Structure-Based Virtual Screening Reveals Ibrutinib and Zanubrutinib as Potential Repurposed Drugs against COVID-19
Abstract
:1. Introduction
2. Results
2.1. Molecular Property and Bioactivity Score Prediction
2.2. Homology Modeling
2.3. Molecular Docking
2.3.1. Molecular Binding Interactions of the Selected Drugs with Structural Proteins (SRBD, Membrane Protein and Nucleocapsid Phosphoprotein) of SARS-CoV-2
2.3.2. Molecular Binding Interactions of the Selected Drugs with Nonstructural Proteins (RdRp, Nsp14, Mpro and PLpro) of SARS-CoV-2
2.3.3. Molecular Binding Interactions of the Selected Drugs with Human ACE2, TMPRSS2 and BTK
2.4. Binding Free Energy
2.5. MD Simulations
3. Discussion
4. Materials and Methods
4.1. Molecular and Bioactivity Analysis
4.2. Protein and Ligand Preparation
4.3. Structure-Based Virtual Screening
4.4. Calculation of Binding Free Energy
4.5. Solution Builder and Molecular Dynamics Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Quality Parameters | Membrane Protease | SRBD | Nsp14 | TMPRSS2 |
---|---|---|---|---|
Template | 6VXX | 7KJR.A | 5C8S.B | 7MEQ.1.A |
RMSD (Å) from template | 0.6 | 0.8 | 0.8 | |
QMEAN | −5.68 | −1.12 | −2.15 | −0.51 |
GMQE | 0.19 | 0.88 | 0.93 | 0.53 |
MolProbity score | 2.21 | 0.72 | 2.59 | 1.24 |
Ramachandran favoured (%) | 92.93 | 96.59 | 95.98 | 95.03 |
Ramachandran outliers (%) | 2.02 | 0.00 | 0.38 | 0.29 |
Rotamer outliers (%) | 0.00 | 0.00 | 15.87 | 0.68 |
Bad bonds | 0/808 | 1/1454 | 3/4338 | 0/2766 |
Bad angles | 17/1094 | 7/1981 | 69/5900 | 20/3766 |
Appendix B
Appendix C
Appendix D
References
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol. 2020, 49, 717–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process. 2021. Available online: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_16Feb2021.pdf (accessed on 5 May 2021).
- Roschewski, M.; Lionakis, M.S.; Sharman, J.P.; Roswarski, J.; Goy, A.; Monticelli, M.A.; Roshon, M.; Wrzesinski, S.H.; Desai, J.V.; Zarakas, M.A.; et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol. 2020, 5. [Google Scholar] [CrossRef]
- Treon, S.P.; Castillo, J.J.; Skarbnik, A.P.; Soumerai, J.D.; Ghobrial, I.M.; Guerrera, M.L.; Meid, K.; Yang, G. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood 2020, 135, 1912–1915. [Google Scholar] [CrossRef] [Green Version]
- Nicolson, P.L.; Welsh, J.D.; Chauhan, A.; Thomas, M.R.; Kahn, M.L.; Watson, S.P. A rationale for blocking thrombo-inflammation in COVID-19 with BTK inhibitors. Platelets 2020, 31, 685–690. [Google Scholar] [CrossRef]
- Lin, A.Y.; Cuttica, M.J.; Ison, M.G.; Gordon, L.I. Ibrutinib for chronic lymphocytic leukemia in the setting of respiratory failure from severe COVID-19 infection: Case report and literature review. Ejhaem 2020, 1, 596–600. [Google Scholar] [CrossRef]
- Mohamed, A.J.; Yu, L.; Bäckesjö, C.M.; Vargas, L.; Faryal, R.; Aints, A.; Christensson, B.; Berglöf, A.; Vihinen, M.; Nore, B.F.; et al. Bruton’s tyrosine kinase (BTK): Function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev. 2009, 228, 58–73. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front. Immunol. 2020, 11, 1708. [Google Scholar] [CrossRef]
- Konig, M.F.; Powell, M.; Staedtke, V.; Bai, R.Y.; Thomas, D.L.; Fischer, N.; Huq, S.; Khalafallah, A.M.; Koenecke, A.; Xiong, R.; et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J. Clin. Investig. 2020, 130, 3345–3347. [Google Scholar] [CrossRef]
