Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine
Abstract
:1. Introduction
2. Medicinal Applications of Hyaluronan
2.1. Treatment of Osteoarthritis
2.2. Cosmetics
2.3. Skin Wound Healing
- To adjust properties of HA including viscosity, elasticity and hydrophilicity,
- To elevate HA resistance to degradation, and thereby enhancing its residence time and the duration of its effects,
- To have HA in a form of a gel or hard textured scaffold with specific pore and particle sizes for specific cellular functions (such as cell adherence or migration),
- To produce HA-drug micelles and conjugates for sustained or targeted drug release,
- To bind HA to natural or synthetic compounds such as natural polymers, proteins, synthetic polymers, drugs and liposomes to obtain required physicochemical or therapeutic properties [79].
2.4. Tissue Engineering
2.5. Ophthalmology
2.6. Dentistry
2.7. Gene Delivery
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stern, R.; Kogan, G.; Jedrzejas, M.J.; Šoltés, L. The many ways to cleave hyaluronan. Biotechnol. Adv. 2007, 25, 537–557. [Google Scholar] [CrossRef] [PubMed]
- Bohaumilitzky, L.; Huber, A.K.; Stork, E.M.; Wengert, S.; Woelfl, F.; Boehm, H. A trickster in disguise: Hyaluronan’s ambivalent roles in the matrix. Front. Oncol. 2017, 7, 242. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef] [PubMed]
- Litwiniuk, M.; Krejner, A.; Grzela, T. Hyaluronic acid in inflammation and tissue regeneration. Wounds 2016, 28, 78–88. [Google Scholar] [PubMed]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, D.C.; Ocampo, B.R.Y.; Chirino, C.A.E. Use of hyaluronic acid as an alternative for reconstruction of interdental papilla. Rev. Odontol. Mex. 2017, 21, 199–207. [Google Scholar]
- Cyphert, J.M.; Trempus, C.S.; Garantziotis, S. Size matters: Molecular weight specificity of hyaluronan effects in cell biology. Int. J. Cell Biol. 2015, 2015, 563818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankin, K.S.; Frankel, D. Hyaluronan in cancer—from the naked mole rat to nanoparticle therapy. Soft Matter 2016, 12, 3841–3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderegg, U.; Averbeck, M. More than just a filler—the role of hyaluronan for skin homeostasis. Exp. Dermatol. 2014, 23, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Andre, P.; Villain, F. Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: A literature review. Int. J. Cosmet. Sci. 2017, 39, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Mustonen, A.M.; Capra, J.; Rilla, K.; Lehenkari, P.; Oikari, S.; Kääriäinen, T.; Joukainen, A.; Kröger, H.; Paakkonen, T.; Matilainen, J.; et al. Characterization of hyaluronan-coated extracellular vesicles in synovial fluid of patients with osteoarthritis and rheumatoid arthritis. BMC Musculoskelet. Dis. 2021, 22, 247. [Google Scholar] [CrossRef]
- Longinotti, A. The use of hyaluronic acid based dressings to treat burns: A review. Burns Trauma 2014, 2, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, F.; Tanideh, N.; Samani, S.M.; Ahmadi, F. Efficacy of a hybrid system of hyaluronic acid and collagen loaded with prednisolone and TGF-β3 for cartilage regeneration in rats. J. Drug Deliv. Sci. Technol. 2019, 51, 55–62. [Google Scholar] [CrossRef]
- Valachová, K.; Šoltés, L. Versatile use of chitosan and hyaluronan in medicine. Molecules 2021, 26, 1195. [Google Scholar] [CrossRef] [PubMed]
- Murano, E.; Perin, D.; Khan, R.; Bergamin, M. Hyaluronan: From biomimetic to industrial business strategy. Nat. Prod. Commun. 2011, 6, 555–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Wu, H.; Wu, Y.; Wang, C.; Zhang, H.; Shi, X.; Yang, J. High molecular weight hyaluronan decreases oxidative DNA damage induced by EDTA in human corneal epithelial cells. Eye 2012, 26, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, L.; Husson, Z.; Smith, E.S.J. The naked mole-rat as an animal model in biomedical research: Current perspectives. Anim. Physiol. 2015, 7, 137–148. [Google Scholar]
- Tian, X.; Azpurua, J.; Hine, C.; Vaidya, A.; Myakishev-Rempel, M.; Ablaeva, J.; Mao, Z.; Nevo, E.; Gorbunova, V.; Seluanov, A. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 2013, 499, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.J. Cancer resistance, high molecular weight hyaluronic acid, and longevity. J. Cell Commun. Signal. 2015, 9, 91–92. [Google Scholar] [CrossRef] [Green Version]
- Gorbunova, V.; Takasugi, M.; Seluanov, A. Hyaluronan goes to great length. Cell Stress 2020, 4, 227–229. [Google Scholar] [CrossRef]
- Takasugi, M.; Firsanov, D.; Tombline, G.; Ning, H.; Ablaeva, J.; Seluanov, A.; Gorbunova, V. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 2020, 11, 2376. [Google Scholar] [CrossRef] [PubMed]
- Seluanov, A.; Gladyshev, V.N.; Vijg, J.; Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Cancer 2018, 18, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.B.; Grootveld, M.; Farrell, A.; Smith, E.C.; Thompson, P.W.; Blake, D.R. A pathological role for damaged hyaluronan in synovitis. Ann. Rheum. Dis. 1991, 50, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Menaa, F.; Menaa, A.; Menaa, B. Hyaluronic acid and derivatives for tissue engineering. J. Biotechnol. Biomater. 2011, S3. [Google Scholar] [CrossRef]
- Hu, M.; Sabelman, E.E.; Cao, Y.; Chang, J.; Hentz, V.R. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 67, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.M.; Fernández, N.; Matias, A.A.; do Rosário Bronze, M. Hyaluronic acid and chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydr. Polym. 2020, 243, 116441. [Google Scholar] [CrossRef] [PubMed]
- Moreland, L.W. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action. Arthritis Res. Ther. 2003, 5, 54–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, M.A.; Fierlinger, A.; Niazi, F.; Bhandari, M. The disease-modifying effects of hyaluronan in the osteoarthritic disease state. Clin. Med. Insights Arthritis Musculoskelet. Dis. 2017, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Šoltés, L.; Kogan, G. Catabolism of hyaluronan: Involvement of transition metals. Interdiscip. Toxicol. 2009, 2, 229–238. [Google Scholar] [CrossRef]
- Grishko, V.; Xu, M.; Ho, R.; Mates, A.; Watson, S.; Kim, J.T.; Wilson, G.L.; Pearsall, A.W., IV. Effects of hyaluronic acid on mitochondrial function and mitochondria-driven apoptosis following oxidative stress in human chondrocytes. J. Biol. Chem. 2009, 284, 9132–9139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juranek, I.; Stern, R.; Šoltes, L. Hyaluronan peroxidation is required for normal synovial function: An hypothesis. Med. Hypotheses 2014, 82, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Soltes, L.; Mendichi, R.; Kogan, G.; Schiller, J.; Stankovska, M.; Arnhold, J. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 2006, 7, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Ziskoven, C.; Jäger, M.; Zilkens, C.; Bloch, W.; Brixius, K.; Krauspe, R. Oxidative stress in secondary osteoarthritis: From cartilage destruction to clinical presentation? Orthop. Rev. 2010, 2, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepetsos, P.; Papavassiliou, A.G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta Mol. Basis Dis. 2016, 1862, 576–591. [Google Scholar] [CrossRef] [PubMed]
- Laurent, T.C.; Fraser, J.R.E.; Laurent, U.B.G.; Engstrom-Laurent, A. Hyaluronan in inflammatory joint disease. Acta Orthop. Scand. 1995, 66, 116–120. [Google Scholar] [CrossRef]
