Evaluating the Effects of Subnormothermic Perfusion with AP39 in a Novel Blood-Free Model of Ex Vivo Kidney Preservation and Reperfusion
Abstract
:1. Introduction
2. Results
2.1. Subnormothermic Perfusion with Hemopure + 200 nM AP39 at 21 °C Improves Gross Kidney Morphology and Perfusate pO2 Levels during Blood-Free Reperfusion
2.2. Subnormothermic Perfusion with Hemopure + 200 nM AP39 at 21 °C Improves Tissue Oxygenation during Blood-Free Preservation
2.3. Subnormothermic Perfusion with Hemopure + 200 nM AP39 at 21 °C Improves Kidney Function during Blood-Free Preservation and Reperfusion
2.4. Subnormothermic Perfusion with Hemopure + 200 nM AP39 at 21 °C Reduces Apoptotic Kidney Injury Following Blood-Free Preservation and Reperfusion
3. Discussion
4. Materials and Methods
4.1. Animal Care and Surgery
4.2. Ex Vivo Perfusion Setup
4.3. Blood-Free Preservation Treatments
4.4. Blood-Free Reperfusion Protocol
4.5. Hydrogen Sulfide Donor Molecule AP39
4.6. Urinalysis
4.7. Histopathology Imaging and Scoring
4.8. Statistical Analyses
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolfe, R.A.; Ashby, V.B.; Milford, E.L.; Ojo, A.O.; Ettenger, R.E.; Agodoa, L.Y.; Held, P.J.; Port, F.K. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 1999, 341, 1725–1730. [Google Scholar] [CrossRef] [Green Version]
- Kaballo, M.A.; Canney, M.; O’Kelly, P.; Williams, Y.; O’Seaghdha, C.M.; Conlon, P.J. A comparative analysis of survival of patients on dialysis and after kidney transplantation. Clin. Kidney J. 2018, 11, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Laupacis, A.; Keown, P.; Pus, N.; Krueger, H.; Ferguson, B.; Wong, C.; Muirhead, N. A study of the quality of life and cost-utility of renal transplantation. Kidney Int. 1996, 50, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Canadian Institute for Health Information. Organ Replacement in Canada: CORR Annual statistics|CIHI. 2020. Available online: https://www.cihi.ca/en/organ-replacement-in-canada-corr-annual-statistics-2020 (accessed on 22 March 2021).
- Canadian Institute for Health Information. e-Statistics on Organ Transplants, Waiting Lists and Donors|CIHI. 2019. Available online: https://www.cihi.ca/en/e-statistics-on-organ-transplants-waiting-lists-and-donors (accessed on 22 March 2021).
- Gill, J.; Rose, C.; Lesage, J.; Joffres, Y.; Gill, J.; O’Connor, K. Use and outcomes of kidneys from donation after circulatory death donors in the United States. J. Am. Soc. Nephrol. 2017, 28, 3647–3657. [Google Scholar] [CrossRef]
- Maathuis, M.H.J.; de Groot, M.; Ploeg, R.J.; Leuvenink, H.G.D. Deterioration of endothelial and smooth muscle cell function in dcd kidneys after static cold storage in IGL-1 or UW. J. Surg. Res. 2009, 152, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Salahudeen, A.K.; Haider, N.; May, W. Cold ischemia and the reduced long-term survival of cadaveric renal allografts. Kidney Int. 2004, 65, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Salahudeen, A.K. Cold ischemic injury of transplanted kidneys: New insights from experimental studies. Am. J. Physiol. Physiol. 2004, 287, F181–F187. [Google Scholar] [CrossRef] [Green Version]
