The Glucosylceramide Synthase Inhibitor PDMP Causes Lysosomal Lipid Accumulation and mTOR Inactivation
Abstract
:1. Introduction
2. Results and Discussion
2.1. PDMP Induces Lysosomal Ceramide Accumulation
2.2. PDMP Causes Lysosomal Sphingolipid Export Defects
2.3. PDMP Induces Lysosomal Accumulation of Multiple Lipids
2.4. PDMP Induced LBPA Accumulation Triggers mTOR and TFEB Translocation
3. Conclusions
4. Materials and Methods
4.1. Cell Culture
4.2. Antibodies
4.3. Inhibitors
4.4. Visualization of Clickable and Photocrosslinkable Sphingosine (pacSph) in Cells
4.5. Thin-Layer Chromatographic Analysis of Clickable and Photocrosslinkable Sphingosine (pacSph)
4.6. Immunofluorescence Microscopy
4.7. Image Analysis
4.8. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radin, N.S.; Shayman, J.A.; Inokuchi, J. Metabolic Effects of Inhibiting Glucosylceramide Synthesis with PDMP and Other Substances. Adv. Lipid Res. 1993, 26, 183–213. [Google Scholar] [PubMed]
- Barbour, S.; Edidin, M.; Felding-Habermann, B.; Taylor-Norton, J.; Radin, N.S.; Fenderson, B.A. Glycolipid Depletion Using a Ceramide Analogue (PDMP) Alters Growth, Adhesion, and Membrane Lipid Organization in Human A431 Cells. J. Cell. Physiol. 1992, 150, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, J.-I.; Momosaki, K.; Shimeno, H.; Nagamatsu, A.; Radin, N.S. Effects of D-threo-PDMP, an Inhibitor of Glucosylceramide Synthetase, on Expression of Cell Surface Glycolipid Antigen and Binding to Adhesive Proteins by B16 Melanoma Cells. J. Cell. Physiol. 1989, 141, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Fenderson, B.A.; Ostrander, G.K.; Hausken, Z.; Radin, N.S.; Hakomori, S.I. A Ceramide Analogue (PDMP) Inhibits Glycolipid Synthesis in Fish Embryos. Exp. Cell Res. 1992, 198, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wei, J.; Wang, N.; Ma, J.L.; Hui, P.P. The Glucosylceramide Synthase Inhibitor PDMP Sensitizes Pancreatic Cancer Cells to MEK/ERK Inhibitor AZD-6244. Biochem. Biophys. Res. Commun. 2015, 456, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Alsaeedi, N.; Hou, J.; Bandaru, V.V.R.; Wu, L.; Halushka, M.K.; Pili, R.; Ndikuyeze, G.; Haughey, N.J. Use of a Glycolipid Inhibitor to Ameliorate Renal Cancer in a Mouse Model. PLoS ONE 2013, 8, e63726. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Li, J.; Qiu, Y.; Sun, H. 1-Phenyl-2-Decanoylamino-3-Morpholino-1-Propanol (PDMP) Facilitates Curcumin-Induced Melanoma Cell Apoptosis by Enhancing Ceramide Accumulation, JNK Activation, and Inhibiting PI3K/AKT Activation. Mol. Cell. Biochem. 2012, 361, 47–54. [Google Scholar] [CrossRef]
- Gong, L.; Yang, B.; Xu, M.; Cheng, B.; Tang, X.; Zheng, P.; Jing, Y.; Wu, G.J. Bortezomib-Induced Apoptosis in Cultured Pancreatic Cancer Cells Is Associated with Ceramide Production. Cancer Chemother. Pharmacol. 2014, 73, 69–77. [Google Scholar] [CrossRef]
- Kanto, T.; Kalinski, P.; Hunter, O.C.; Lotze, M.T.; Amoscato, A.A. Ceramide Mediates Tumor-Induced Dendritic Cell Apoptosis. J. Immunol. 2001, 167, 3773–3784. [Google Scholar] [CrossRef] [Green Version]
- Maceyka, M.; Machamer, C.E. Ceramide Accumulation Uncovers a Cycling Pathway for the Cis-Golgi Network Marker, Infectious Bronchitis Virus M Protein. J. Cell Biol. 1997, 139, 1411–1418. [Google Scholar] [CrossRef] [Green Version]