- Goldberg, V.M.; Buckwalter, J.A. Hyaluronans in the treatment of osteoarthritis of the knee: Evidence for disease-modifying activity. Osteoarthr. Cartil. 2005, 13, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, H.; Yui, N.; Yatabe, K.; Fujiya, H.; Musha, H.; Niki, H.; Karasawa, R.; Yudoh, K. Polyhydroxylated C60 fullerenes prevent chondrocyte catabolic activity at nanomolar concentrations in osteoarthritis. Int. J. Clin. Rheumatol. 2016, 11, 070–076. [Google Scholar]
- Bowman, S.; Awad, M.E.; Hamrick, M.W.; Hunter, M.; Fulzele, S.A. Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin. Trans. Med. 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oe, M.; Tashiro, T.; Yoshida, H.; Nishiyama, H.; Masuda, Y.; Maruyama, K.; Koikeda, T.; Maruya, R.; Fukui, N. Oral hyaluronan relieves knee pain: A review. Nutr. J. 2015, 15, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia, M.; Guaraldi, F.; Vannini, F.; Rossi, G.; Timoncini, A.; Buda, R.; Giannini, S. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics 2013, 36, 1501–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vad, V.B.; Sakalkale, D.; Sculco, T.P.; Wickiewicz, T.L. Role of hylan G-F 20 in treatment of osteoarthritis of the hip joint. Arch. Phys. Med. Rehabil. 2003, 84, 1224–1226. [Google Scholar] [CrossRef]
- Altman, R.D.; Rosen, J.E.; Bloch, D.A.; Hatoum, H.T. Safety and efficacy of retreatment with a bioengineered hyaluronate for painful osteoarthritis of the knee: Results of the open-label extension study of the FLEXX trial. Osteoarthr. Cartil. 2011, 19, 1169–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei-Dan, O.; Carmont, M.; Laver, L.; Mann, G.; Maffulli, N.; Nyska, M. Intra-articular injections of hyaluronic acid in osteoarthritis of the subtalar joint: A pilot study. J. Foot Ankle Surg. 2013, 52, 172–176. [Google Scholar] [CrossRef]
- Tamura, T.; Higuchi, Y.; Kitamura, H.; Murao, N.; Saitoh, R.; Morikawa, T.; Satp, H. Novel hyaluronic acid–methotrexate conjugate suppresses joint inflammation in the rat knee: Efficacy and safety evaluation in two rat arthritis models. Arthritis Res. Ther. 2016, 18, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zille, H.; Paquet, J.; Henrionnet, C.; Scala-Bertola, J.; Leonard, M.; Six, J.C.; Deschamp, F.; Netter, P.; Verges, J.; Gillet, P.; et al. Evaluation of intra-articular delivery of hyaluronic acid functionalized biopolymeric nanoparticles in healthy rat knees. Biomed. Mater. Eng. 2010, 20, 235–242. [Google Scholar] [CrossRef]
- Bellamy, N.; Campbell, J.; Robinson, V.; Gee, T.; Bourne, R.; Wells, G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst. Rev. 2006. [Google Scholar] [CrossRef] [Green Version]
- Russu, O.M.; Pop, T.S.; Feier, A.M.; Trâmbitas, C.; Incze-Bartha, Z.; Borodi, P.G.; Gergely, I.; Zuh, S.G. Treatment with a novel hyaluronic acid-based hydrogel for osteoarthritis of the knee. J. Pers. Med. 2021, 11, 303. [Google Scholar] [CrossRef]
- Migliore, A.; Gigliucci, G.; Tormenta, S.; Cata, A.D.; Gallelli, L.; Iolascon, G. High molecular weight hyaluronic acid (Hyalubrix/HyalOne) for treating symptomatic hip osteoarthritis. J. Rare Dis. Res. Treat. 2019, 4, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Gigante, A.; Callegari, L. The role of intra-articular hyaluronan (Sinovial®) in the treatment of osteoarthritis. Rheumatol. Int. 2011, 31, 427–444. [Google Scholar] [CrossRef]
- Baron, D.; Flin, C.; Porterie, J.; Despaux, J.; Vincent, P. Hyaluronic acid single intra-articular injection in knee osteoarthritis: A multicenter open prospective study (Art-One 75) with placebo post hoc comparison. Curr. Ther. Res. 2018, 88, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Bone Therapeutics. JTA-004. Available online: http://www.bonetherapeutics.com/en/jta-004 (accessed on 26 May 2021).
- Šoltés, L.; Steiner, B.; Machová, E.; Kogan, G.; Bystrický, S.; Mendichi, R.; Bauer, V.; Mach, M.; Alföldi, J.; Stratilová, E. Clathrate complexes formed by hyaluronic acid derivatives and use thereof as pharmaceuticals. U.S. Patent 7,563,824, 13 September 2001. [Google Scholar]
- Šoltés, L.; Mendichi, R.; Kogan, G.; Mach, M. Associating hyaluronan derivatives: A novel horizon in viscosupplementation of osteoarthritic joints. Chem. Biodivers. 2004, 1, 468–472. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.; Lei, C.; Liu, L.; Xu, L.; Feng, Y.; Ke, J.; Fang, W.; Song, H.; Xu, C.; et al. Nanotherapy in joints: Increasing endogenous hyaluronan production by delivering hyaluronan synthase. Adv. Mater. 2019, 31, e1904535. [Google Scholar] [CrossRef] [PubMed]
- Harba, N.; Harfoush, M. Evaluation of the participation of hyaluronic acid with platelet-rich plasma in the treatment of temporomandibular joint disorders. Dent. Med. Probl. 2021, 58, 81–88. [Google Scholar] [CrossRef]
- Zhu, D.; Bai, H.; Xu, W.; Lai, W.; Song, L.; Deng, J. Hyaluronic acid/parecoxib-loaded PLGA microspheres for therapy of temporomandibular disorders. Curr. Drug Deliv. 2021, 18, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Iviglia, G.; Kargozar, S.; Baino, F. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration. J. Funct. Biomater. 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, F.; Zhou, C.; Hui, D.; Du, C.; Wu, L.; Wang, L.; Wang, W.; Pu, X.; Gu, L.; Liu, L.; et al. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions. Nanotechnol. Rev. 2020, 9, 1059–1079. [Google Scholar] [CrossRef]
- Keen, M.A. Hyaluronic acid in dermatology. Skin Med. 2017, 15, 462–467. [Google Scholar]
- D’Agostino, A.; Maritato, R.; La Gatta, A.; Fusco, A.; Reale, S.; Stellavato, A.; Pirozzi, A.V.A.; De Rosa, M.; Donnarumma, G.; Schiraldi, C. In vitro evaluation of novel hybrid cooperative complexes in a wound healing model: A step toward improved bioreparation. Int. J. Mol. Sci. 2019, 20, 4727. [Google Scholar] [CrossRef] [Green Version]
- Andre, P. Hyaluronic acid and its use as a “rejuvenation” agent in cosmetic dermatology. Semin. Cutan. Med. Surg. 2005, 23, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Lipko-Godlewska, S.; Bolanča, Ž.; Kalinová, L.; Kermen, I.; Onisak, B.; Papp, I.; Rebrov, M.; Valančienė, G. Whole-face approach with hyaluronic acid fillers. Clin. Cosmet. Investig. Dermatol. 2021, 14, 169–178. [Google Scholar] [CrossRef] [PubMed]
- La Gatta, A.; Salzillo, R.; Catalano, C.; D’Agostino, A.; Pirozzi, A.V.A.; De Rosa, M.; Schiraldi, C. Hyaluronan-based hydrogels as dermal fillers: The biophysical properties that translate into a “volumetric” effect. PLoS ONE 2019, 14, e0218287. [Google Scholar] [CrossRef] [Green Version]
- Nobile, V.; Buonocore, D.; Michelotti, A.; Marzatico, F. Anti-aging and filling efficacy of six types hyaluronic acid based dermo-cosmetic treatment: Double blind, randomized clinical trial of efficacy and safety. J. Cosmet. Dermatol. 2014, 13, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Spada, J.; Orlandi, C.; Kerscher, M.; Anfilova, M.; Abdulla, S.; Floriánová, A.; Altmayer, K.; Delva, C.; Kerob, D.; et al. Vichy mineralizing water with hyaluronic acid is effective and well tolerated as an adjunct to the management of various dermatoses and after esthetic procedures. J. Cosmet. Dermatol. 2020, 19, 682–688. [Google Scholar] [CrossRef]
- Rohrich, R.J.; Bartlett, E.L.; Dayan, E. Practical approach and safety of hyaluronic acid fillers. PRS Global Open 2019, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- What Types of Dermal Fillers are Available? Available online: https://www.plasticsurgery.org/cosmetic-procedures/dermal-fillers/types (accessed on 26 May 2021).
