Upregulated Chemokine and Rho-GTPase Genes Define Immune Cell Emigration into Salivary Glands of Sjögren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice
Abstract
:1. Introduction
2. Results
2.1. Salivary Gland Histology Pre- and Post-Lymphocyte Infiltration in C57BL/6.Aec1Aec2 Mice
2.2. Gene Expression Profiles Defining, in Part, the Early Leukocyte Emigrations into the Salivary Glands of C57BL/6.NOD-Aec1Aec2 Mice
2.2.1. Coordinated Upregulation of Chemokine > Chemokine Receptor Genes with LFA1 and Rho-GTPase Upregulations
2.2.2. Transcriptomic Profile of the Rho-GTPase Family of Proteins
2.2.3. Transcriptomic Profile of the Rho-GAP and Rho-GEF Subfamilies of Rho-GTPase Proteins
2.2.4. Transcriptomic Profiles of Factors Associated with Signal Transduction Pathways of Rho-GAP and Rho-GEF Subfamily Proteins of the Rho-GTPases
3. Discussion
4. Materials and Methods
4.1. Animal Models
4.2. Histology
4.3. RNA Preparations, Microarray Procedures and Microarray Data Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APC | Antigen-presenting cell |
APRIL | Tnfsf13 (Tumor necrosis factor superfamily, member 13 |
ARHGAP | Rho GTPase activating protein |
ARHGEF | Rho GTPase exchange factor |
BAFF | Tnfsf13b |
BCR | B cell receptor |
CCR | Chemokine (C-C motif) receptor |
CD | Cell differentiation antigen |
CDC42 | Cell division cycle 42 |
CXCL | Chemokine (C-X-C motif) ligand |
CXCR | Chemokine (C-X-C motif) receptor |
DOCK | Dedicator of cytokinesis |
ERK | Mitogen-activated protein kinase |
FRC | Fibroblast reticular cell |
GCRMA | Guanine-cytosine robust multi-array average |
GTP-GAP | G protein bound-guanine nucleotide activating protein |
GTP-GEF | G protein bound-guanine nucleotide exchange factor |
ICAM1 | Intercellular adhesion molecule 1 |
IFN | Interferon |
IL | Interleukin |
ITG | Integrin |
LIMMA | Linear models for microarray analysis |
LF | Lymphocytic foci |
LFA1 | Lymphocyte function-association antigen 1 |
LTI | Lymphoid tissue inducer cell |
MADCAM1 | Mucosal cell adhesion molecule-1 |
MZ | Marginal zone |
MZB | Marginal zone B cell |
NOTCH | Notch gene homolog |
PALS | Periarteriolar lymphoid sheaths |
PTK2 | Protein tyrosine kinase |
RAC | Ras-related C3 botulinum toxin substrate |
RANKL | Receptor activator of NF-kB ligand |
RBP-J | Recombination signal binding protein for Igk J-region |
RHO-GTP | Ras homolog member |
RNA | Ribonucleic acid |
RND | Rho-family GTPase |
ROCK | Rho-associated coiled-coil containing protein |
RSF | Remodeling and spacing factor |
RXRγ | Retinoid X receptor gamma |
SS | Sjögren’s syndrome |
S1P | Sphingosin-1-phosphate |
TACI | Transmembrane activator and CAML interactor |
TG | Transgenic |
TLR | Toll-like receptor |
VCAM1 | Vascular cell adhesion molecule 1 |
VLA4 | Very late antigen 4 |
WAS | Wiskott–Aldrich protein |
WASF | Wiskott–Aldrich family member |
References
- Vivino, F.B.; Bunya, V.Y.; Massaro-Giordano, G.; Johr, C.R.; Giattino, S.L.; Schorpion, A.; Shafer, B.; Peck, A.; Sivils, K.; Rasmussen, A.; et al. Sjogren’s Syndrome: An Update on Disease Pathogenesis, Clinical Manifestations and Treatment. Clin. Immunol. 2019, 203, 81–121. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.E.; Grimbacher, B.; Witte, T. Autoimmunity and Primary Immunodeficiency: Two Sides of the Same Coin? Nat. Rev. Rheumatol. 2018, 14, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, Y.; Zhu, H.; Zhao, M.; Lu, Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front. Immunol. 2019, 10, 2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slight-Webb, S.; Bourn, R.L.; Holers, V.M.; James, J.A. Shared and Unique Immune Alterations in Pre-Clinical Autoimmunity. Curr. Opin. Immunol. 2019, 61, 60–68. [Google Scholar] [CrossRef]
