Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Cell Culture, Ac4GalNAz and D-[6-3H]-Glucosamine Treatment
4.2. Flow Cytometry
4.3. GAG Collection and Purification
4.4. HS and CS Chain Length Analysis
4.5. Generation of GAG Disaccharide Species
4.6. 2-AMAC Labelling and RP-HPLC Separation of HS Disaccharides
4.7. Strong Anion Exchange (SAX)-HPLC Separation of CS Disaccharides
4.8. Sugar Microinjection and Incubation of Xenopus Embryos
4.9. Purification of Xenopus HS
4.10. Mass Spectrometry Analysis of Xenopus HS Disaccharides
4.11. Whole Mount Antibody Fluorescent Imaging
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hacker, U.; Nybakken, K.; Perrimon, N. Heparan sulphate proteoglycans: The sweet side of development. Nat. Rev. Mol. Cell Biol. 2005, 6, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Wrenshall, L.E.; Platt, J.L. Regulation of T cell homeostasis by heparan sulfate-bound IL-21. J. Immunol. 1999, 163, 3793–3800. [Google Scholar] [PubMed]
- Coulson-Thomas, V.J.; Gesteira, T.F.; Esko, J.; Kao, W. Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis. J. Biol. Chem. 2014, 289, 25211–25226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindahl, U.; Kjellen, L. Pathophysiology of heparan sulphate: Many diseases, few drugs. J. Intern. Med. 2013, 273, 555–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, A.M.; Stelling, M.P.; Pavao, M.S.G. Heparan sulfate and heparanase as modulators of breast cancer progression. Biomed Res. Int. 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wei, G.; Shi, Z.; Dryer, L.; Esko, J.D.; Wells, D.E.; Matzuk, M.M. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev. Biol. 2000, 224, 299–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stickens, D.; Zak, B.M.; Rougier, N.; Esko, J.D.; Werb, Z. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 2005, 132, 5055–5068. [Google Scholar] [CrossRef] [Green Version]
- McCormick, C.; Duncan, G.; Goutsos, K.T.; Tufaro, F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc. Natl. Acad. Sci. USA 2000, 97, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, J.; Eriksson, I.; Kjellen, L. Distinct effects on heparan sulfate structure by different active site mutations in NDST-1. Biochemistry 2003, 42, 2110–2115. [Google Scholar] [CrossRef]
- Deligny, A.; Dierker, T.; Dagälv, A.; Lundequist, A.; Eriksson, I.; Nairn, A.V.; Moremen, K.W.; Merry, C.L.; Kjellén, L. NDST2 (N-Deacetylase/N-Sulfotransferase-2) enzyme regulates heparan sulfate chain length. J. Biol. Chem. 2016, 291, 18600–18607. [Google Scholar] [CrossRef] [Green Version]
- Presto, J.; Thuveson, M.; Carlsson, P.; Busse, M.; Wilén, M.; Eriksson, I.; Kusche-Gullberg, M.; Kjellén, L. Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc. Natl. Acad. Sci. USA 2008, 105, 4751–4756. [Google Scholar] [CrossRef] [Green Version]
- Sasisekharan, R.; Venkataraman, G. Heparin and heparan sulfate: Biosynthesis, structure and function. Curr. Opin. Chem. Biol. 2000, 4, 626–631. [Google Scholar] [CrossRef]
- Dietrich, C.P.; Nader, H.B.; Buonassisi, V.; Colburn, P. Inhibition of synthesis of heparan sulfate by selenate—Possible dependence on sulfation for chain polymerization. FASEB J. 1988, 2, 56–59. [Google Scholar] [CrossRef]
- Greve, H.; Cully, Z.; Blumberg, P.; Kresse, H. Influence of chlorate on proteoglycan biosynthesis by cultured human fibroblasts. J. Biol. Chem. 1988, 263, 12886–12892. [Google Scholar] [CrossRef]
- Kisilevsky, R.; Szarek, W.A.; Ancsin, J.B.; Elimova, E.; Marone, S.; Bhat, S.; Berkin, A. Inhibition of amyloid A amyloidogenesis in vivo and in tissue culture by 4-deoxy analogues of peracetylated 2-acetamido-2-deoxy-alpha- and beta-d-glucose—Implications for the treatment of various amyloidoses. Am. J. Pathol. 2004, 164, 2127–2137. [Google Scholar] [CrossRef]