- Agolli, E.; Diffidenti, B.; Di Zitti, N.; Massidda, E. Hybrid cooperative complexes of high and low molecualr hyaluronans (Profhilo®): Review of the literature and presentation of the vision HA project. Esperienze Dermatol. 2018, 20, 5–14. [Google Scholar]
- Trabucchi, E.; Pallotta, S.; Morini, M.; Corsi, F.; Franceschini, R.; Casiraghi, A.; Pravettoni, A.; Foschi, D.; Minghetti, P. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing. Int. J. Tissue React. 2002, 24, 65–71. [Google Scholar] [PubMed]
- Ghazi, K.; Deng-Pichon, U.; Warnet, J.M.; Rat, P. Hyaluronan fragments improve wound healing on In Vitro cutaneous model through P2 × 7 purinoreceptor basal activation: Role of molecular weight. PLoS ONE 2012, 7, e48351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.H.; Forg, T. Application of Hyaluronic Acid Matrix Membrane in Wound Healing. Chapter 7. 2019, pp. 29–32. Available online: https://www.podiatryinstitute.com/pdfs/Update_2019/chapter_07.pdf (accessed on 29 June 2021).
- West, D.C.; Hampson, I.N.; Amold, F.; Kumar, S. Angiogenesis induced by degradation products of hyaluronic acid. Science 1985, 228, 1324–1326. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.F.P.; Miguel, S.P.; Cabral, S.D.; Correia, I.J. Hyaluronic acid-based wound dressings: A review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef] [PubMed]
- Boateng, J.; Catanzano, O. Advanced therapeutic dressings for effective wound healing. J. Pharm. Sci. 2015, 104, 3653–3680. [Google Scholar] [CrossRef] [Green Version]
- Stodolak-Zych, E.; Rozmus, K.; Dzerzkowska, E.; Zych, L.; Rapacz-Kmita, A.; Gargas, M.; Kolaczkowska, E.; Cieniawska, M.; Ksiazek, K.; Scislowska-Czarnecka, A. The membrane with polylactide and hyaluronic fibers for skin substitute. Acta Bioeng. Biomech. 2018, 20, 91–99. [Google Scholar] [PubMed]
- Anilkumar, T.V.; Muhamed, J.; Jose, A.; Jyothi, A.; Mohanan, P.V.; Krishnan, L.K. Advantages of hyaluronic aicd as as component of fibrin sheet for care of acute wound. Biologicals 2011, 39, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Sahana, T.G.; Rekha, P.D. Biopolymers: Applications in wound healing and skin tissue engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. [Google Scholar] [CrossRef]
- Hernán Cortes, H.; Caballero-Florán, I.H.; Mendoza-Muñoz, N.; Córdova-Villanueva, E.N.; Escutia-Guadarrama, L.; Figueroa-González, G.; Reyes-Hernández, O.D.; González-Del Carmen, M.; Varela-Cardoso, M.; Magaña, J.J.; et al. Hyaluronic acid in wound dressings. Cell Mol. Biol. 2020, 66, 191–198. [Google Scholar] [CrossRef]
- Al-Khateeb, R.; Olszewska-Czyz, I. Biological molecules in dental applications: Hyaluronic acid as a companion biomaterial for diverse dental applications. Heliyon 2020, 6, e03722. [Google Scholar] [CrossRef] [PubMed]
- Cam, C.; Zhu, S.; Truong, N.F.; Scumpia, P.O.; Segura, T. Systematic evaluation of natural scaffolds in cutaneous wound healing. J. Mater. Chem. B Mater. Biol. Med. 2015, 3, 7986–7992. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.P.; Zhang, Y.Z.; Lim, C.T. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 510–524. [Google Scholar] [CrossRef]
- Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric biomaterials for wound healing: A review. Prog. Biomater. 2018, 7, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic acid in the third millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Protecting Hyaluronic Acid to Promote Wound Healing and Skin Health. Available online: https://viniferamine.com/blogs/news/protecting-hyaluronic-acid-to-promote-wound-healing-and-skin-health (accessed on 26 May 2021).
