Perioperative Systemic Treatment for Muscle-Invasive Bladder Cancer: Current Evidence and Future Perspectives
Abstract
:1. Introduction
2. Data Acquisition
3. Perioperative Chemotherapy in MIBC
4. Neoadjuvant Immunotherapy in MIBC
4.1. Immunotherapy Alone
4.2. Combination of Immunotherapy and Another Immunotherapy
4.3. Combination of Immunotherapy and Cytotoxic Chemotherapy
4.4. Combination of Immunotherapy and Antibody–Drug Conjugates (ADCs)
4.5. Combination of Immunotherapy and Other Emerging Agents or Radiotherapy
5. Adjuvant Immunotherapy in MIBC
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA A Cancer J. Clin. 2020, 70, 404–423. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.P.; Lieskovsky, G.; Cote, R.; Groshen, S.; Feng, A.C.; Boyd, S.; Skinner, E.; Bochner, B.; Thangathurai, D.; Mikhail, M.; et al. Radical cystectomy in the treatment of invasive bladder cancer: Long-term results in 1,054 patients. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology. Bladder Cancer Version 3. 2021. Available online: https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf (accessed on 22 April 2021).
- Grossman, H.B.; Natale, R.B.; Tangen, C.M.; Speights, V.O.; Vogelzang, N.J.; Trump, D.L.; deVere White, R.W.; Sarosdy, M.F.; Wood, D.P., Jr.; Raghavan, D.; et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 2003, 349, 859–866. [Google Scholar] [CrossRef]
- Sherif, A.; Holmberg, L.; Rintala, E.; Mestad, O.; Nilsson, J.; Nilsson, S.; Malmström, P.U. Neoadjuvant cisplatinum based combination chemotherapy in patients with invasive bladder cancer: A combined analysis of two Nordic studies. Eur. Urol. 2004, 45, 297–303. [Google Scholar] [CrossRef]
- Griffiths, G.; Hall, R.; Sylvester, R.; Raghavan, D.; Parmar, M.K. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: Long-term results of the BA06 30894 trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 2171–2177. [Google Scholar]
- Finnbladder, N.B.C.S.G.; de Tratamiento Oncologico, C.U.E.; EORTC Genito-Urinary Group; Australian Bladder Cancer Study Group; National Cancer Institute of Canada Clinical Trials Group. Neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: A randomised controlled trial. International collaboration of trialists. Lancet 1999, 354, 533–540. [Google Scholar]
- Neoadjuvant chemotherapy in invasive bladder cancer: A systematic review and meta-analysis. Lancet 2003, 361, 1927–1934. [CrossRef]
- Winquist, E.; Kirchner, T.S.; Segal, R.; Chin, J.; Lukka, H. Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: A systematic review and meta-analysis. J. Urol. 2004, 171, 561–569. [Google Scholar] [CrossRef]
- Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur. Urol. 2005, 48, 202–205, discussion 205–206. [CrossRef] [PubMed]
- Choueiri, T.K.; Jacobus, S.; Bellmunt, J.; Qu, A.; Appleman, L.J.; Tretter, C.; Bubley, G.J.; Stack, E.C.; Signoretti, S.; Walsh, M.; et al. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: Pathologic, radiologic, and biomarker correlates. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Plimack, E.R.; Hoffman-Censits, J.H.; Viterbo, R.; Trabulsi, E.J.; Ross, E.A.; Greenberg, R.E.; Chen, D.Y.; Lallas, C.D.; Wong, Y.N.; Lin, J.; et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: Results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 1895–1901. [Google Scholar] [CrossRef] [Green Version]
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- Galsky, M.D.; Pal, S.K.; Chowdhury, S.; Harshman, L.C.; Crabb, S.J.; Wong, Y.N.; Yu, E.Y.; Powles, T.; Moshier, E.L.; Ladoire, S.; et al. Comparative effectiveness of gemcitabine plus cisplatin versus methotrexate, vinblastine, doxorubicin, plus cisplatin as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer 2015, 121, 2586–2593. [Google Scholar] [CrossRef]