- Van Wijk, X.M.R.; Oosterhof, A.; van den Broek, S.A.; Griffioen, A.W.; Gerdy, B.; Rutjes, F.P.; van Delft, F.L.; van Kuppevelt, T.H. A 4-deoxy analogue of N-acetyl-D-glucosamine inhibits heparan sulphate expression and growth factor binding in vitro. Exp. Cell Res. 2010, 316, 2504–2512. [Google Scholar] [CrossRef]
- Beahm, B.J.; Dehnert, K.W.; Derr, N.L.; Kuhn, J.; Eberhart, J.K.; Spillmann, D.; Amacher, S.L.; Bertozzi, C.R. A Visualizable chain-terminating inhibitor of glycosaminoglycan biosynthesis in developing zebrafish. Angew. Chem. Int. Ed. 2014, 53, 3347–3352. [Google Scholar] [CrossRef] [Green Version]
- Kanwar, Y.S.; Hascall, V.C.; Jakubowski, M.L.; Gibbons, J.T. Effect of beta-D-xyloside on the glomerular proteoglycans. 1. Biochemical-studies. J. Cell Biol. 1984, 99, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Garud, D.R.; Tran, V.M.; Victor, X.V.; Koketsu, M.; Kuberan, B. Inhibition of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis. J. Biol. Chem. 2008, 283, 28881–28887. [Google Scholar] [CrossRef] [Green Version]
- Tsuzuki, Y.; Nguyen, T.K.N.; Garud, D.R.; Kuberan, B.; Koketsu, M. 4-Deoxy-4-fluoro-xyloside derivatives as inhibitors of glycosaminoglycan biosynthesis. Bioorganic Med. Chem. Lett. 2010, 20, 7269–7273. [Google Scholar] [CrossRef]
- Esko, J.D.; Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Investig. 2001, 108, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Breidenbach, M.A.; Gallagher, J.E.; King, D.S.; Smart, B.P.; Wu, P.; Bertozzi, C.R. Targeted metabolic labeling of yeast N-glycans with unnatural sugars. Proc. Natl. Acad. Sci. USA 2010, 107, 3988–3993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, M.; Carrico, I.S.; Ganguli, A.S.; Yu, S.H.; Hangauer, M.J.; Hubbard, S.C.; Kohler, J.J.; Bertozzi, C.R. Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc. Natl. Acad. Sci. USA 2011, 108, 3141–3146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debets, M.F.; Tastan, O.Y.; Wisnovsky, S.P.; Malaker, S.A.; Angelis, N.; Moeckl, L.K.; Choi, J.; Flynn, H.; Wagner, L.J.; Bineva-Todd, G.; et al. Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation. Proc. Natl. Acad. Sci. USA 2020, 117, 25293–25301. [Google Scholar] [CrossRef]
- Yang, L.F.; Nyalwidhe, J.O.; Guo, S.; Drake, R.R.; Semmes, O.J. Targeted Identification of Metastasis-associated Cell-surface Sialoglycoproteins in Prostate Cancer. Mol. Cell. Proteom. 2011, 10, M110.007294. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.L.; Huang, X.; Ethen, C.M.; Tatge, T.; Pasek, M.; Zaia, J. Non-reducing end labeling of heparan sulfate via click chemistry and a high throughput ELISA assay for heparanase. Glycobiology 2017, 27, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Merry, C.L.R.; Bullock, S.L.; Swan, D.C.; Backen, A.C.; Lyon, M.; Beddington, R.S.; Wilson, V.A.; Gallagher, J.T. The molecular phenotype of heparan sulfate in the Hs2st(-/-) mutant mouse. J. Biol. Chem. 2001, 276, 35429–35434. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.M.; Esko, J.D. An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J. Biol. Chem. 1996, 271, 17711–17717. [Google Scholar] [CrossRef] [Green Version]
- Merry, C.L.; Lyon, M.; Deakin, J.A.; Hopwood, J.J.; Gallagher, J.T. Highly sensitive sequencing of the sulfated domains of heparan sulfate. J. Biol. Chem. 1999, 274, 18455–18462. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, S.T.; Bertozzi, C.R. In vivo imaging of caenorhabditis elegans glycans. ACS Chem. Biol. 2009, 4, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Hang, H.C.; Yu, C.; Kato, D.L.; Bertozzi, C.R. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc. Natl. Acad. Sci. USA 2003, 100, 14846–14851. [Google Scholar] [CrossRef] [Green Version]