- Cutting, K.F. Wound healing through synergy of hyaluronan and an iodine complex. J. Wound Care 2011, 20, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Weindl, G.; Schaller, M.; Schäfer-Korting, M.; Korting, H.C. Hyaluronic acid in the treatment and prevention of skin diseases: Molecular, biological, pharmaceutical and clinical aspects. Skin Pharmacol. Physiol. 2004, 17, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Tamer, M.T.; Valachova, K.; Hassan, M.A.; Omer, A.M.; El-Shafeey, M.; Mohy Eldin, M.S.; Soltes, L. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In Vitro and In Vivo evaluation studies. Mater. Sci. Eng. C 2018, 90, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Tamer, T.M.; Collins, M.N.; Valachova, K.; Hassan, M.A.; Omer, A.M.; Eldin, M.S.M.; Svik, K.; Jurcik, R.; Ondruska, L.; Biró, C.; et al. MitoQ loaded chitosan-hyaluronan composite membranes for wound healing. Materials 2018, 11, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamer, M.T.; Hassan, M.A.; Valachová, K.; Omer, A.M.; El-Shafeey, M.E.; Eldin, M.S.M.; Šoltés, L. Enhancement of wound healing by chitosan/hyaluronan polyelectrolyte membrane loaded with glutathione: In Vitro and In Vivo evaluations. J. Biotechnol. 2020, 310, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Valachova, K.; Svik, K.; Biro, C.; Soltes, L. Skin wound healing with composite biomembranes loaded by tiopronin or captopril. J. Biotechnol. 2020, 310, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Tamer, M.T.; Valachova, K.; Omer, A.M.; El-Shafeey, M.; Mohy Eldin, M.S.; Soltes, L. Antioxidant and antibacterial polyelectrolyte wound dressing based on chitosan/hyaluronan/phosphatidylcholine dihydroquercetin. Int. J. Biol. Macromol. 2021, 166, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Valachova, K.; Svik, K.; Biro, C.; Collins, M.N.; Jurcik, R.; Ondruska, L.; Soltes, L. Impact of ergothioneine, hercynine and histidine on oxidative degradation of hyaluronan and wound healing. Polymers 2021, 13, 95. [Google Scholar] [CrossRef]
- Soltes, L.; Valachova, K.; Mach, M.; Juranek, I. Composite membranes containing a smart-released cytoprotectant targeting the inflamed tissue and use thereof. European Patent EP20020280, 17 June 2020. [Google Scholar]
- Valachova, K.; Soltes, L. Self-associating polymers chitosan and hyaluronan for Constructing composite membranes as skin-wound dressings carrying therapeutics. Molecules 2021, 26, 2535. [Google Scholar] [CrossRef]
- De Angelis, B.; D’Autilio, M.F.L.M.; Orlandi, F.; Pepe, G.; Garcovich, S.; Scioli, M.G.; Orlandi, A.; Cervelli, V.; Gentile, P. Wound healing: In Vitro and In Vivo evaluation of a bio-functionalized scaffold based on hyaluronic acid and platelet-rich plasma in chronic ulcers. J. Clin. Med. 2019, 8, 1486. [Google Scholar] [CrossRef] [Green Version]
- Guan, F.; Jin, J.; Zhao, H.; Hong, L.; Shen, Z.; Zhu, Y. Hyaluronic acid production by Streptococcus iniae and its application in rabbit skin’s regeneration. Sheng Wu Gong Cheng Xue Bao 2016, 32, 1104–1114. [Google Scholar]
- Hong, L.; Shen, M.; Fang, J.; Wang, Y.; Bao, Z.; Bu, S.; Zhu, Y. Hyaluronic acid (HA)-based hydrogels for full-thickness wound repairing and skin regeneration. J. Mater. Sci. Mater. Med. 2018, 29, 150. [Google Scholar] [CrossRef]
- Nyman, E.; Henricson, J.; Ghafouri, B.; Anderson, C.D.; Kratz, G. Hyaluronic acid accelerates re-epithelialization and alters protein expression in a human wound model. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2221. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kong, W.H.; Seong, K.Y.; Sung, D.K.; Jeong, H.; Kim, J.K.; Yang, S.Y.; Hahn, S.K. Hyaluronate-epidermal growth factor conjugate for skin wound healing and regeneration. Biomacromolecules 2016, 17, 3694–3705. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Ren, Y.; Wang, P.; Pu, Y.; Yang, R.; Wang, X.; Tan, X.; Ye, Z.; Maurizot, V.; et al. Mussel-inspired dual-cross-linking hyaluronic acid/epsilon-polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl. Mater. Interfaces 2020, 12, 27876–27888. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, X.; Yu, J.; Wu, D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl. Mater. Interfaces 2018, 10, 13304–13316. [Google Scholar] [CrossRef]
- Umar, M.; Ullah, A.; Nawaz, H.; Areeb, T.; Hashmi, M.; Kharaghani, D.; Kim, K.O.; Kim, I.S. Wet-spun bicomponent alginate based hydrogel fibers: Development and In Vitro evaluation as a potential moist wound care dressing. Int. J. Biol. Macromol. 2021, 168, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, A.; Feng, F.; Jiang, Q.; Sun, H.; Chai, Y.; Yang, R.; Wang, Z.; Hou, J.; Li, R. Effect of the hyaluronic acid-poloxamer hydrogel on skin-wound healing: In Vitro and In Vivo studies. Animal Model. Exp. Med. 2019, 2, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, L.; Gao, J.; Chen, X.; Wang, K. Hyaluronic acid/lysozyme self-assembled coacervate to promote cutaneous wound healing. Biomater. Sci. 2020, 8, 702–710. [Google Scholar] [CrossRef]
- Huang, Y.C.; Huang, K.Y.; Lew, W.Z.; Fan, K.H.; Chang, W.J.; Huang, H.M. Gamma-irradiation-prepared low molecular weight hyaluronic acid promotes skin wound healing. Polymers 2019, 11, 1214. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Li, Y.; Zhang, X.; Zhang, R.; Hu, Y.; Boyer, C.; Xu, F.J. Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J. Control. Release 2020, 323, 24–35. [Google Scholar] [CrossRef]
- Maloney, S.E.; McGrath, K.V.; Ahonen, M.J.R.; Soliman, D.S.; Feura, E.S.; Hall, H.R.; Wallet, S.M.; Maile, R.; Schoenfisch, M.H. Nitric oxide-releasing hyaluronic acid as an antibacterial agent for wound therapy. Biomacromolecules 2021, 22, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Lopez, K.M.; Ravula, S.; Pérez, R.L.; Ayala, C.E.; Losso, J.N.; Janes, M.E.; Warner, I.M. Hyaluronic acid-cellulose composites as patches for minimizing bacterial infections. ACS Omega 2020, 5, 4125–4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, P.; Liu, L.; Xu, W.; Fan, L.; Nie, M. Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr. Polym. 2018, 199, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qian, Y.; Li, L.; Pan, L.; Njunge, L.W.; Dong, L.; Yang, L. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J. Biomater. Appl. 2016, 30, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Luan, S.; Wang, C. Hyaluronic acid-povidone-iodine compound facilitates diabetic wound healing in a streptozotocin-induced diabetes rodent model. Plast. Reconstr. Surg. 2020, 145, 454e–455e. [Google Scholar] [CrossRef]
- Duan, Y.; Li, K.; Wang, H.; Wu, T.; Zhao, Y.; Li, H.; Tang, H.; Yang, W. Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr. Polym. 2020, 238, 116195. [Google Scholar] [CrossRef]
- Eskandarinia, A.; Kefayat, A.; Rafienia, M.; Agheb, M.; Navid, S.; Ebrahimpour, K. Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In Vitro and In Vivo studies. Carbohydr Polym. 2019, 216, 25–35. [Google Scholar] [CrossRef]