- Teng, X.Y.; Cornaby, C.; Li, W.; Morel, L. Metabolic Regulation of Pathogenic Autoimmunity: Therapeutic Targeting. Curr. Opin. Immunol. 2019, 61, 10–16. [Google Scholar] [CrossRef]
- Marketos, N.; Cinoku, I.; Rapti, A.; Mavragani, C.P. Type I Interferon Signature in Sjogren’s Syndrome: Pathophysiological and Clinical Implications. Clin. Exp. Rheumatol. 2019, 37, S185–S191. [Google Scholar]
- Yin, H.; Wu, H.; Chen, Y.; Zhang, J.; Zheng, M.; Chen, G.; Li, L.; Lu, Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front. Immunol. 2018, 9, 1512. [Google Scholar] [CrossRef] [Green Version]
- Stojanov, S.; Kastner, D.L. Familial Autoinflammatory Diseases: Genetics, Pathogenesis and Treatment. Curr. Opin. Rheumatol. 2005, 17, 586–599. [Google Scholar] [CrossRef]
- Brito-Zeron, P.; Theander, E.; Baldini, C.; Seror, R.; Retamozo, S.; Quartuccio, L.; Bootsma, H.; Bowman, S.J.; Dorner, T.; Gottenberg, J.E.; et al. Early Diagnosis of Primary Sjogren’s Syndrome: EULAR-SS Task Force Clinical Recommendations. Expert Rev. Clin. Immunol. 2016, 12, 137–156. [Google Scholar] [CrossRef]
- Killedar, S.J.; Eckenrode, S.E.; McIndoe, R.A.; She, J.X.; Nguyen, C.Q.; Peck, A.B.; Cha, S. Early Pathogenic Events Associated with Sjogren’s Syndrome (Sjs)-Like Disease of the NOD Mouse Using Microarray Analysis. Lab. Investig. 2006, 86, 1243–1260. [Google Scholar] [CrossRef]
- Peck, A.B.; Nguyen, C.Q. Transcriptome Analysis of the Interferon-Signature Defining the Autoimmune Process of Sjogren’s Syndrome. Scand. J. Immunol. 2012, 76, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Delaleu, N.; Nguyen, C.Q.; Tekle, K.M.; Jonsson, R.; Peck, A.B. Transcriptional Landscapes of Emerging Autoimmunity: Transient Aberrations in the Targeted Tissue’s Extracellular Milieu Precede Immune Responses in Sjogren’s Syndrome. Arthritis Res. Ther. 2013, 15, R174. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.Q.; Cha, S.R.; Peck, A.B. Sjogren’s Syndrome (Sjs)-Like Disease of Mice: The Importance of B Lymphocytes and Autoantibodies. Front. Biosci. 2007, 12, 1767–1789. [Google Scholar] [CrossRef] [Green Version]
- Peck, A.B.; Nguyen, C.Q. What Can Sjogren’s Syndrome-Like Disease in Mice Contribute to Human Sjogren’s Syndrome? Clin. Immunol. 2017, 182, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.P.; Yamachika, S.; Bounous, D.I.; Brayer, J.; Jonsson, R.; Holmdahl, R.; Peck, A.B.; Humphreys-Beher, M.G. A Novel NOD-Derived Murine Model of Primary Sjogren’s Syndrome. Arthritis Rheum. 1998, 41, 150–156. [Google Scholar] [CrossRef]
- Szczerba, B.M.; Rybakowska, P.D.; Dey, P.; Payerhin, K.M.; Peck, A.B.; Bagavant, H.; Deshmukh, U.S. Type I Interferon Receptor Deficiency Prevents Murine Sjogren’s Syndrome. J. Dent. Res. 2013, 92, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.H.; Killedar, S.; Cornelius, J.G.; Nguyen, C.; Cha, S.H.; Peck, A.B. Sjogren’s Syndrome in the NOD Mouse Model Is an Interleukin-4 Time-Dependent, Antibody Isotype-Specific Autoimmune Disease. J. Autoimmun. 2006, 26, 90–103. [Google Scholar] [CrossRef]