- Lobb, I.; Davison, M.; Carter, D.; Liu, W.; Haig, A.; Gunaratnam, L.; Sener, A. Hydrogen sulfide treatment mitigates renal allograft ischemia-reperfusion injury during cold storage and improves early transplant kidney function and survival following allogeneic renal transplantation. J. Urol. 2015, 194, 1806–1815. [Google Scholar] [CrossRef]
- Lobb, I.; Jiang, J.; Lian, D.; Liu, W.; Haig, A.; Saha, M.N.; Torregrossa, R.; Wood, M.E.; Whiteman, M.; Sener, A. Hydrogen sulfide protects renal grafts against prolonged cold ischemia-reperfusion injury via specific mitochondrial actions. Am. J. Transplant. 2017, 17, 341–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugbartey, G.J.; Bouma, H.R.; Saha, M.N.; Lobb, I.; Henning, R.H.; Sener, A. A hibernation-like state for transplantable organs: Is hydrogen sulfide therapy the future of organ preservation? Antioxid. Redox Signal. 2018, 28, 1503–1515. [Google Scholar] [CrossRef]
- Zhu, C.; Su, Y.; Juriasingani, S.; Zheng, H.; Veramkovich, V.; Jiang, J.; Sener, A.; Whiteman, M.; Lacefield, J.; Nagpal, D.; et al. Supplementing preservation solution with mitochondria-targeted H2S donor AP39 protects cardiac grafts from prolonged cold ischemia–reperfusion injury in heart transplantation. Am. J. Transplant. 2019, 19, 3139–3148. [Google Scholar] [CrossRef]
- Juriasingani, S.; Akbari, M.; Luke, P.; Sener, A. Novel therapeutic strategies for renal graft preservation and their potential impact on the future of clinical transplantation. Curr. Opin. Organ Transplant. 2019, 24, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, D.P.; Gallinat, A.; Swoboda, S.; Wohlschläger, J.; Rauen, U.; Paul, A.; Minor, T. Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl. Int. 2014, 27, 1097–1106. [Google Scholar] [CrossRef]
- Kaths, J.M.; Echeverri, J.; Chun, Y.M.; Cen, J.Y.; Goldaracena, N.; Linares, I.; Dingwell, L.S.; Yip, P.; John, R.; Bagli, D.; et al. Continuous normothermic ex vivo kidney perfusion improves graft function in donation after circulatory death pig kidney transplantation. Transplantation 2017, 101, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Weissenbacher, A.; Lo Faro, L.; Boubriak, O.; Soares, M.F.; Roberts, I.S.; Hunter, J.P.; Voyce, D.; Mikov, N.; Cook, A.; Ploeg, R.J.; et al. Twenty-four-hour normothermic perfusion of discarded human kidneys with urine recirculation. Am. J. Transplant. 2019, 19, 178–192. [Google Scholar] [CrossRef]
- Bhattacharjee, R.N.; Ruthirakanthan, A.; Sun, Q.; Richard-Mohamed, M.; Luke, S.; Jiang, L.; Aquil, S.; Sharma, H.; Tun-Abraham, M.E.; Alharbi, B.; et al. Subnormothermic oxygenated perfusion optimally preserves donor kidneys ex vivo. Kidney Int. Rep. 2019, 4, 1323–1333. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, R.N.; Patel, S.V.; Sun, Q.; Jiang, L.; Richard-Mohamed, M.; Ruthirakanthan, A.; Aquil, S.; Al-Ogaili, R.; Juriasingani, S.; Sener, A.; et al. Renal protection against ischemia reperfusion injury: Hemoglobin-based oxygen carrier-201 versus blood as an oxygen carrier in ex vivo subnormothermic machine perfusion. Transplantation 2020, 104, 482–489. [Google Scholar] [CrossRef]