- Yang, W.; Xu, H.; Lan, Y.; Zhu, Q.; Liu, Y.; Huang, S.; Shi, S.; Hancharou, A.; Tang, T.; Guo, R. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. Int. J. Biol. Macromol. 2019, 130, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Taskan, M.M.; Yuce, H.B.; Karatas, O.; Gevrek, F.; Kara, G.I.; Celt, M.; Taskan, E.S. Hyaluronic acid with antioxidants improve wound healing in rats. Biotech. Histochem. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Chen, C.S.; Chen, Y.C.; Jiang, N.E.; Farn, C.J.; Shen, Y.S.; Hsu, M.L.; Chang, C.H. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: Bio-compatibility, drug release, antimicrobial activity, and biofilm model. J. Microbiol. Immunol. Infect. 2020, 53, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Lin, D.J.; Wu, Y.R.; Chang, C.W.; Chen, C.H.; Ko, C.L.; Chen, W.C. Characterization of genipin-crosslinked gelatin/hyaluronic acid-based hydrogel membranes and loaded with hinokitiol: In vitro evaluation of antibacterial activity and biocompatibility. Mater. Sci. Eng. C 2019, 105, 110074. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dong, Z.; Li, M.; Liu, L.; Luo, H.; Wang, P.; Zhang, D.; Yang, X.; Zhou, K.; Lei, S. Graphene oxide/copper nanoderivatives-modified chitosan/hyaluronic acid dressings for facilitating wound healing in infected full-thickness skin defects. Int. J. Nanomed. 2020, 15, 8231–8247. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Y.; Shi, Y.; Zhao, L. pH-Responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv. Transl. Res. 2019, 9, 227–239. [Google Scholar] [CrossRef]
- Bazmandeh, A.Z.; Mirzaei, E.; Fadaie, M.; Shirian, S.; Ghasemi, Y. Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In Vitro and In Vivo studies. Int. J. Biol. Macromol. 2020, 162, 359–373. [Google Scholar] [CrossRef]
- Mittal, A.K.; Bhardwaj, R.; Arora, R.; Singh, A.; Mukherjee, M.; Rajput, S.K. Acceleration of wound healing in diabetic rats through poly dimethylaminoethyl acrylate–hyaluronic acid polymeric hydrogel impregnated with a Didymocarpus pedicellatus plant extract. ACS Omega 2020, 5, 24239–24246. [Google Scholar] [CrossRef] [PubMed]
- Enrione, J.; Osorio, F.; López, D.; Weinstein-Oppenheimer, C.; Fuentes, M.A.; Ceriani, R.; Brown, D.I.; Albornoz, F.; Sánchez, E.; Villalobos, P.; et al. Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering. Electron J. Biotechnol. 2010, 13. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, Q.; Wang, J.; Liu, Y.; Lu, S.; Li, M.; Kaplan, D.L. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomater. 2013, 9, 6771–6782. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, R.M.; Abdel-Mohsen, M.; Hrdina, R.; Burgerte, L.; Fohlerova, Z.; Pavlinak, D.; Sayed, O.N.; Jancar, J. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. Int. J. Biol. Macromol. 2016, 89, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Iacob, A.T.; Dragan, M.; Ghetu, N.; Pieptu, D.; Vasile, C.; Buron, F.; Routier, S.; Giusca, S.E.; Caruntu, I.D.; Profire, L. Preparation, characterization and wound healing effects of new membranes based on chitosan, hyaluronic acid and erginine derivatives. Polymers 2018, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Tissue Engineering. Available online: https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine (accessed on 26 May 2021).
- Murray, R.Z.; West, Z.E.; Cowin, A.J.; Farrugia, B.L. Development and use of biomaterials as wound healing therapies. Burn. Trauma 2019, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, L.; Armstrong, J.P.K.; Lin, Y.; Wojciechowski, J.P.; Lee-Reeves, C.; Hachim, D.; Zhou, K.; Burdick, J.A.; Stevens, M.M. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci. Adv. 2020, 6, eabc5529. [Google Scholar] [CrossRef]
- Bavaresco, B.; Comín, R.; Salvatierra, N.A.; Cid, M.P. Three-dimensional printing of collagen and hyaluronic acid scaffolds with dehydrothermal treatment crosslinking. Compos. Commun. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Antich, C.; de Vicente, J.; Jiménez, G.; Chocarro, C.; Carrillo, E.; Montañez, E.; Gálvez-Martín, P.; Marchal, J.A. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020, 106, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.; Dehne, T.; Krüger, J.P.; Hondke, S.; Endres, M.; Thomas, A.; Lauster, R.; Sittinger, M.; Kloke, L. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2649–2657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, D.G.; Kang, E.; Jeong, S.H. pH-Dependent nanodiamonds enhance the mechanical properties of 3D-printed hyaluronic acid nanocomposite hydrogels. J. Nanobiotechnol. 2020, 18, 88. [Google Scholar] [CrossRef]
- Noh, I.; Kim, N.; Tran, H.H.; Lee, J.; Lee, C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater. Res. 2019, 23, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.M.; Liu, T.; Ma, Y.L.; Zhang, F.; Huang, Y.C.; Fan, Z.H. Fabrication of silk-hyaluronan composite as a potential scaffold for tissue repair. Front. Bioeng. Biotechnol. 2020, 8, 578988. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, Z.; Liu, J.; Huang, K.; Liu, G.; Wu, J. Arginine based poly (ester amide)/hyaluronic acid hybrid hydrogels for bone tissue engineering. Carbohydr. Polym. 2020, 230, 115640. [Google Scholar] [CrossRef] [PubMed]
- Walimbe, T.; Calve, S.; Panitch, A.; Sivasankar, M.P. Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering. Acta Biomater. 2019, 87, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Suner, S.S.; Demirci, S.; Yetiskin, B.; Fakhrullin, R.; Naumenko, E.; Okay, O.; Ayyala, R.S.; Sahiner, N. Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. Int. J. Biol. Macromol. 2019, 130, 627–635. [Google Scholar] [CrossRef]
- Puertas-Bartolome, M.; Vlodarczyk-Biegun, M.K.; del Campo, A.; Vasquez-Lasa, B.; San Roman, J. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers 2020, 12, 1986. [Google Scholar] [CrossRef] [PubMed]
- Poldervaart, M.T.; Goversen, B.; de Ruijter, M.; Abbadessa, A.; Melchels, F.P.W.; Öner, F.C.; Dhert, W.J.A.; Vermonden, T.; Alblas, J. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS ONE 2017, 12, 0177628. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Cao, X.; Li, Y.; Zeng, L.; Yuan, B.; Chen, X. An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry.”. Polym. Chem. 2014, 5, 1082–1090. [Google Scholar] [CrossRef]
- Park, H.; Choi, B.; Hu, J.; Lee, M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomaterialia 2013, 9, 4779–4786. [Google Scholar] [CrossRef] [PubMed]
- Shie, M.Y.; Chang, W.C.; Wei, L.J.; Huang, Y.H.; Chen, C.H.; Shih, C.T.; Chen, Y.C.; Shen, Y.F. 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications. Materials 2017, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Ni, Y.; Liu, B.; Zhou, T.; Yu, C.; Su, Y.; Zhu, X.; Yu, X.; Zhou, Y. Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr. Polym. 2017, 166, 31–44. [Google Scholar] [CrossRef]
- Nazir, R.; Bruyneel, A.; Carr, C.; Czernuszka, J. Collagen type I and hyaluronic acid based hybrid scaffolds for heart valve tissue engineering. Biopolymers 2019, 110, 23278. [Google Scholar] [CrossRef] [PubMed]
- Najberg, M.; Mansor, M.H.; Taillé, T.; Bouré, C.; Molina-Peña, R.; Boury, F.; Cenis, J.L.; Garcion, E.; Alvarez-Lorenzo, C. Aerogel sponges of silk fibroin, hyaluronic acid and heparin for soft tissue engineering: Composition-properties relationship. Carbohydr. Polym. 2020, 237, 116107. [Google Scholar] [CrossRef]
- Miranda, D.G.; Malmonge, S.M.; Campos, D.M.; Attik, N.G.; Grosgogeat, B.; Gritsch, K.A. Chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, P.; Ali, G.W.; Della Sala, F.; Abdel-Fattah, W.I.; Borzacchiello, A. Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110195. [Google Scholar] [CrossRef]