- Lougaris, V.; Baronio, M.; Vitali, M.; Tampella, G.; Cattalini, M.; Tassone, L.; Soresina, A.; Badolato, R.; Plebani, A. Bruton tyrosine kinase mediates TLR9-dependent human dendritic cell activation. J. Allergy Clin. Immunol. 2014, 133. [Google Scholar] [CrossRef]
- Weber, A.N.R.; Bittner, Z.; Liu, X.; Dang, T.M.; Radsak, M.P.; Brunner, C. Bruton’s tyrosine kinase: An emerging key player in innate immunity. Front. Immunol. 2017, 8, 1454. [Google Scholar] [CrossRef] [Green Version]
- Tatematsu, M.; Nishikawa, F.; Seya, T.; Matsumoto, M. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat. Commun. 2013, 4, 1–13. [Google Scholar] [CrossRef]
- Page, T.H.; Urbaniak, A.M.; Espirito Santo, A.I.; Danks, L.; Smallie, T.; Williams, L.M.; Horwood, N.J. Bruton’s tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment. Biochem. Biophys. Res. Commun. 2018, 499, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Rule, S.; Martin, P.; Goy, A.; Auer, R.; Kahl, B.S.; Jurczak, W.; Advani, R.H.; Romaguera, J.E.; Williams, M.E.; et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 2013, 369, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.A.; Grant, B.; Sharman, J.P.; Coleman, M.; Wierda, W.G.; et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2013, 369, 32–42. [Google Scholar] [CrossRef]
- Byrd, J.C.; Harrington, B.; O’Brien, S.; Jones, J.A.; Schuh, A.; Devereux, S.; Chaves, J.; Wierda, W.G.; Awan, F.T.; Brown, J.R.; et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016, 374, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Estupiñán, H.Y.; Berglöf, A.; Zain, R.; Smith, C.I. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front. Cell Dev. Biol. 2021, 9, 331. [Google Scholar] [CrossRef]
- Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Abhirami, R.; Boura, E.; Singh, S.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J. Biomol. Struct. Dyn. 2020, 1–12. [Google Scholar] [CrossRef]
- Khan, M.T.; Irfan, M.; Ahsan, H.; Ahmed, A.; Kaushik, A.C.; Khan, A.S.; Chinnasamy, S.; Ali, A.; Wei, D.Q. Structures of SARS-CoV-2 RNA-binding proteins and therapeutic targets. Intervirology 2021, 64, 55–68. [Google Scholar] [CrossRef]
- Selvaraj, G.; Kaliamurthi, S.; Peslherbe, G.H.; Wei, D.Q. Identifying potential drug targets and candidate drugs for COVID-19: Biological networks and structural modeling approaches. F1000Research 2021, 10, 127. [Google Scholar] [CrossRef]
- Khan, A.; Khan, M.; Saleem, S.; Babar, Z.; Ali, A.; Khan, A.A.; Sardar, Z.; Hamayun, F.; Ali, S.S.; Wei, D.Q. Phylogenetic analysis and structural perspectives of RNA-dependent RNA-Polymerase inhibition from SARs-CoV-2 with natural products. Interdiscip. Sci. Comput. Life Sci. 2020, 12, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Bösmüller, H.; Matter, M.; Fend, F.; Tzankov, A. The pulmonary pathology of COVID-19. Virchows. Arch. 2021, 478, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Thibaud, S.; Tremblay, D.; Bhalla, S.; Zimmerman, B.; Sigel, K.; Gabrilove, J. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID-19. Br. J. Haematol. 2020, 190, e73–e76. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Weisberg, E.; Parent, A.; Yang, P.L.; Sattler, M.; Liu, Q.; Liu, Q.; Wang, J.; Meng, C.; Buhrlage, S.J.; Gray, N.; et al. Repurposing of kinase inhibitors for treatment of COVID-19. Pharm. Res. 2020, 37, 1–29. [Google Scholar] [CrossRef]
- National Institute of Health. Kinase Inhibitors: Baricitinib and Other Janus Kinase Inhibitors, and Bruton’s Tyrosine Kinase Inhibitors. Available online: https://www.covid19treatmentguidelines.nih.gov/immunomodulators/kinase-inhibitors/ (accessed on 11 March 2021).