- Juriasingani, S.; Ruthirakanthan, A.; Richard-Mohamed, M.; Akbari, M.; Aquil, S.; Patel, S.; Al-Ogaili, R.; Whiteman, M.; Luke, P.; Sener, A. Subnormothermic perfusion with H2S donor AP39 improves DCD porcine renal graft outcomes in an ex vivo model of kidney preservation and reperfusion. Biomolecules 2021, 11, 446. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; van Heurn, E.; Nicholson, M.L. Normothermic machine perfusion of the kidney: Better conditioning and repair? Transpl. Int. 2015, 28, 657–664. [Google Scholar] [CrossRef]
- Jahr, J.S.; Nesargi, S.B.; Lewis, K.; Johnson, C. Blood substitutes and oxygen therapeutics: An overview and current status. Am. J. Ther. 2002, 9, 437–443. [Google Scholar] [CrossRef]
- Jahr, J.S.; Guinn, N.R.; Lowery, D.R.; Shore-Lesserson, L.; Shander, A. Blood substitutes and oxygen therapeutics: A review. Anesth. Analg. 2021, 132, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.D.; Alexander, E. Bovine hemoglobin: A nontraditional approach to the management of acute anemia in a Jehovah’s witness patient with autoimmune hemolytic anemia. J. Pharm. Pract. 2013, 26, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; El-Haj, N.; Shah, N.N.; Schwartz, G.; Block, M.; Wall, J.; Tidswell, M.; DiNino, E. Use of the blood substitute HBOC-201 in critically ill patients during sickle crisis: A three-case series. Transfusion 2018, 58, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Aburawi, M.M.; Fontan, F.M.; Karimian, N.; Eymard, C.; Cronin, S.; Pendexter, C.; Nagpal, S.; Banik, P.; Ozer, S.; Mahboub, P.; et al. Synthetic hemoglobin-based oxygen carriers are an acceptable alternative for packed red blood cells in normothermic kidney perfusion. Am. J. Transplant. 2019, 19, 2814–2824. [Google Scholar] [CrossRef] [PubMed]
- Juriasingani, S.; Akbari, M.; Chan, J.Y.; Whiteman, M.; Sener, A. H2S supplementation: A novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide 2018, 81, 57–66. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Thompson, E.; Moore, T.; Wilson, C.H.; Nicholson, M.L. Normothermic machine perfusion for the assessment and transplantation of declined human kidneys from donation after circulatory death donors. Br. J. Surg. 2018, 105, 388–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, T.R.; Nicholson, M.L.; Hosgood, S.A. Normothermic kidney perfusion: An overview of protocols and strategies. Am. J. Transplant. 2021, 21, 1382–1390. [Google Scholar] [CrossRef]
- Le Trionnaire, S.; Perry, A.; Szczesny, B.; Szabo, C.; Winyard, P.G.; Whatmore, J.L.; Wood, M.E.; Whiteman, M. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). Med. Chem. Commun. 2014, 5, 728–736. [Google Scholar] [CrossRef] [Green Version]
pO2 (mmHg) | ||||
Reperfusion Timepoint | ||||
Group (n) | 1 h | 2 h | 3 h | 4 h |
SCS-4 °C (n = 3) | 227.00 ± 6.43 | 231.00 ± 15.04 | 231.00 ± 9.644 | 221.33 ± 9.493 |
H-21 °C (n = 3) | 215.66 ± 3.71 | 221.33 ± 9.59 | 224.33 ± 6.17 | 221.33 ± 3.28 |
H200nM-21 °C (n = 3) | 242.66 ± 14.19 | 242.66 ± 18.97 | 238.66 ± 5.78 | 241.00 ± 15.50 |
H1µM-21 °C (n = 2) | 213.00 ± 13.00 | 214.00 ± 13.00 | 215.50 ± 5.50 | 212.00 ± 8.00 |
pH | ||||
Reperfusion Timepoint | ||||
Group (n) | 1 h | 2 h | 3 h | 4 h |