- Li, M.; Jia, W.; Zhang, X.; Weng, H.; Gu, G.; Chen, Z. Hyaluronic acid oligosaccharides modified mineralized collagen and chitosan with enhanced osteoinductive properties for bone tissue engineering. Carbohydr. Polym. 2021, 260, 117780. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Ryu, J.H.; Do, M.J.; Namkoong, E.; Lee, H.; Park, K. NiCHE platform: Nature-inspired catechol-conjugated hyaluronic acid environment platform for salivary gland tissue engineering. ACS Appl. Mater. Interfaces 2020, 12, 4285–4294. [Google Scholar] [CrossRef]
- Deng, Y.; Ren, J.; Chen, G.; Li, G.; Wu, X.; Wang, G.; Gu, G.; Li, J. Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Scheuer, C.A.; Rah, M.J.; Reindel, W.T. Increased concentration of hyaluronan in tears after soaking contact lenses in Biotrue multipurpose solution. Clin. Ophthalmol. 2016, 10, 1945–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvani, L.; Badei, A.; De Grazia, G.; Remiddi, S. Arabinogalactan and hyaluronic acid in ophthalmic solution: Experimentaleffect on xanthine oxidoreductase complex as key player in ocular inflammation (In Vitro study). Experim. Eye Res. 2020, 196, 1–8. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, H.; Guo, X.; Wang, Y.; Ying, S.; Feng, L.; Li, T.; Xia, H.; Zhang, Y.; Chen, R.; et al. The protective role of hyaluronic acid in Cr(VI)-induced oxidative damage in corneal epithelial cells. J. Ophthalmol. 2017, 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Lopéz-Garcia, J.S.; García-Lozano, I.; Raposo, R.; Mendéz, M.T. Autologous serum eye drops diluted with sodium hyaluronate: Clinical and experimental study. Acta Ophthalmol. 2014, 92, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apaolaza, P.S.; Busch, M.; Asin-Prieto, E.; Peynshaert, K.; Rathod, R.; Remaut, K.; Dünker, N.; Geopferich, A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Experim. Eye Res. 2020, 198, 108151. [Google Scholar] [CrossRef]
- Griffith, G.L.; Wirostko, B.; Lee, H.K.; Cornell, L.E.; McDaniel, J.S.; Zamora, D.O.; Johnson, A.J. Treatment of corneal chemical alkali burns with a crosslinked thiolated hyaluronic acid film. Burns 2018, 44, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Durrie, D.S.; Wolsey, D.; Thompson, V.; Assang, C.; Mann, B.; Wirostko, B. Ability of a new crosslinked polymer ocular bandage gel to accelerate reepithelialization after photorefractive keratectomy. J. Cataract Refract. Surg. 2018, 44, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Pitale, U.; Pal, P.C.; Thakare, G.; Verma, M.; Dhakad, S.; Pandey, R. Minimally invasive therapy for reconstruction of lost interdental papilla by using injectable hyaluronic acid filler. J. Indian Soc. Periodontol. 2021, 25, 22–28. [Google Scholar] [PubMed]
- Canciani, E.; Sirello, R.; Pellegrini, G.; Henin, D.; Perrotta, M.; Toma, M.; Khomchyna, N.; Dellavia, C. Effects of vitamin and amino acid-enriched hyaluronic acid gel on the healing of oral mucosa: In Vivo and In Vitro study. Medicina 2021, 57, 285. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.A.; Abdul-Wahab, G.A.; Al-Karawi, S.I. Effect of hyaluronan and metronidazole gels in management of chronic periodontitis. J. Int. Oral Health 2019, 11, 158–163. [Google Scholar] [CrossRef]
- Radojkova Nikolovska, V.; Popovska, M.; Minovska, A.; Belazelkoska, Z. Influence of hyaluronic acid in periodontal tissue regeneration. Balk. J. Stom. 2013, 17, 61–64. [Google Scholar]
- Bansal, J.; Kedige, S.D.; Anand, S. Hyaluronic acid: A promising mediator for periodontal regeneration. Ind. J. Dental Res. 2010, 21, 575–578. [Google Scholar]
- Ballini, A.; Cantore, S.; Capodiferro, S.; Grassi, F.R. Esterified hyaluronic acid and autologous bone in the surgical correction of the infra-bone defects. Int. J. Med. Sci. 2009, 6, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldini, A.; Zaffe, D.; Nicollini, G. Bone-defects healing by high-molecular hyaluronic acid: Preliminary results. Ann. Stomatol. 2010, 1, 2–7. [Google Scholar]
- Shah, S.A.; Vijayakar, H.N.; Rodrigues, S.V.; Mehta, C.J.; Mitra, D.K.; Shah, R.A. To compare the effect of the local delivery of hyaluronan as an adjunct to scaling and root planing versus scaling and root planing alone in the treatment of chronic periodontitis. J. Ind. Soc. Periodont. 2016, 20, 549–556. [Google Scholar]
- Pistorius, A.; Martin, M.; Willershausen, B.; Rockmann, P. The clinical application of hyaluronic acid in gingivitis therapy. Quintessence Int. 2005, 36, 531–538. [Google Scholar]
- Gupta, S.; Kediege, S.D.; Gupta, A.; Jain, K. Evaluation of Gengigel® application in the management of furcation with coronally advanced flap through surgical reentry—A split mouth clinical study. J. Clin. Diagnost. Res. 2017, 11, 27–32. [Google Scholar]
- Sánchez-Fernández, E.; Magán-Fernández, A.; O’Valle, F.; Bravo, M.; Mesa, F. Hyaluronic acid reduces inflammation and crevicular fluid IL-1β concentrations in peri-implantitis: A randomized controlled clinical trial. J. Periodontal Implant. Sci. 2021, 51, 63–74. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Yu, M. Lung cancer gene therapy: Transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery. Oncol. Rep. 2017, 37, 937–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, Y.K.; Kim, S.W. Recent advances in the development of gene delivery systems. Biomater. Res. 2019, 23, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Villate-Beitia, I.; Truong, N.F.; Gallego, I.; Zarate, J.; Puras, G.; Pedraz, J.L.; Segura, T. Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery. RSC Adv. 2018, 8, 31934. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Okuda, T.; Takashima, Y.; Okamoto, H. Naked pDNA inhalation powder composed of hyaluronic acid exhibits high gene expression in the lungs. Mol. Pharm. 2019, 16, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.B.; Cortez, S.R.; Wiler, J.A.; Swiderski, D.L.; Raphael, Y. Hyaluronic acid enhances gene delivery into the cochlea. Hum. Gene Ther. 2012, 23, 302–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Nakata, M.; Yang, Z.; Torizuka, Y.; Kishimoto, S.; Ishihara, M. In Vitro and In Vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency. J. Gene Med. 2017, 19, 2968. [Google Scholar] [CrossRef]
- Aldawsari, H.M.; Dhaliwal, H.K.; Aljaeid, B.M.; Alhakamy, N.A.; Banjar, Z.M.; Amiji, M.M. Optimization of the conditions for plasmid DNA delivery and transfection with self-assembled hyaluronic acid-based nanoparticles. Mol. Pharm. 2019, 16, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Ehsanipour, A.; Nguyen, T.; Aboufadel, T.; Sathialingam, M.; Cox, P.; Xiao, W.; Walthers, C.M.; Seidlits, S.K. Injectable, hyaluronic acid-basedscaffoldswithmacroporousarchitectureforgenedelivery. Cell Mol. Bioeng. 2019, 12, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Piñeiro, I.; Pensado, A.; Badiola, I.; Sanchez, A. Development and characterisation of chondroitin sulfate- and hyaluronic acid-incorporated sorbitan ester nanoparticles as gene delivery systems. Eur. J. Pharm. Biopharm. 2018, 125, 85–94. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ma, M.; Wei, C.; Shi, J. Mesoporous carbon@ silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials 2012, 33, 4392–4402. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Tian, Y.; Liu, Y.; Li, D.; Zhang, H.; Yang, Y.; Qi, J.; Wang, H.; Gan, L. Hyaluronic acid-modified cationic niosomes for ocular gene delivery: Improving transfection efficiency in retinal pigment epithelium. J. Pharm. Pharmacol. 2018, 70, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, F.Q.; Shah, Z.; Cheng, X.J.; Kong, M.; Feng, C.; Chen, X.G. Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids Surf. B Biointer. 2016, 145, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.J.; Lee, W.C.; Shieh, M.J. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr Polym. 2017, 155, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.J.; Lee, W.C. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. Int. J. Nanomed. 2018, 13, 3989–4002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Meng, F.; Kim, B.K.; Ke, X.; Yeo, Y. In Vitro and In Vivo difference in gene delivery by lithocholic acid-polyethyleneimine conjugate. Biomaterials 2019, 217, 119296. [Google Scholar] [CrossRef] [PubMed]