- Weston, S.; Coleman, C.M.; Haupt, R.; Logue, J.; Matthews, K.; Li, Y.; Reyes, H.M.; Weiss, S.R.; Frieman, M.B. Broad anti-coronavirus activity of Food and drug Administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J. Virol. 2020, 94, e01218-20. [Google Scholar] [CrossRef]
- Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020, 64, e00819-20. [Google Scholar] [CrossRef]
- de Porto, A.P.; Liu, Z.; de Beer, R.; Florquin, S.; de Boer, O.J.; Hendriks, R.W.; van der Poll, T.; de Vos, A.F. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia. Mol. Med. 2019, 25, 3. [Google Scholar] [CrossRef]
- Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson Kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion. J. Virol. 2016, 90, 8924–8933. [Google Scholar] [CrossRef] [Green Version]
- Rada, M.; Qusairy, Z.; Massip-Salcedo, M.; Macip, S. Relevance of the Bruton Tyrosine Kinase (BTK) as a target for COVID-19 therapy. Mol. Cancer Res. 2020, 19, 549–554. [Google Scholar] [CrossRef]
- Bender, A.T.; Pereira, A.; Fu, K.; Samy, E.; Wu, Y.; Liu-Bujalski, L.; Caldwell, R.; Chen, Y.Y.; Tian, H.; Morandi, F.; et al. Btk inhibition treats TLR7/IFN driven murine lupus. Clin. Immunol. 2016, 164, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Haselmayer, P.; Camps, M.; Liu-Bujalski, L.; Nguyen, N.; Morandi, F.; Head, J.; O’Mahony, A.; Zimmerli, S.C.; Bruns, L.; Bender, A.T.; et al. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J. Immunol. 2019, 202, 2888–2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, B.; Zhou, C.; Guo, H.; Zheng, M. Effects of BTK signalling in pathogenic microorganism infections. J. Cell. Mol. Med. 2019, 23, 6522–6529. [Google Scholar] [CrossRef] [PubMed]
- Vlach, J.; Bender, A.T.; Przetak, M.; Pereira, A.; Deshpande, A.; Johnson, T.L.; Reissig, S.; Tzvetkov, E.; Musil, D.; Morse, N.T.; et al. Discovery of M5049: A novel selective Toll-Like Receptor 7/8 inhibitor for treatment of autoimmunity. J. Pharmacol. Exp. Ther. 2021, 376, 397–409. [Google Scholar] [CrossRef]
- Lee, K.G.; Xu, S.; Kang, Z.H.; Huo, J.; Huang, M.; Liu, D.; Takeuchi, O.; Akira, S.; Lam, K.P. Bruton’s tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc. Natl. Acad. Sci. USA 2012, 109, 5791–5796. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Kim, W.S.; Hong, J.Y.; Ryu, K.J.; Kim, S.J.; Park, C. Epstein-Barr virus EBNA2 directs doxorubicin resistance of B cell lymphoma through CCL3 and CCL4-mediated activation of NF-κB and Btk. Oncotarget 2017, 8, 5361. [Google Scholar] [CrossRef] [Green Version]
- Guendel, I.; Iordanskiy, S.; Sampey, G.C.; Van Duyne, R.; Calvert, V.; Petricoin, E.; Saifuddin, M.; Kehn-Hall, K.; Kashanchi, F. Role of Bruton’s tyrosine kinase inhibitors in HIV-1-infected cells. J. Neurovirol. 2015, 21, 257–275. [Google Scholar] [CrossRef]