- Nguyen, C.; Cornelius, J.; Singson, E.; Killedar, S.; Cha, S.H.; Peck, A.B. Role of Complement and B Lymphocytes in Sjogren’s Syndrome-Like Autoimmune Exocrinopathy of NOD.B10-H2(B) Mice. Mol. Immunol. 2006, 43, 1332–1339. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, C.; Wang, T.; Brooks, S.; Ford, R.J.; Lin-Lee, Y.C.; Kasianowicz, A.; Kumar, V.; Martin, L.; Liang, P. Development of Autoimmunity in IL-14 Alpha-Transgenic Mice. J. Immunol. 2006, 177, 5676–5686. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Suresh, L.; Li, H.; Zhang, C.J.; Kumar, V.; Pankewycz, O.; Ambrus, J.L. IL-14 Alpha, the Nexus for Primary Sjogren’s Disease in Mice and Humans. Clin. Immunol. 2009, 130, 304–312. [Google Scholar] [CrossRef]
- Shen, L.; Suresh, L.; Wu, J.; Xuan, J.X.; Li, H.; Zhang, C.J.; Pankewycz, O.; Ambrus, J.L. A Role for Lymphotoxin in Primary Sjogren’s Disease. J. Immunol. 2010, 185, 6355–6363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Gao, C.; Suresh, L.; Xian, Z.; Song, N.; Chaves, L.D.; Yu, M.; Ambrus, J.L., Jr. Central Role for Marginal Zone B Cells in an Animal Model of Sjogren’s Syndrome. Clin. Immunol. 2016, 168, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, A.; Cols, M.; Puga, I. Marginal Zone B Cells: Virtues of Innate-Like Antibody-Producing Lymphocytes. Nat. Rev. Immunol. 2013, 13, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Arruga, F.; Vaisitti, T.; Deaglio, S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front. Oncol. 2018, 8, 550. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.T.; Cyster, J.G. Integrin-Mediated Long-Term B Cell Retention in the Splenic Marginal Zone. Science 2002, 297, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.B.; Xu, K.; Cretegny, K.; Visan, I.; Yuan, J.S.; Egan, S.E.; Guidos, C.J. Lunatic and Manic Fringe Cooperatively Marginal Zone B Cell Precursor Competition for Delta-like 1 in Splenic Endothelial Niches. Immunity 2009, 30, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.; Ehrenstein, M.R. Cutting Edge: Selection of B Lymphocyte Subsets Is Regulated by Natural IgM. J. Immunol. 2002, 169, 6686–6690. [Google Scholar] [CrossRef] [Green Version]
- Lawson, C.D.; Ridley, A.J. Rho GTPase Signaling Complexes in Cell Migration and Invasion. J. Cell Biol. 2018, 217, 447–457. [Google Scholar] [CrossRef]
- Kroese, F.G.M.; Abdulahad, W.H.; Haacke, E.; Bos, N.A.; Vissink, A.; Bootsma, H. B-cell Hyperactivity in Primary Sjogren’s Syndrome. Expert Rev. Clin. Immunol. 2014, 10, 483–499. [Google Scholar] [CrossRef]
- Karlsen, M.; Jakobsen, K.; Jonsson, R.; Hammenfors, D.; Hansen, T.; Appel, S. Expression of Toll-Like Receptors in Peripheral Blood Mononuclear Cells of Patients with Primary Sjogren’s Syndrome. Scand. J. Immunol. 2017, 85, 220–226. [Google Scholar] [CrossRef]
- Ambrus, J.L.; Suresh, L.; Peck, A. Multiple Roles for B-Lymphocytes in Sjogren’s Syndrome. J. Clin. Med. 2016, 5, 87. [Google Scholar] [CrossRef]
- Ambrus, J.L.; Nguyen, C.Q.; Peck, A.B. Early Covert Appearance of Marginal Zone B Cells in Sjögren’s Syndrome-Susceptible Mice: Initiators of Subsequent Overt Clinical Disease. Int. J. Mol. Sci. 2021, 22, 1919. [Google Scholar]
- Sozzani, S.; Bosisio, D.; Scarsi, M.; Tincani, A. Type I Interferons in Systemic Autoimmunity. Autoimmunity 2010, 43, 196–203. [Google Scholar] [CrossRef]