- Loebel, C.; Kwon, M.Y.; Wang, C.; Han, L.; Mauck, R.L.; Burdick, J.A. Metabolic Labeling to Probe the Spatiotemporal Accumulation of Matrix at the Chondrocyte-Hydrogel Interface. Adv. Funct. Mater. 2020, 30, 1909802. [Google Scholar] [CrossRef]
- He, D.X.; Gu, X.T.; Li, Y.R.; Jiang, L.; Jin, J.; Ma, X. Methylation-regulated miR-149 modulates chemoresistance by targeting GlcNAc N-deacetylase/N-sulfotransferase-1 in human breast cancer. FEBS J. 2014, 281, 4718–4730. [Google Scholar] [CrossRef]
- Amaya, E.; Offield, M.F.; Grainger, R.M. Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet. 1998, 14, 253–255. [Google Scholar] [CrossRef]
- Laughlin, S.T.; Bertozzi, C.R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat. Protoc. 2007, 2, 2930–2944. [Google Scholar] [CrossRef]
- Guimond, S.E.; Puvirajesinghe, T.M.; Skidmore, M.A.; Kalus, I.; Dierks, T.; Yates, E.A.; Turnbull, J.E. Rapid purification and high sensitivity analysis of heparan sulfate from cells and tissues: Toward glycomics profiling. J. Biol. Chem. 2009, 284, 25714–25722. [Google Scholar] [CrossRef] [Green Version]
- Wasteson, A. A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J. Chromatogr. 1971, 59, 87–97. [Google Scholar] [CrossRef]
- Deakin, J.A.; Lyon, M. A simplified and sensitive fluorescent method for disaccharide analysis of both heparan sulfate and chondroitin/dermatan sulfates from biological samples. Glycobiology 2008, 18, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Holley, R.J.; Ellison, S.M.; Fil, D.; O’Leary, C.; McDermott, J.; Senthivel, N.; Langford-Smith, A.W.; Wilkinson, F.L.; D’Souza, Z.; Parker, H.; et al. Macrophage enzyme and reduced inflammation drive brain correction of mucopolysaccharidosis IIIB by stem cell gene therapy. Brain 2018, 141, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Dubaissi, E.; Rousseau, K.; Lea, R.; Soto, X.; Nardeosingh, S.; Schweickert, A.; Amaya, E.; Thornton, D.J.; Papalopulu, N. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 2014, 141, 1514–1525. [Google Scholar] [CrossRef] [Green Version]
Condition | Secreted Modal Size (kDa) | Cell Extract Modal Size (kDa) | ||
---|---|---|---|---|
HS | CS/DS | HS | CS/DS | |
Vehicle control | 22 | 32 | 8.5 | 38 |
7 µM Ac4GalNAz | 12 | 22 | 6.9 | 31 |
35 µM Ac4GalNAz | 7 | 32 | 7.5 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciej-Hulme, M.L.; Dubaissi, E.; Shao, C.; Zaia, J.; Amaya, E.; Flitsch, S.L.; Merry, C.L.R. Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. Int. J. Mol. Sci. 2021, 22, 6988. https://doi.org/10.3390/ijms22136988
Maciej-Hulme ML, Dubaissi E, Shao C, Zaia J, Amaya E, Flitsch SL, Merry CLR. Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. International Journal of Molecular Sciences. 2021; 22(13):6988. https://doi.org/10.3390/ijms22136988
Chicago/Turabian StyleMaciej-Hulme, Marissa L., Eamon Dubaissi, Chun Shao, Joseph Zaia, Enrique Amaya, Sabine L. Flitsch, and Catherine L. R. Merry. 2021. "Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor" International Journal of Molecular Sciences 22, no. 13: 6988. https://doi.org/10.3390/ijms22136988
APA StyleMaciej-Hulme, M. L., Dubaissi, E., Shao, C., Zaia, J., Amaya, E., Flitsch, S. L., & Merry, C. L. R. (2021). Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. International Journal of Molecular Sciences, 22(13), 6988. https://doi.org/10.3390/ijms22136988