- Florence, J.M.; Krupa, A.; Booshehri, L.M.; Davis, S.A.; Matthay, M.A.; Kurdowska, A.K. Inhibiting Bruton’s tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, L52–L58. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 2020, 9, 1267. [Google Scholar] [CrossRef] [PubMed]
- Siu, Y.L.; Teoh, K.T.; Lo, J.; Chan, C.M.; Kien, F.; Escriou, N.; Tsao, S.W.; Nicholls, J.M.; Altmeyer, R.; Peiris, J.S.M.; et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 2008, 82, 11318–11330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Dixit, S.; Ahmad, R.; Raza, S.; Azad, I.; Joshi, S.; Khan, A.R. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J. Chem. Biol. 2017, 10, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.; Cheng, X.; Islam, S.M.; Huang, L.; Rui, H.; Zhu, A.; Lee, H.S.; Qi, Y.; Han, W.; Vanommeslaeghe, K.; et al. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Adv. Protein Chem. Struct. Biol. 2014, 96, 235–265. [Google Scholar] [CrossRef] [Green Version]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016, 18, 12964–12975. [Google Scholar] [CrossRef]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995, 8, 127–134. [Google Scholar] [CrossRef]
- Aksoydan, B.; Kantarcioglu, I.; Erol, I.; Salmas, R.E.; Durdagi, S. Structure-based design of hERG-neutral antihypertensive oxazalone and imidazolone derivatives. J. Mol. Graph. Model. 2018, 79, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem. 2006, 49, 4805–4808. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Koh, Y.; Tojo, Y.; Ghosh, A.K.; Mitsuya, H. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model. J. Chem. Inf. Model. 2009, 49, 2851–2862. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Sajadi, F.; Rowley, C.N. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models. PeerJ 2018, 6, e5472. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. [Google Scholar] [CrossRef]
Name | DrugBank ID | Mol. wt | LogP a | TPSA (Å2) a | nON a | nOHNH a | nviol a | nrotb a | natom a | Bioactivity Score b |
---|---|---|---|---|---|---|---|---|---|---|
Acalabrutinib | DB11703 | 465.52 | 2.26 | 118.52 | 9 | 3 | 0 | 4 | 35 | KI (0.62); PI (0.17); EI (0.05) |
Dasatinib | DB01254 | 488.06 | 3.13 | 106.5 | 9 | 3 | 0 | 7 | 33 | KI (0.51); PI (−0.27); EI (0.03) |
Evobrutinib | DB15170 | 429.52 | 4.06 | 93.38 | 7 | 3 | 0 | 7 | 32 | KI (0.45); PI (0.19); EI (0.22) |
Fostamatinib | DB12010 | 580.47 | 2.62 | 186.74 | 15 | 4 | 2 | 10 | 40 | KI (0.66); PI (0.28); EI (0.44) |
Ibrutinib | DB09053 | 440.51 | 3.50 | 99.18 | 8 | 2 | 0 | 5 | 33 | KI (0.48); PI (−0.23); EI (0.22) |
Inositol 1,3,4,5-tetrakisphosphate | DB01863 | 500.07 | −5.07 | 307.50 | 18 | 10 | 3 | 8 | 28 | KI (0.49); PI (0.48); EI (0.70) |