- Nguyen, C.Q.; Peck, A.B. The Interferon-Signature of Sjögren´S Signature: How Unique Biomarkers Can Identify Underlying Inflammatory and Immunopathological Mechanisms of Specific Disease. Front. Immunol. 2013, 4, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, I.; Weng, A.P.; Carpenter, A.C.; Rodriguez, C.G.; Sai, H.; Xu, L.; Allman, D.; Aster, J.C.; Pear, W.S. Mastermind Critically Regulates Notch-Mediated Lymphoid Cell Fate Decisions. Blood 2004, 104, 1696–1702. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Chiba, S.; Ichikawa, M.; Kunisato, A.; Asai, T.; Shimizu, K.; Yamaguchi, T.; Yamamoto, G.; Seo, S.; Kumano, K.; et al. Notch2 Is Preferentially Expressed in Mature B Cells and Indispensable for Marginal Zone B Lineage Development. Immunity 2003, 18, 675–685. [Google Scholar] [CrossRef] [Green Version]
- LopesCarvalho, T.; Foote, J.; Kearney, J.F. Marginal Zone B Cells in Lymphocyte Activation and Regulation. Curr. Opin. Immunol. 2005, 17, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Tybulewicz, V.L.; Henderson, R.B. Rho Family Gtpases and Their Regulators in Lymphocytes. Nat. Rev. Immunol. 2009, 9, 630–644. [Google Scholar] [CrossRef]
- Gotoh, K.; Tanaka, Y.; Nishikimi, A.; Inayoshi, A.; Enjoji, M.; Takayanagi, R.; Sasazuki, T.; Fukui, Y. Differential Requirement for DOCK2 in Migration of Plasmacytoid Dendritic Cells versus Myeloid Dendritic Cells. Blood 2008, 111, 2973–2976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namekata, K.; Kimura, A.; Kawamura, K.; Harada, C.; Harada, T. Dock GEFs and Their Therapeutic Potential: Neuroprotection and Axon Regeneration. Prog. Retin. Eye Res. 2014, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gadea, G.; Blangy, A. Dock-Family Exchange Factors in Cell Migration and Disease. Eur. J. Cell Biol. 2014, 93, 466–477. [Google Scholar] [CrossRef]
- Heasman, S.J.; Ridley, A.J. Mammalian Rho GTPases: New Insights into Their Functions from In Vivo Studies. Nat. Rev. Mol. Cell Biol. 2008, 9, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Spiering, D.; Hodgson, L. Dynamics of the Rho-Family Small Gtpases in Actin Regulation and Motility. Cell Adh. Migr. 2011, 5, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Casola, S.; Otipoby, K.L.; Alimzhanov, M.; Humme, S.; Uyttersprot, N.; Kutok, J.L.; Carroll, M.C.; Rajewsky, K. B Cell Receptor Signal Strength Determines B Cell Fate. Nat. Immunol. 2004, 5, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Cariappa, A.; Moran, S.T. Marginal Zone B Cells. Annu. Rev. Immunol. 2005, 23, 161–196. [Google Scholar] [CrossRef]
- Oliver, A.M.; Martin, F.; Kearney, J.F. IgM(High)CD21(High) lymphocytes Enriched in the Splenic Marginal Zone Generate Effector Cells More Rapidly than the Bulk of Follicular B Cells. J. Immunol. 1999, 162, 7198–7207. [Google Scholar] [PubMed]
- Lenert, P.; Brummel, R.; Field, E.H.; Ashman, R.F. TLR-9 Activation of Marginal Zone B Cells in Lupus Mice Regulates Immunity through Increased IL-10 Production. J. Clin. Immunol. 2005, 25, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Treml, L.S.; Carlesso, G.; Hoek, K.L.; Stadanlick, J.E.; Kambayashi, T.; Bram, R.J.; Cancro, M.P.; Khan, W.N. TLR Stimulation Modifies Blys Receptor Expression in Follicular and Marginal Zone B Cells. J. Immunol. 2007, 178, 7531–7539. [Google Scholar] [CrossRef] [Green Version]