- Segura, T.; Chung, P.H.; Shea, L.D. DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials 2005, 26, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Yi, S.W.; Kim, H.J.; Park, K.H. Receptor-mediated gene delivery into human mesenchymal stem cells using hyaluronic acid-shielded polyethylenimine/pDNA nanogels. Carbohydr. Polym. 2016, 136, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.H.; Goetz, D.J.; Yellen, P.; Chen, W. Hyaluronan microspheres for sustained gene delivery andsite-specific targeting. Biomaterials 2004, 25, 147–157. [Google Scholar] [CrossRef]
- Oliveira, V.; Bitoque, D.B.; Silva, G.A. Combining hyaluronic acid with chitosan enhances gene delivery. J. Nanomater. 2014, 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, M.; Seijo, B.; Alonso, M.J. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2016–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Components | Properties | References |
---|---|---|
HA | Increased expression of transcripts for the HA receptors CD44, RHAMM, collagen III and I in aged mice | [95] |
HA | Reduced inflammation in the wound and promoted skin regeneration compared with the control tests in rabbits | [96] |
HA | Alleviated inflammation in the wound, improved skin regeneration and relieved the scar formation in defected skin rabbits | [97] |
HA | Accelerated reepithelization, and stimulation of an altered protein expression in human deep dermal incisional skin wounds, no effect on inflammation | [98] |
HA-lyophilized fibrin sheet | Higher water retention, faster healing than in untreated animals | [76] |
HA-epidermal growth factor (EGF) | More efficient transdermal delivery of HA-EGF conjugates to both normal skin and peripheral tissues around the wound area rather than that of EGF, significantly improved regeneration of skin tissues even in hypodermis of rats | [99] |
Modified HA and ε-poly- lysine | Antibacterial effects | [100] |
Aminoethyl methacrylate HA | Excellent swelling, mechanical property, low cytotoxicity, rapid hemostasis capacity and facilitated wound healing in mice | [101] |
Alginate-HA fibers | Good mechanical performance, high liquid absorption, and swelling percentage, high biocompatibility toward nHDF cell line, maintaining a moist wound surface | [102] |
HA-poloxamer | Promoted skin-wound healing and increased protein accumulation in the wound area in rats, higher air permeability than Band-aid | [103] |
HA and lysozyme | Hydrogel with suitable viscoelasticity and excellent adhesion on the skin tissue, low cytotoxicity | [104] |
γ-Irradiated LMM HA | High viability of L929 skin fibroblasts, faster wound healing after two days of healing in rats | [105] |
HA with conjugated azobenzene and β-cyclo-dextrin groups | Hydrogel with fast healing of skin wound in rats | [106] |
●NO-releasing HA derivatives | Effective against pathogens Staphylococcus aureus and Pseudomonas aeruginosa in skin wounds, enhanced wound closure and decreased quantity of the P. aeruginosa genetic material in the wound tissue in mice wounds | [107] |
HA and cellulose | High swelling capacity in various media | [108] |
HA and hydroxyethyl cellulose | Appropriate gelation time, good swelling ability, suitable water evaporation rate, well hemocompatibility, biological compatibility, super absorbent capacity | [109] |
HA and chitosan | Treatment of skin ulcers, decreased hydration properties of the dressing and modulation of drug release | [82] |
Applications | Components | Properties | References |
---|---|---|---|
Soft tissue engineering | Scaffold composed of collagen and HA | Improved resistance to collagenase and elastic mechanical properties, prevention of disintegration of collagen in aqueous medium, cytotoxic for Vero cells | [129] |
Articular cartilage tissue engineering | HA and alginate bioink | Improved chondrocyte functionality | [130] |
Articular cartilage tissue engineering | Methacrylated gelatin and methacrylated HA | Created cartilage models with varying chondrocyte densities, support of formation of cartilage ECM and recovery of chondrocyte phenotype | [131] |
Tissue engineering | UV-crosslinkable HA and surface-modified nanodiamond hydrogels | Mechanically enforced compressive stress, a tunable buffering environment and facilitated interaction with long HA chains at molecular level | [132] |
Articular cartilage tissue engineering | HA, hydroxyethyl acrylate and gelatin-methacryloyl bioprinting gel | Stable rheology properties and excellent biocompatibility, viability of bone cells in bioinks of the lattice-printed scaffolds | [133] |
Articular cartilage tissue engineering | Silk-HA scaffold | Good biocompatibility with bone marrow mesenchymal stem cells, enhanced cellular proliferation, biodegradable, biomimetic nanofibrous structure | [134] |
Bone tissue engineering | Hydrogel composed of arginine-based unsaturated poly(esteramide) and methacrylated HA | Better bone regeneration and expression of osteogenesis-related factors in rats | [135] |
Vocal fold tissue engineering | Thiolated HA crosslinked with poly(ethylenglycol) diacrylate (PEGDA) HA-PEGDA with collagen types I or III or their combination | Increased mechanical properties of the hydrogels and reduced hyaluronidase degradation of HA and hydrogel swelling ratio, higher fibroblasts cell adhesion and spreading, viability of cells and synthesized new DNA through 21 days of culture | [136] |
Tissue engineering | HA and halloysite nanotubes cryogel as scaffolds | Nonhemolytic materials, macroporous structure, high thermal and mechanical stability, good compatibility, template for cell proliferation, adhesion and the growth media | [137] |
Tissue engineering | Carboxymethyl chitosan and partially oxidized HA hydrogel | Moderate swelling, good biocompatibility with embedded cells, sufficient viscosity for printing with good shape fidelity and structural integrity to retain the printed shape | [138] |
Bone tissue engineering | Methacrylated HA gels | Good primary chondrocyte survival, excellent spontaneous osteogenic differentiation in vitro | [139] |
Bone and cartilage tissue engineering | HA-polyethylenglycol hydrogel | High mechanical stability, enhanced metabolic activity and cell propagation | [140] |
Bone and cartilage tissue engineering | HA with methacrylated glycol chitosan hydrogel | Increased propagation and extra deposition of cartilaginous ECM | [141] |