Spebrutinib | DB11764 | 423.45 | 4.50 | 97.40 | 8 | 3 | 0 | 10 | 31 | KI (0.49); PI (−0.20); EI (−0.04) |
XL418 | DB05204 | 609.50 | 4.35 | 93.28 | 9 | 2 | 1 | 10 | 39 | KI (0.22); PI (−0.21); EI (0.18) |
Zanubrutinib | DB15035 | 471.56 | 3.43 | 102.49 | 8 | 3 | 0 | 6 | 35 | KI (0.28); PI (−0.04); EI (−0.11) |
Ligand | Binding Energy (kcal/mol) | No. of HBs | Interacting Residues with HBs | HB Distance (Å) |
---|---|---|---|---|
SRBD | ||||
Acalabrutinib | −7.1 | 2 | GLU117, ASP119 | 3.11, 2.84 |
Dasatinib | −7.2 | 1 | TRP5 | 2.70 |
Evobrutinib | −6.8 | 1 | PRO115 | 2.94 |
Fostamatinib | −7.0 | 4 | ILE124, GLU123, ARG106, SER121 | 2.87, 3.15, 3.22, 3.05 |
Ibrutinib * | −7.8 | 1 | SER7 | 2.99 |
Inositol | −5.6 | 13 | SER111, SER121, ASP119, GLU123, ARG106, ARG109, GLU117 | 2.91, 2.86, 3.24, 2.93, 2.94, 2.85, 3.26, 3.01, 2.80, 2.94, 3.12, 3.25, 3.30 |
Spebrutinib | −6.5 | 5 | ARG109, ARG106, ILE124, GLU123 | 3.16, 3.22, 3.09, 2.96, 3.15 |
XL418 | −7.1 | 1 | SER51 | 3.30 |
Zanubrutinib | −7.5 | 0 | NA | NA |
Nucleocapsid phosphoprotein | ||||
Acalabrutinib | −7.2 | 1 | ASN75 | 3.01 |
Dasatinib | −7.4 | 6 | ASP63, LYS127, ASN126, ILE130 | 3.08, 2.97, 3.24, 2.88, 3.10, 2.81 |
Evobrutinib | −7.0 | 3 | THR135, GLN163, GLY69 | 2.79, 3.20, 3.10 |
Fostamatinib | −7.6 | 2 | GLY164, VAL172 | 3.06, 2.90 |
Ibrutinib | −7.4 | 2 | ASN126 | 2.97, 3.17 |
Inositol | −4.9 | 7 | ASP103, GLY60, GLN58, ASP63 | 2.90, 3.17, 3.17, 2.98, 2.99, 2.80, 2.85 |
Spebrutinib | −6.7 | 4 | PHE66, THR123, GLY124 | 2.91, 3.01, 3.22, 3.08 |
XL418 | −7.2 | 3 | ASP63, ASN126, TRP132 | 3.29, 3.16, 3.30 |
Zanubrutinib * | −8.7 | 5 | GLY69, THR135, GLN163, GLY71, VAL72 | 2.85, 2.64, 3.06, 2.11, 3.18 |
Membrane protease | ||||
Acalabrutinib | −6.6 | 1 | THR169 | 2.99 |
Dasatinib | −6.7 | 3 | LEU164, TYR178, ASN121 | 2.86, 3.27, 3.35 |
Evobrutinib | −5.3 | 4 | ASN121, GLU167, ARG107 | 2.94, 3.21, 3.11, 2.90 |
Fostamatinib | −6.0 | 5 | GLU141, ALA152, ARG150 | 2.68, 2.88, 2.82, 2.93, 2.92 |
Ibrutinib | −7.0 | 0 | NA | NA |
Inositol | −4.6 | 8 | THR169, GLU167, TYR178, ARG107, ASN121, ARG105 | 2.88, 3.06, 2.84, 2.81, 3.28, 2.93, 2.89, 3.08 |
Spebrutinib | −5.6 | 1 | LEU176 | 3.01 |
XL418 | −6.3 | 2 | THR169, ARG107 | 3.18, 3.34 |
Zanubrutinib * | −7.2 | 2 | THR169, GLU167 | 2.97, 2.82 |
Ligand | Binding Energy (kcal/mol) | No. of HBs | Interacting Residues with HBs | HB Distance (Å) |
---|---|---|---|---|
RdRp | ||||
Acalabrutinib | −8.3 | 1 | HSD133 | 2.78 |
Dasatinib | −8.5 | 3 | TYR728, GLU58, ASP36 | 2.96, 3.21, 2.97 |
Evobrutinib | −7.6 | 2 | THR760, SER772 | 3.17, 3.33 |
Fostamatinib | −8.8 | 7 | THR129, ASN781, SER709, LYS47, HSD133 | 2.69, 2.62, 2.96, 2.82, 2.85, 3.10, 2.82 |
Ibrutinib | −9.0 | 3 | GLU58, ARG55, ARG733 | 3.03, 3.17, 2.88 |