- Lee, F.C.; Harris, W.; Cheng, H.H.; Shenoi, J.; Zhao, S.; Wang, J.; Champion, T.; Izard, J.; Gore, J.L.; Porter, M.; et al. Pathologic Response Rates of Gemcitabine/Cisplatin versus Methotrexate/Vinblastine/Adriamycin/Cisplatin Neoadjuvant Chemotherapy for Muscle Invasive Urothelial Bladder Cancer. Adv. Urol. 2013, 2013, 317190. [Google Scholar] [CrossRef]
- Dash, A.; Pettus, J.A.t.; Herr, H.W.; Bochner, B.H.; Dalbagni, G.; Donat, S.M.; Russo, P.; Boyle, M.G.; Milowsky, M.I.; Bajorin, D.F. A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: A retrospective experience. Cancer 2008, 113, 2471–2477. [Google Scholar] [CrossRef] [Green Version]
- Yuh, B.E.; Ruel, N.; Wilson, T.G.; Vogelzang, N.; Pal, S.K. Pooled analysis of clinical outcomes with neoadjuvant cisplatin and gemcitabine chemotherapy for muscle invasive bladder cancer. J. Urol. 2013, 189, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- Iyer, G.; Tully, C.M.; Zabor, E.C.; Bochner, B.H.; Dalbagni, G.; Herr, H.W.; Donat, S.M.; Russo, P.; Ostrovnaya, I.; Regazzi, A.M.; et al. Neoadjuvant Gemcitabine-Cisplatin Plus Radical Cystectomy-Pelvic Lymph Node Dissection for Muscle-invasive Bladder Cancer: A 12-year Experience. Clin. Genitourin. Cancer 2020, 18, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Pfister, C.; Gravis, G.; Fléchon, A.; Soulié, M.; Guy, L.; Laguerre, B.; Mottet, N.; Joly, F.; Allory, Y.; Harter, V.; et al. Randomized Phase III Trial of Dose-dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin, or Gemcitabine and Cisplatin as Perioperative Chemotherapy for Patients with Muscle-invasive Bladder Cancer. Analysis of the GETUG/AFU V05 VESPER Trial Secondary Endpoints: Chemotherapy Toxicity and Pathological Responses. Eur. Urol. 2021, 79, 214–221. [Google Scholar]
- Sternberg, C.N.; Skoneczna, I.; Kerst, J.M.; Albers, P.; Fossa, S.D.; Agerbaek, M.; Dumez, H.; de Santis, M.; Theodore, C.; Leahy, M.G.; et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): An intergroup, open-label, randomised phase 3 trial. Lancet Oncol. 2015, 16, 76–86. [Google Scholar] [CrossRef]
- Cognetti, F.; Ruggeri, E.M.; Felici, A.; Gallucci, M.; Muto, G.; Pollera, C.F.; Massidda, B.; Rubagotti, A.; Giannarelli, D.; Boccardo, F. Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: An Italian, multicenter, randomized phase III trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.G.; Solsona, E.; Esteban, E.; Saez, A.; Gonzalez-Larriba, J.; Anton, A.; Hevia, M.; Rosa, F.d.l.; Guillem, V.; Bellmunt, J. Randomized phase III trial comparing adjuvant paclitaxel/gemcitabine/cisplatin (PGC) to observation in patients with resected invasive bladder cancer: Results of the Spanish Oncology Genitourinary Group (SOGUG) 99/01 study. J. Clin. Oncol. 2010, 28, LBA4518. [Google Scholar] [CrossRef]
- Stadler, W.M.; Lerner, S.P.; Groshen, S.; Stein, J.P.; Shi, S.R.; Raghavan, D.; Esrig, D.; Steinberg, G.; Wood, D.; Klotz, L.; et al. Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 3443–3449. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Franzaring, L.; Thüroff, J.; Wellek, S.; Stöckle, M. Complete long-term survival data from a trial of adjuvant chemotherapy vs control after radical cystectomy for locally advanced bladder cancer. BJU Int. 2006, 97, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Leow, J.J.; Martin-Doyle, W.; Rajagopal, P.S.; Patel, C.G.; Anderson, E.M.; Rothman, A.T.; Cote, R.J.; Urun, Y.; Chang, S.L.; Choueiri, T.K.; et al. Adjuvant chemotherapy for invasive bladder cancer: A 2013 updated systematic review and meta-analysis of randomized trials. Eur. Urol. 2014, 66, 42–54. [Google Scholar] [CrossRef]