SCS-4 °C (n = 3) | 7.40 ± 0.11 | 7.27 ± 0.09 | 7.17 ± 0.08 | 7.05 ± 0.09 |
H-21 °C (n = 3) | 7.67 ± 0.13 | 7.35 ± 0.13 | 7.49 ± 0.12 | 7.38 ± 0.10 |
H200nM-21 °C (n = 3) | 7.17 ± 0.04 | 7.29 ± 0.23 | 7.24 ± 0.11 | 7.13 ± 0.03 |
H1µM-21 °C (n = 2) | 7.84 ± 0.10 | 7.71 ± 0.09 | 7.56 ± 0.08 | 7.44 ± 0.05 |
Lactate (mmol/L) | ||||
Reperfusion Timepoint | ||||
Group (n) | 1 h | 2 h | 3 h | 4 h |
SCS-4 °C (n = 3) | 4.39 ± 0.59 | 6.51 ± 0.84 | 8.22 ± 0.69 | 9.54 ± 0.68 |
H-21 °C (n = 3) | 3.34 ± 0.35 | 4.84 ± 0.81 | 6.49 ± 0.99 | 8.35 ± 1.36 |
H200nM-21 °C (n = 3) | 3.78 ± 0.12 | 5.73 ± 0.12 | 7.023 ± 0.68 | 9.64 ± 1.02 |
H1µM-21 °C (n = 2) | 2.90 ± 0.90 | 5.79 ± 0.79 | 8.29 ± 0.29 | 10.69 ± 0.48 |
Mean Tissue Oxygenation (%) ± SEM (%) | ||||
---|---|---|---|---|
Preservation Timepoint | ||||
Group (n) | 1 h | 2 h | 3 h | 4 h |
SCS-4 °C (n = 6) | No data collected while kidneys were on ice | |||
H-21 °C (n = 5) | 65.37 ± 1.65 | 63.86 ± 1.94 | 63.11 ± 2.04 | 63.06 ± 2.02 |
H200nM-21 °C (n = 5) | 68.04 ± 1.02 | 69.29 ± 1.76 | 67.62 ± 3.36 | 68.43 ± 4.10 |
H1µM-21 °C (n = 4) | 61.93 ± 1.42 | 60.04 ± 1.78 | 60.75 ± 2.02 | 61.29 ± 1.21 |
Reperfusion Timepoint | ||||
Group (n) | 1 h | 2 h | 3 h | 4 h |
SCS-4 °C (n = 6) | 67.12 ± 0.88 | 68.12 ± 0.47 | 73.29 ± 0.40 | 77.57 ± 0.24 |
H-21 °C (n = 5) | 68.31 ± 6.20 | 77.29 ± 6.15 | 81.80 ± 5.55 | 84.71 ± 5.52 |
H200nM-21 °C (n = 5) | 66.35 ± 1.91 | 72.90 ± 2.34 | 77.73 ± 2.62 | 79.00 ± 2.44 |
H1µM-21 °C (n = 4) | 62.61 ± 0.82 | 68.46 ± 0.89 | 72.46 ± 0.91 | 76.57 ± 2.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juriasingani, S.; Jackson, A.; Zhang, M.Y.; Ruthirakanthan, A.; Dugbartey, G.J.; Sogutdelen, E.; Levine, M.; Mandurah, M.; Whiteman, M.; Luke, P.; et al. Evaluating the Effects of Subnormothermic Perfusion with AP39 in a Novel Blood-Free Model of Ex Vivo Kidney Preservation and Reperfusion. Int. J. Mol. Sci. 2021, 22, 7180. https://doi.org/10.3390/ijms22137180
Juriasingani S, Jackson A, Zhang MY, Ruthirakanthan A, Dugbartey GJ, Sogutdelen E, Levine M, Mandurah M, Whiteman M, Luke P, et al. Evaluating the Effects of Subnormothermic Perfusion with AP39 in a Novel Blood-Free Model of Ex Vivo Kidney Preservation and Reperfusion. International Journal of Molecular Sciences. 2021; 22(13):7180. https://doi.org/10.3390/ijms22137180
Chicago/Turabian StyleJuriasingani, Smriti, Ashley Jackson, Max Yulin Zhang, Aushanth Ruthirakanthan, George J. Dugbartey, Emrullah Sogutdelen, Max Levine, Moaath Mandurah, Matthew Whiteman, Patrick Luke, and et al. 2021. "Evaluating the Effects of Subnormothermic Perfusion with AP39 in a Novel Blood-Free Model of Ex Vivo Kidney Preservation and Reperfusion" International Journal of Molecular Sciences 22, no. 13: 7180. https://doi.org/10.3390/ijms22137180
APA StyleJuriasingani, S., Jackson, A., Zhang, M. Y., Ruthirakanthan, A., Dugbartey, G. J., Sogutdelen, E., Levine, M., Mandurah, M., Whiteman, M., Luke, P., & Sener, A. (2021). Evaluating the Effects of Subnormothermic Perfusion with AP39 in a Novel Blood-Free Model of Ex Vivo Kidney Preservation and Reperfusion. International Journal of Molecular Sciences, 22(13), 7180. https://doi.org/10.3390/ijms22137180