- Asami, M.; Kumiko, I.; Motohide, M.; Tomohiro, H.; Yusuke, S.; Minoru, S.; Kazuki, I.; Toshihide, K. D-Threo-1-Phenyl-2-Decanoylamino-3-Morpholino-1-Propanol Alters Cellular Cholesterol Homeostasis by Modulating the Endosome Lipid Domains. Biochemistry 2006, 45, 4530–4541. [Google Scholar] [CrossRef]
- Kato, Y.; Arakawa, S.; Terasawa, K.; Inokuchi, J.; Iwata, T.; Shimizu, S.; Watabe, T.; Hara-Yokoyama, M. The Ceramide Analogue N-(1-Hydroxy-3-Morpholino-1-Phenylpropan-2-Yl)Decanamide Induces Large Lipid Droplet Accumulation and Highlights the Effect of LAMP-2 Deficiency on Lipid Droplet Degradation. Bioorg. Med. Chem. Lett. 2020, 30, 126891. [Google Scholar] [CrossRef] [PubMed]
- Vykoukal, J.; Fahrmann, J.F.; Gregg, J.R.; Tang, Z.; Basourakos, S.; Irajizad, E.; Park, S.; Yang, G.; Creighton, C.J.; Fleury, A.; et al. Caveolin-1-Mediated Sphingolipid Oncometabolism Underlies a Metabolic Vulnerability of Prostate Cancer. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Ciarlo, L.; Manganelli, V.; Garofalo, T.; Matarrese, P.; Tinari, A.; Misasi, R.; Malorni, W.; Sorice, M. Association of Fission Proteins with Mitochondrial Raft-like Domains. Cell Death Differ. 2010, 17, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Ode, T.; Podyma-Inoue, K.A.; Terasawa, K.; Inokuchi, J.; Kobayashi, T.; Watabe, T.; Izumi, Y.; Hara-Yokoyama, M. PDMP, a Ceramide Analogue, Acts as an Inhibitor of MTORC1 by Inducing Its Translocation from Lysosome to Endoplasmic Reticulum. Exp. Cell Res. 2017, 350, 103–114. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. MTOR Signaling at a Glance. J. Cell Sci. 2009, 122, 3589–3594. [Google Scholar] [CrossRef] [Green Version]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef]
- Murakami, M.; Ichisaka, T.; Maeda, M.; Oshiro, N.; Hara, K.; Edenhofer, F.; Kiyama, H.; Yonezawa, K.; Yamanaka, S. MTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells. Mol. Cell. Biol. 2004, 24, 6710–6718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, R.; Wei, L.; Huang, J. MTOR Signaling, Function, Novel Inhibitors, and Therapeutic Targets. J. Nucl. Med. 2011, 52, 497–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puertollano, R. MTOR and Lysosome Regulation. F1000Prime Rep. 2014, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; Lindquist, R.A.; Thoreen, C.C.; Bar-Peled, L.; Sabatini, D.M. The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to MTORC1. Science 2008, 320, 1496–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leprivier, G.; Rotblat, B. How Does MTOR Sense Glucose Starvation? AMPK Is the Usual Suspect. Cell Death Discov. 2020, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.S. The Role of Mammalian Target of Rapamycin (MTOR) in Insulin Signaling. Nutrients 2017, 9, 1176. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. MTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; et al. A Lysosome-to-Nucleus Signalling Mechanism Senses and Regulates the Lysosome via MTOR and TFEB. EMBO J. 2012, 31, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- Marat, A.L.; Wallroth, A.; Lo, W.T.; Müller, R.; Norata, G.D.; Falasca, M.; Schultz, C.; Haucke, V. MTORC1 Activity Repression by Late Endosomal Phosphatidylinositol 3,4-Bisphosphate. Science 2017, 356, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; et al. MTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell 2017, 32, 807–823.e12. [Google Scholar] [CrossRef] [Green Version]