- Powles, T.; Duran, I.; van der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- Patel, M.R.; Ellerton, J.; Infante, J.R.; Agrawal, M.; Gordon, M.; Aljumaily, R.; Britten, C.D.; Dirix, L.; Lee, K.W.; Taylor, M.; et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): Pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018, 19, 51–64. [Google Scholar] [CrossRef]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Fradet, Y.; Bellmunt, J.; Vaughn, D.J.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; Necchi, A.; et al. Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: Results of >2 years of follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 970–976. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Powles, T.; O’Donnell, P.H.; Massard, C.; Arkenau, H.T.; Friedlander, T.W.; Hoimes, C.J.; Lee, J.L.; Ong, M.; Sridhar, S.S.; Vogelzang, N.J.; et al. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results From a Phase 1/2 Open-label Study. JAMA Oncol. 2017, 3, e172411. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Vuky, J.; Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Bellmunt, J.; Powles, T.; Bajorin, D.; Hahn, N.M.; Savage, M.J.; et al. Long-Term Outcomes in KEYNOTE-052: Phase II Study Investigating First-Line Pembrolizumab in Cisplatin-Ineligible Patients With Locally Advanced or Metastatic Urothelial Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2658–2666. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Saci, A.; Szabo, P.M.; Han, G.C.; Grossfeld, G.; Collette, S.; Siefker-Radtke, A.; Necchi, A.; Sharma, P. Nivolumab in Patients with Advanced Platinum-resistant Urothelial Carcinoma: Efficacy, Safety, and Biomarker Analyses with Extended Follow-up from CheckMate 275. Clin. Cancer Res. 2020, 26, 5120. [Google Scholar] [CrossRef] [PubMed]
- Necchi, A.; Anichini, A.; Raggi, D.; Briganti, A.; Massa, S.; Luciano, R.; Colecchia, M.; Giannatempo, P.; Mortarini, R.; Bianchi, M.; et al. Pembrolizumab as Neoadjuvant Therapy Before Radical Cystectomy in Patients With Muscle-Invasive Urothelial Bladder Carcinoma (PURE-01): An Open-Label, Single-Arm, Phase II Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, Jco1801148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, T.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Heijden, M.S.V.D.; Pous, A.F.; Gravis, G.; Herranz, U.A.; Protheroe, A.; Ravaud, A.; et al. A phase II study investigating the safety and efficacy of neoadjuvant atezolizumab in muscle invasive bladder cancer (ABACUS). J. Clin. Oncol. 2018, 36, 4506. [Google Scholar] [CrossRef]
- Briganti, A.; Gandaglia, G.; Scuderi, S.; Gallina, A.; Colombo, R.; Fossati, N.; Barletta, F.; Pellegrino, A.; Nocera, L.; Montorsi, F.; et al. Surgical Safety of Radical Cystectomy and Pelvic Lymph Node Dissection Following Neoadjuvant Pembrolizumab in Patients with Bladder Cancer: Prospective Assessment of Perioperative Outcomes from the PURE-01 Trial. Eur. Urol. 2020, 77, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Bandini, M.; Gibb, E.A.; Gallina, A.; Raggi, D.; Marandino, L.; Bianchi, M.; Ross, J.S.; Colecchia, M.; Gandaglia, G.; Fossati, N.; et al. Does the administration of preoperative pembrolizumab lead to sustained remission post-cystectomy? First survival outcomes from the PURE-01 study. Ann. Oncol. 2020, 31, 1755–1763. [Google Scholar] [CrossRef]
