz, V.; Chishti, A.; Bi, X.; Baudry, M. Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J. Neurosci. 2013, 33, 18880–18892. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.; Qiu, Z.; Li, D.; Fang, Y.U.; Zhang, S. Delayed administration of guanosine improves long-term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol. Med. Rep. 2017, 3999–4004. [Google Scholar] [CrossRef] [Green Version]
- Ruan, L.; Wang, B.; Zhuge, Q.; Jin, K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 2015, 1623, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.D.; Wu, C.L.; Hwang, W.C.; Yang, D.I. More insight into BDNF against neurodegeneration: Anti-apoptosis, anti-oxidation, and suppression of autophagy. Int. J. Mol. Sci. 2017, 18, 545. [Google Scholar] [CrossRef] [Green Version]
- Rathbone, M.; Pilutti, L.; Caciagli, F.; Jiang, S. Neurotrophic effects of extracellular guanosine. Nucleosides. Nucleotides Nucleic Acids 2008, 27, 666–672. [Google Scholar] [CrossRef]
- Massari, C.M.; Zuccarini, M.; Di Iorio, P.; Tasca, C.I. Guanosine Mechanisms of Action: Toward Molecular Targets. Front. Pharm. Ther. 2021, 12, 1–5. [Google Scholar] [CrossRef]
- Melani, A.; Pugliese, A.M.; Pedata, F. Adenosine Receptors in Cerebral Ischemia, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 119, ISBN 9780128010228. [Google Scholar]
- Bynoe, M.S.; Viret, C.; Yan, A.; Kim, D.G. Adenosine receptor signaling: A key to opening the blood-brain door. Fluids Barriers Cns 2015, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol. 2018, 315, C343–C356. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Liu, R.; Zhu, X.; Smerin, D.; Zhong, Y.; Gu, L.; Fang, W.; Xiong, X. The Involvement and Therapy Target of Immune Cells After Ischemic Stroke. Front. Immunol. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lymphocytes, S.P.; Pasquini, S.; Vincenzi, F.; Casetta, I.; Laudisi, M. Adenosinergic System Involvement in Ischemic. Cells 2020, 9, 1072. [Google Scholar] [CrossRef]
- Bantia, S.; Choradia, N. Treatment duration with immune-based therapies in Cancer: An enigma 11 Medical and Health Sciences 1107 Immunology. J. Immunother. Cancer 2018, 6, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Shanta, B. Purine Nucleoside Phosphorylase Inhibitors as Novel Immuno-Oncology Agent and Vaccine Adjuvant. Int. J. Immunol. Immunother. 2020, 7, 1–12. [Google Scholar] [CrossRef]
Experimental Animal | Experimental Model | Route of Administration | Proposed Mechanism/s of Neuroprotection | Outcome/Guanosine Mediated Effects | Reference |
---|---|---|---|---|---|
Adult male Wistar Rat | MCAo | I.p. |
| Chang et al. (2008) [175] | |
Adult male Sprague Dawley rats | MCAo | I.p. | Guo-induced increase in m-calpain level, preventing the necrotic cell death in ischemic area. |
| Rathbone et al. (2011) [176] |
Intracortical Injection |
| ||||
Adult male Sprague Dawley rats | MCAo with reperfusion | I.p. | Guo-induced inhibition of proinflammatory events induced by reperfusion. Inhibition of IL-8 release. |
| Conell et al. (2013) [178] |
Adult male Wistar Rat | Focal thermocoagulation in motor and sensorimotor cortices | I.p. | Guo-induced modulation of oxidative stress response system. Guo-induced glutamate uptake and intracellular conversion to glutamine. |
| Hansel et al. (2014) [177] |
Adult male Wistar Rat | Focal thermocoagulation in motor and sensorimotor cortices | I.p. | Guo-mediated restoration of anti-/proinflammatory balance, prevention of inflammatory cell infiltration. |
| Hansel et al. (2015) [121] |
Adult male Wistar Rat | Focal thermocoagulation in motor and sensorimotor cortices | I.n. | Guo-mediated improvement of mitochondrial status in penumbra. |
| Ramos et al. (2016) [161] |
Adult male C57BL/6J wild-type mice | PT | I.p. | Guo-induced increase in VEGF and BDNF enhancing poststroke angiogenesis and neurogenesis. |
| Deng et al. (2017) [185] |
Adult female and male Wistar Rat | Focal thermocoagulation in motor and sensorimotor cortices | I.p. |
| Teixeira et al. (2018) [172] | |
Adult male Wistar Rat | Focal thermocoagulation in motor and sensorimotor cortices | I.n. | Guo-mediated prevention of disruption in BBB integrity. |
| Müller et al. (2020) [163] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chojnowski, K.; Opielka, M.; Nazar, W.; Kowianski, P.; Smolenski, R.T. Neuroprotective Effects of Guanosine in Ischemic Stroke—Small Steps towards Effective Therapy. Int. J. Mol. Sci. 2021, 22, 6898. https://doi.org/10.3390/ijms22136898
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke—Small Steps towards Effective Therapy. International Journal of Molecular Sciences. 2021; 22(13):6898. https://doi.org/10.3390/ijms22136898
Chicago/Turabian StyleChojnowski, Karol, Mikolaj Opielka, Wojciech Nazar, Przemyslaw Kowianski, and Ryszard T. Smolenski. 2021. "Neuroprotective Effects of Guanosine in Ischemic Stroke—Small Steps towards Effective Therapy" International Journal of Molecular Sciences 22, no. 13: 6898. https://doi.org/10.3390/ijms22136898
APA StyleChojnowski, K., Opielka, M., Nazar, W., Kowianski, P., & Smolenski, R. T. (2021). Neuroprotective Effects of Guanosine in Ischemic Stroke—Small Steps towards Effective Therapy. International Journal of Molecular Sciences, 22(13), 6898. https://doi.org/10.3390/ijms22136898