- Ciuffreda, L.; Di Sanza, C.; Incani, U.C.; Milella, M. The MTOR Pathway: A New Target in Cancer Therapy. Curr. Cancer Drug Targets 2010, 10, 484–495. [Google Scholar] [CrossRef]
- Guri, Y.; Hall, M.N. MTOR Signaling Confers Resistance to Targeted Cancer Drugs. Trends Cancer 2016, 2, 688–697. [Google Scholar] [CrossRef]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. MTOR Signaling Pathway and MTOR Inhibitors in Cancer: Progress and Challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Haberkant, P.; Stein, F.; Höglinger, D.; Gerl, M.J.; Brügger, B.; Van Veldhoven, P.P.; Krijgsveld, J.; Gavin, A.C.; Schultz, C. Bifunctional Sphingosine for Cell-Based Analysis of Protein-Sphingolipid Interactions. ACS Chem. Biol. 2016, 11, 222–230. [Google Scholar] [CrossRef]
- Gerl, M.J.; Bittl, V.; Kirchner, S.; Sachsenheimer, T.; Brunner, H.L.; Lüchtenborg, C.; Özbalci, C.; Wiedemann, H.; Wegehingel, S.; Nickel, W.; et al. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions. PLoS ONE 2016, 11, e0153009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, A.; Radin, N.S.; Shayman, J.A.; Wotring, L.L.; Zipkin, R.E.; Sivakumar, R.; Ruggieri, J.M.; Carson, K.G.; Ganem, B. Structural and Stereochemical Studies of Potent Inhibitors of Glucosylceramide Synthase and Tumor Cell Growth. J. Lipid Res. 1995, 36, 611–621. [Google Scholar] [CrossRef]
- Shayman, J.A.; Lee, L.; Abe, A.; Shu, L. Inhibitors of Glucosylceramide Synthase. Methods Enzymol. 2000, 311, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Rosenwald, A.G.; Pagano, R.E. Effects of the Glucosphingolipid Synthesis Inhibitor, PDMP, on Lysosomes in Cultured Cells. J. Lipid Res. 1994, 35, 1232–1240. [Google Scholar] [CrossRef]
- Betz, C.; Hall, M.N. Where Is MTOR and What Is It Doing There? J. Cell Biol. 2013, 203, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, G.; Ballabio, A. TFEB at a Glance. J. Cell Sci. 2016, 129, 2475–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, F.; Kress, M.; Reither, S.; Piljić, A.; Schultz, C. FluoQ: A Tool for Rapid Analysis of Multiparameter Fluorescence Imaging Data Applied to Oscillatory Events. ACS Chem. Biol. 2013, 8, 1862–1868. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartwig, P.; Höglinger, D. The Glucosylceramide Synthase Inhibitor PDMP Causes Lysosomal Lipid Accumulation and mTOR Inactivation. Int. J. Mol. Sci. 2021, 22, 7065. https://doi.org/10.3390/ijms22137065
Hartwig P, Höglinger D. The Glucosylceramide Synthase Inhibitor PDMP Causes Lysosomal Lipid Accumulation and mTOR Inactivation. International Journal of Molecular Sciences. 2021; 22(13):7065. https://doi.org/10.3390/ijms22137065
Chicago/Turabian StyleHartwig, Pia, and Doris Höglinger. 2021. "The Glucosylceramide Synthase Inhibitor PDMP Causes Lysosomal Lipid Accumulation and mTOR Inactivation" International Journal of Molecular Sciences 22, no. 13: 7065. https://doi.org/10.3390/ijms22137065
APA StyleHartwig, P., & Höglinger, D. (2021). The Glucosylceramide Synthase Inhibitor PDMP Causes Lysosomal Lipid Accumulation and mTOR Inactivation. International Journal of Molecular Sciences, 22(13), 7065. https://doi.org/10.3390/ijms22137065