- Weill, J.C.; Weller, S.; Reynaud, C.A. Human Marginal Zone B Cells. Annu. Rev. Immunol. 2009, 27, 267–285. [Google Scholar] [CrossRef]
- Attanavanich, K.; Kearney, J.F. Marginal Zone, but Not Follicular B Cells, Are Potent Activators of Naive CD4 T Cells. J. Immunol. 2004, 172, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Jamin, C.; Morva, A.; Lemoine, S.; Daridon, C.; de Mendoza, A.R.; Youinou, P. Regulatory B Lymphocytes in Humans—A Potential Role in Autoimmunity. Arthritis Rheum. 2008, 58, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- LopesCarvalho, T.; Kearney, J.F. Development and Selection of Marginal Zone B Cells. Immunol. Rev. 2004, 197, 192–205. [Google Scholar] [CrossRef]
- Allam, R.; Anders, H.J. The Role of Innate Immunity in Autoimmune Tissue Injury. Curr. Opin. Rheumatol. 2008, 20, 538–544. [Google Scholar] [CrossRef]
- Theofilopoulos, A.N.; Kono, D.H.; Baccala, R. The Multiple Pathways to Autoimmunity. Nat. Immunol. 2017, 18, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Weidenbusch, M.; Kulkarni, O.P.; Anders, H.J. The Innate Immune System in Human Systemic Lupus Erythematosus. Clin. Sci. 2017, 131, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.M.; Martin, F.; Gartland, G.L.; Carter, R.H.; Kearney, J.F. Marginal Zone B Cells Exhibit Unique Activation, Proliferative and Immunoglobulin Secretory Responses. Eur. J. Immunol. 1997, 27, 2366–2374. [Google Scholar] [CrossRef]
- Colonna, M. Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity. Immunity 2018, 48, 1104–1117. [Google Scholar] [CrossRef] [Green Version]
- Magri, G.; Miyajima, M.; Bascones, S.; Mortha, A.; Puga, I.; Cassis, L.; Barra, C.M.; Comerma, L.; Chudnovskiy, A.; Gentile, M.; et al. Innate Lymphoid Cells Integrate Stromal and Immunological Signals to Enhance Antibody Production by Splenic Marginal Zone B Cells. Nat. Immunol. 2014, 15, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.Q.; Cornelius, J.G.; Cooper, L.; Neff, J.; Tao, J.; Lee, B.H.; Peck, A.B. Identification of Possible Candidate Genes Regulating Sjogren’s Syndrome-Associated Autoimmunity: A Potential Role for TNFSF4 in Autoimmune Exocrinopathy. Arthritis Res. Ther. 2008, 10, R137. [Google Scholar] [CrossRef] [Green Version]
- Tedford, K.; Nitschke, L.; Girkontaite, I.; Charlesworth, A.; Chan, G.; Sakk, V.; Barbacid, M.; Fischer, K.D. Compensation between Vav-1 and Vav-2 in B cell Development and Antigen Receptor Signaling. Nat. Immunol. 2001, 2, 548–555. [Google Scholar] [CrossRef]
- Wang, J.; Lin, F.; Wan, Z.; Sun, X.; Lu, Y.; Huang, J.; Wang, F.; Zeng, Y.; Chen, Y.H.; Shi, Y.; et al. Profiling the Origin, Dynamics, and Function of Traction Force in B Cell Activation. Sci. Signal. 2018, 11, eaai9192. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Serna, A.M.; Alcaraz-Garcia, M.J.; Ruiz-Lafuente, N.; Sebastian-Ruiz, S.; Martinez, C.M.; Moya-Quiles, M.R.; Minguela, A.; Garcia-Alonso, A.M.; Martin-Orozco, E.; Parrado, A. Dock10 Regulates CD23 Expression and Sustains B-Cell Lymphopoiesis in Secondary Lymphoid Tissue. Immunobiology 2016, 221, 1343–1350. [Google Scholar] [CrossRef]