Inositol | −6.9 | 10 | HSD133, SER789, LYS788, ALA706, ASN781, GLY774, TYR129, LYS47 | 2.70, 3.35, 3.16, 3.19, 2.79, 2.87, 2.96, 2.90, 2.74, 3.04 |
Spebrutinib | −7.8 | 4 | TYR129, ASN138, LYS47, ASP711 | 3.19, 3.17, 3.07, 3.11 |
XL418 | −8.6 | 1 | ASN781 | 3.27 |
Zanubrutinib * | −9.1 | 2 | HSD133, SER709 | 2.90, 3.20 |
NSP14 | ||||
Acalabrutinib | −7.5 | 2 | ARG76, TRP247 | 3.21, 2.96 |
Dasatinib | −8.1 | 6 | CYS414, GLY416, GLY417, ASP415, VAL287 | 3.24, 3.21, 2.80, 2.84, 3.07, 2.91 |
Evobrutinib | −8.3 | 2 | ASP352, ARG400 | 2.79, 2.72 |
Fostamatinib | −8.5 | 5 | ASP10, SER28, GLY17,THR5 | 2.76, 2.92, 2.97, 2.88, 3.19 |
Ibrutinib * | −8.9 | 1 | PHE286 | 3.21 |
Inositol | −5.8 | 6 | PHE73, MET62, GLN246, ILE74, ASP243 | 3.08, 3.22, 2.62, 2.81, 2.70, 3.13 |
Spebrutinib | −7.4 | 2 | GLN145, GLU191 | 3.10, 3.25, 3.22 |
XL418 | −10.5 | 0 | NA | NA |
Zanubrutinib | −8.5 | 3 | GLY17, SER28, ASP10 | 2.80, 2.87, 3.18 |
Mpro | ||||
Acalabrutinib | −8.5 | 0 | NA | NA |
Dasatinib | −7.5 | 1 | ASP245 | 2.82 |
Evobrutinib | −7.6 | 4 | ARG40, GLY183, PRO184 | 3.03, 3.35, 3.17, 3.23 |
Fostamatinib | −7.4 | 4 | THR111, GLN110 | 2.80, 3.14, 3.09, 2.80 |
Ibrutinib * | −8.7 | 3 | THR292, LYS102 | 2.65, 2.86, 3.00 |
Inositol | −6.3 | 14 | ASP289, LEU287, TYR239, THR199, ASN238, THR198, ASP238, ARG131 | 2.79, 3.07, 3.06, 3.00, 3.10, 2.95, 2.71, 3.18, 3.17, 2.95, 3.24, 2.91, 2.90, 3.17 |
Spebrutinib | −6.9 | 0 | NA | NA |
XL418 | −8.2 | 1 | GLN110 | 3.12 |
Zanubrutinib | −8.1 | 0 | NA | NA |
PLpro | ||||
Acalabrutinib | −6.6 | 1 | MET206 | 2.85 |
Dasatinib | −6.7 | 3 | ALA176, LEU178, PHE173 | 2.98, 3.14, 3.10 |
Evobrutinib | −6.2 | 2 | GLU238, SER180 | 2.96, 3.15 |
Fostamatinib | −6.2 | 2 | ASP164, GLY163 | 2.85, 3.35 |
Ibrutinib | −7 | 1 | LYS157 | 3.22 |
Inositol | −5.7 | 6 | ASN308, SER180, GLU124, LYS126, ASN172 | 2.96, 2.96, 3.04, 3.10, 3.14, 3.22 |
Spebrutinib | −6.1 | 1 | ARG166 | 3.08 |
XL418 | −6.9 | 2 | ASP179, GLN174 | 2.86, 3.29 |
Zanubrutinib * | −7.3 | 3 | SER180, GLU238, ASN308 | 2.86, 3.05, 3.05 |
Ligand | Binding Energy (kcal/mol) | No. of HBs | Interacting Residues with HBs | HB Distance (Å) |
---|---|---|---|---|
ACE2 | ||||
Acalabrutinib | −9.4 | 2 | GLN98, TYR196 | 3.27, 2.85 |
Dasatinib | −8.9 | 4 | ALA348, ASP382, TYR385 | 2.98, 2.95, 3.01, 3.06 |
Evobrutinib | −8.9 | 1 | TYR385 | 2.81 |
Fostamatinib | −8.6 | 2 | ASN210, GLU208 | 2.74, 3.14 |
Ibrutinib | −9.4 | 0 | NA | NA |
Inositol | −6.2 | 6 | GLU208, GLN98, GLN102, TYR202, TYR196 | 2.70, 2.90, 2.77, 2.71, 2.89, 2.95 |
Spebrutinib | −8.2 | 3 | ASP382, HSD401, TYR385 | 2.81, 3.71, 3.12 |
XL418 | −9.2 | 2 | SER43, ASP382 | 2.80, 3.24 |
Zanubrutinib * | −9.8 | 2 | GLY205, TYR202 | 3.20, 2.81 |
BTK | ||||
Acalabrutinib | −7.3 | 0 | NA | NA |
Dasatinib | −6.9 | 4 | ASP107, ASN161, LYS160 | 3.04, 3.03, 3.04, 2.91 |