Cartilage tissue engineering | Water-based polyurethane based photosensitive materials with HA | Nontoxic, high printing resolution, good cytocompatibility, facilitated chondrocyte adhesion, proliferation and differentiation | [142] |
Cartilage tissue engineering | HA-adipic dihydrazide and the oligopeptide grafted oxidized pectin hydrogel | Facilitated chondrogenesis, tissue compatibility by using a mouse subcutaneous implantation model | [143] |
Heart valve tissue engineering | Collagen type I and HA scaffold | Mimics fibrosa layer in the aortic valve leaflet ECM, potential to be developed into the trilayer structure of the leaflet, mimics the entire aortic root, cell material system for valve repair | [144] |
Soft tissue engineering | Aerogel sponges of silk, fibroin, HA and heparin | High swelling degree and porosity; lower biodegradation; adequate mean pore diameter and connectivity for cells and a soft texture close to that of the brain | [145] |
Periodontal tissue engineering | Chitosan-HA scaffold | Increased viability of NIH3T3 and MG63 cell lines, high CD44 expression, physico-chemical parameters without significant morphology changes | [146] |
Bone tissue engineering | HA/corn nanosilver-silk β-tricalcium phosphate hydrogel | Antibacterial activity, mesenchymal stem cells high bone differentiation, enhanced physical, mechanical properties, cell binding affinity and tissue compatibility | [147] |
Bone tissue engineering | Collagen/HA oligosaccharides/hydroxyapatite and chitosan/HA oligosaccharides in d,l-lactic-co-glycolic acid solution | Stimulation of osteogenesis and endothelialization, promotion of the attachment of endothelial cells, promotion of osteogenic differentiation of MC3T3-E1 and BMSCs cells, ideal biocompatibility and tissue regenerative capacity | [148] |
Salivary gland tissue engineering | HA-catechol conjugates | Enhanced cell adhesion, vascular endothelial and progenitor cell proliferation, and branching of cultured embryonic submandibular glands in vitro | [149] |
Abdominal tissue regeneration | Chitosan/HA hydrogel | In rats, sufficient extracellular matrix exposition and marked neovascularization were found compared to the control group | [150] |
Applications | Properties | References |
---|---|---|
Formation of plasmid DNA (pDNA) powders with LMM HA in pulmonary gene therapy | The highest gene expression in mice, the lactate dehydrogenase activity and concentration of inflammatory cytokines in bronchoalveolar lavage fluid comparable to those caused by ultrapure water | [172] |
Transferrin/HA-pDNA/nanostructured lipid carriers in lung cancer gene therapy | Low cytotoxicity, enhanced gene transfer ability in vitro and in vivo | [169] |
HA in cochlear gene therapy | Facilitated expression in cells lining the scala media, atraumatic and clinically feasible method to introduce transgenes into cochlear cells | [173] |
pDNA/HA/chitosan complexes | Augmented stability and cellular transfection ability of the complexes after lyophilization-rehydration | [174] |
Nanoparticles formed by HA, polyethyleneglycol (HA, PEG) and polyethylenimine (HA, PEI) and pDNA | The maximum gene expression using combination of HA, PEG and PEI, negligible cytotoxicity in HeLa and A549 cancer cell lines | [175] |
Nanoporous HA hydrogels (NP-HA), annealed HA microparticles (HA-MP) and nanoporous HA hydrogels containing protease-degradable PEG microparticles | Cell densities in scaffolds, distances into which cells penetrated scaffolds and transgene expression levels significantly increased with delivery from HA-MP compared to NP-HA and PEG-MP scaffolds | [176] |
Chondroitin sulfate and HA-incorporated sorbitan ester nanoparticles with pDNA | Long-term stability of the nanosystems in both liquid and lyophilized states, viability of A549 cell line, innocuous safety profile in vivo | [177] |
Gene delivery to B16F10 cell line by modified HA | Higher gene transfection cytotoxicity, enhanced cellular uptake by HA receptor over-expressed carcinoma cells | [178] |
HA modified cationic niosomes (HA-C-niosomes) in retinal gene delivery | Remarkable transfection efficiency in retinal pigment epithelium cells, specified targeting of HA-C-niosomes) in rats | [179] |
Oleoyl-carboxymethyl-chitosan (OCMCS)/HA in oral gene vaccine delivery | OCMCS-HA/aerolysis gene polyplexes might resolve challenges arising from gastrointestinal damage to gene antigens | [180] |
Micelles conjugated with HA possessing CD44 targeting potential for gene delivery | Prevention of erythrocytes agglutination, high selectivity of the transfection of HMM HA conjugated micelles to cancer cells | [181] |
HA and modified chondroitin sulfate in cancer gene delivery | High selectivity of CD44-positive U87 cancer cells and low cytotoxicity in L929 normal cells | [182] |
pDNA, lithocholic acid-polyethyleneimine conjugate and HA for gene transfection efficiency | Prepared in different ratios and tested in cells and tumor bearing mice for gene transfer efficiency | [183] |
Delivery of DNA from HA-collagen hydrogels | Transgene expression mediated by immobilized, large diameter complexes was 3 to 7-fold greater than for small diameter complexes, greater percentage of cells expressing the transgene for small diameter complexes than for large diameter complexes | [184] |
Concentrated nioplexes loaded into HA hydrogels for non-viral gene delivery | Suitable mechanical properties, little or no particle aggregation, efficient transfect mouse bone marrow cloned mesenchymal stem cells in 3D cultures | [171] |
HA-shielded polyethylenimine/ pDNA nanogels Gene delivery into human mesenchymal stem cells | Easily internalization of nanogels to human mesenchymal stem cells (HMSC), easy internalized by HeLa cells, increased chondrogenesis of HMSC | [185] |
HA microspheres incorporated with DNA for gene delivery or conjugated with an antigen for cell-specific targeting | Sustained release of the encapsulated pDNA for months, transfection in vitro and in vivo. HA microspheres, conjugated with monoclonal antibodies to E- and P-selectin—selective binding to cells expressing these receptors | [186] |
Chitosan-HA polyplexes for gene delivery | Compared with chitosan alone, the transfection efficiency had a 4-fold improvement after addition of HA | [187] |
HA-chitosan nanoparticles for ocular gene delivery | High transfection levels (up to 15% of cells transfected) without affecting cell viability, internalized by fluid endocytosis | [188] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valachová, K.; Šoltés, L. Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. Int. J. Mol. Sci. 2021, 22, 7077. https://doi.org/10.3390/ijms22137077
Valachová K, Šoltés L. Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. International Journal of Molecular Sciences. 2021; 22(13):7077. https://doi.org/10.3390/ijms22137077
Chicago/Turabian StyleValachová, Katarína, and Ladislav Šoltés. 2021. "Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine" International Journal of Molecular Sciences 22, no. 13: 7077. https://doi.org/10.3390/ijms22137077
APA StyleValachová, K., & Šoltés, L. (2021). Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. International Journal of Molecular Sciences, 22(13), 7077. https://doi.org/10.3390/ijms22137077