- NombelaArrieta, C.; Lacalle, R.A.; Montoya, M.C.; Kunisaki, Y.; Megias, D.; Marques, M.; Carrera, A.C.; Manes, S.; Fukui, Y.; MartinezA, C.; et al. Differential Requirements for DOCK2 and Phosphoinositide-3-Kinase Gamma during T and B Lymphocyte Homing. Immunity 2004, 21, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Ushijima, M.; Uruno, T.; Nishikimi, A.; Sanematsu, F.; Kamikaseda, Y.; Kunimura, K.; Sakata, D.; Okada, T.; Fukui, Y. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production. Front. Immunol. 2018, 9, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.S.; Tangye, S.G. Flow Cytometric-Based Analysis of Defects in Lymphocyte Differentiation and Function Due to Inborn Errors of Immunity. Front. Immunol. 2019, 10, 2108. [Google Scholar] [CrossRef]
- Randall, K.L.; Lambe, T.; Johnson, A.; Treanor, B.; Kucharska, E.; Domaschenz, H.; Whittle, B.; Tze, L.E.; Enders, A.; Crockford, T.L.; et al. Dock8 Mutations Cripple B Cell Immunological Synapses, Germinal Centers and Long-Lived Antibody Production. Nat. Immunol. 2009, 10, 1283–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, S.; Nagashima, H.; Brown, V.B.; Peck, A.B.; Humphreys-Beher, M.G. Two NOD Idd-Associated Intervals Contribute Synergistically to the Development of Autoimmune Exocrinopathy (Sjogren’s Syndrome) on a Healthy Murine Background. Arthritis Rheum. 2002, 46, 1390–1398. [Google Scholar] [CrossRef]
- Nguyen, C.Q.; Sharma, A.; She, J.X.; McIndoe, R.A.; Peck, A.B. Differential Gene Expressions in the Lacrimal Gland During Development and Onset of Keratoconjunctivitis Sicca in Sjogren’s Syndrome (SJS)-Like Disease of the C57BL/6.NOD-Aec1Aec2 Mouse. Exp. Eye Res. 2009, 88, 398–409. [Google Scholar] [CrossRef] [Green Version]
- Peck, A.B.; Saylor, B.T.; Nguyen, L.; Sharma, A.; She, J.X.; Nguyen, C.Q.; McIndoe, R.A. Gene Expression Profiling of Early-Phase Sjogren’s Syndrome in C57BL/6.NOD-Aec1Aec2 Mice Identifies Focal Adhesion Maturation Associated with Infiltrating Leukocytes. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5647–5655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The R Project for Statistical Computing. Available online: www.r-project.org (accessed on 17 June 2021).
- Benjanini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R Statist. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peck, A.B.; Nguyen, C.Q.; Ambrus, J.L. Upregulated Chemokine and Rho-GTPase Genes Define Immune Cell Emigration into Salivary Glands of Sjögren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice. Int. J. Mol. Sci. 2021, 22, 7176. https://doi.org/10.3390/ijms22137176
Peck AB, Nguyen CQ, Ambrus JL. Upregulated Chemokine and Rho-GTPase Genes Define Immune Cell Emigration into Salivary Glands of Sjögren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice. International Journal of Molecular Sciences. 2021; 22(13):7176. https://doi.org/10.3390/ijms22137176
Chicago/Turabian StylePeck, Ammon B., Cuong Q. Nguyen, and Julian L. Ambrus. 2021. "Upregulated Chemokine and Rho-GTPase Genes Define Immune Cell Emigration into Salivary Glands of Sjögren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice" International Journal of Molecular Sciences 22, no. 13: 7176. https://doi.org/10.3390/ijms22137176
APA StylePeck, A. B., Nguyen, C. Q., & Ambrus, J. L. (2021). Upregulated Chemokine and Rho-GTPase Genes Define Immune Cell Emigration into Salivary Glands of Sjögren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice. International Journal of Molecular Sciences, 22(13), 7176. https://doi.org/10.3390/ijms22137176