Evobrutinib | −7.3 | 3 | GLU45, PHE44, TYR42 | 3.30, 3.03, 3.15 |
Fostamatinib | −6.8 | 2 | ASN170 | 2.88, 3.09 |
Ibrutinib * | −7.4 | 2 | VAL34 | 2.72, 3.12 |
Inositol | −5.0 | 4 | SER86, GLU90, GLU96 | 2.94, 2.96, 2.84, 3.14 |
Spebrutinib | −6.7 | 2 | GLU45, TYR42 | 3.20, 3.28 |
XL418 | −7.0 | 0 | LYS71 | 2.70 |
Zanubrutinib | −7.6 | 0 | NA | NA |
TMPRSS2 | ||||
Acalabrutinib | −7.4 | 1 | ASN303 | 3.12 |
Dasatinib | −8.1 | 5 | GLU385, ASP440, GLY383, CYS465, ASN433 | 3.06, 3.15, 2.97, 3.31, 3.03 |
Evobrutinib | −7.4 | 3 | SER441, SER436, GLY462 | 3.00, 3.24, 3.02 |
Fostamatinib | −8.1 | 5 | GLY464, GLY439, SER460, VAL280, HSD296 | 3.15, 3.26, 3.03, 2.88, 3.09 |
Ibrutinib | −7.6 | 1 | ASN192 | 3.10 |
Inositol | −5.4 | 10 | LEU378, GLY377, ASN451, GLN253, ASP144, SER448, ASN450 | 2.81, 3.12, 2.92, 2.89, 2.92, 2.98, 3.16, 3.07, 2.94, 3.14 |
Spebrutinib | −6.5 | 1 | ASN192 | 3.03 |
XL418 | −7.6 | 3 | PHE156, ASN451, CYS241 | 3.26, 3.15, 2.80 |
Zanubrutinib * | −8.2 | 1 | THR287 | 3.21 |
No. | Name of the Complex | Binding Energy (kcal/mol) | ΔG (kcal/mol) |
---|---|---|---|
1 | ACE2–zanubrutinib | −6.4 | −53.2 |
2 | TMPRSS2–zanubrutinib | −5.8 | −57.0 |
3 | Membrane protein–zanubrutinib | −5.1 | −50.2 |
4 | Nucleocapsid phosphoprotein–zanubrutinib | −6.7 | −50.4 |
5 | PLpro–zanubrutinib | −7.0 | −54.3 |
6 | RdRp–zanubrutinib | −6.3 | −68.3 |
7 | SRBD–ibrutinib | −6.0 | −58.6 |
8 | Nsp14–ibrutinib | −6. 6 | −54.4 |
9 | Mpro–ibrutinib | −7.8 | −33.2 |
10 | BTK–ibrutinib | −5.7 | −44.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliamurthi, S.; Selvaraj, G.; Selvaraj, C.; Singh, S.K.; Wei, D.-Q.; Peslherbe, G.H. Structure-Based Virtual Screening Reveals Ibrutinib and Zanubrutinib as Potential Repurposed Drugs against COVID-19. Int. J. Mol. Sci. 2021, 22, 7071. https://doi.org/10.3390/ijms22137071
Kaliamurthi S, Selvaraj G, Selvaraj C, Singh SK, Wei D-Q, Peslherbe GH. Structure-Based Virtual Screening Reveals Ibrutinib and Zanubrutinib as Potential Repurposed Drugs against COVID-19. International Journal of Molecular Sciences. 2021; 22(13):7071. https://doi.org/10.3390/ijms22137071
Chicago/Turabian StyleKaliamurthi, Satyavani, Gurudeeban Selvaraj, Chandrabose Selvaraj, Sanjeev Kumar Singh, Dong-Qing Wei, and Gilles H. Peslherbe. 2021. "Structure-Based Virtual Screening Reveals Ibrutinib and Zanubrutinib as Potential Repurposed Drugs against COVID-19" International Journal of Molecular Sciences 22, no. 13: 7071. https://doi.org/10.3390/ijms22137071
APA StyleKaliamurthi, S., Selvaraj, G., Selvaraj, C., Singh, S. K., Wei, D. -Q., & Peslherbe, G. H. (2021). Structure-Based Virtual Screening Reveals Ibrutinib and Zanubrutinib as Potential Repurposed Drugs against COVID-19. International Journal of Molecular Sciences, 22(13), 7071. https://doi.org/10.3390/ijms22137071