- Powles, T.; Kockx, M.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Szabados, B.; Pous, A.F.; Gravis, G.; Herranz, U.A.; et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 2019, 25, 1706–1714. [Google Scholar] [CrossRef]
- Melero, I.; Berman, D.M.; Aznar, M.A.; Korman, A.J.; Perez Gracia, J.L.; Haanen, J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 2015, 15, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Warner, A.B.; Postow, M.A. Combination Controversies: Checkpoint Inhibition Alone or in Combination for the Treatment of Melanoma? Oncology (Williston Park) 2018, 32, 228–234. [Google Scholar] [PubMed]
- Curran, M.A.; Montalvo, W.; Yagita, H.; Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 4275–4280. [Google Scholar] [CrossRef] [Green Version]
- Selby, M.J.; Engelhardt, J.J.; Johnston, R.J.; Lu, L.S.; Han, M.; Thudium, K.; Yao, D.; Quigley, M.; Valle, J.; Wang, C.; et al. Preclinical Development of Ipilimumab and Nivolumab Combination Immunotherapy: Mouse Tumor Models, In Vitro Functional Studies, and Cynomolgus Macaque Toxicology. PLoS ONE 2016, 11, e0161779. [Google Scholar]
- Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019, 38, 255. [Google Scholar] [CrossRef]
- van Dijk, N.; Gil-Jimenez, A.; Silina, K.; Hendricksen, K.; Smit, L.A.; de Feijter, J.M.; van Montfoort, M.L.; van Rooijen, C.; Peters, D.; Broeks, A.; et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: The NABUCCO trial. Nat. Med. 2020, 26, 1839–1844. [Google Scholar] [CrossRef]
- Grande, E.; Guerrero, F.; Puente, J.; Galante, I.; Duran, I.; Dominguez, M.; Gordoa, T.A.; Burgos, J.; Font, A.; Pinto, A.; et al. DUTRENEO Trial: A randomized phase II trial of DUrvalumab and TREmelimumab versus chemotherapy as a NEOadjuvant approach to muscle-invasive urothelial bladder cancer (MIBC) patients (pts) prospectively selected by an interferon (INF)-gamma immune signature. J. Clin. Oncol. 2020, 38, 5012. [Google Scholar] [CrossRef]
- Hayashi, H.; Nakagawa, K. Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int. J. Clin. Oncol. 2020, 25, 818–830. [Google Scholar] [CrossRef]
- Salas-Benito, D.; Pérez-Gracia, J.L.; Ponz-Sarvisé, M.; Rodriguez-Ruiz, M.E.; Martínez-Forero, I.; Castañón, E.; López-Picazo, J.M.; Sanmamed, M.F.; Melero, I. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov. 2021, 11, 1353–1367. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sonpavde, G.; Weight, C.J.; McGregor, B.A.; Gupta, S.; Maughan, B.L.; Wei, X.X.; Gibb, E.; Thyagarajan, B.; Einstein, D.J.; et al. Results from BLASST-1 (Bladder Cancer Signal Seeking Trial) of nivolumab, gemcitabine, and cisplatin in muscle invasive bladder cancer (MIBC) undergoing cystectomy. J. Clin. Oncol. 2020, 38, 439. [Google Scholar] [CrossRef]
- Hoimes, C.J.; Adra, N.; Fleming, M.T.; Kaimakliotis, H.Z.; Picus, J.; Smith, Z.L.; Walling, R.; Trabulsi, E.J.; Hoffman-Censits, J.H.; Koch, M.O.; et al. Phase Ib/II neoadjuvant (N-) pembrolizumab (P) and chemotherapy for locally advanced urothelial cancer (laUC): Final results from the cisplatin (C)- eligible cohort of HCRN GU14-188. J. Clin. Oncol. 2020, 38, 5047. [Google Scholar] [CrossRef]
- Kaimakliotis, H.Z.; Adra, N.; Kelly, W.K.; Trabulsi, E.J.; Lauer, R.C.; Picus, J.; Smith, Z.L.; Walling, R.; Masterson, T.A.; Calaway, A.C.; et al. Phase II neoadjuvant (N-) gemcitabine (G) and pembrolizumab (P) for locally advanced urothelial cancer (laUC): Interim results from the cisplatin (C)-ineligible cohort of GU14-188. J. Clin. Oncol. 2020, 38, 5019. [Google Scholar] [CrossRef]
- Birrer, M.J.; Moore, K.N.; Betella, I.; Bates, R.C. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J. Natl. Cancer Inst. 2019, 111, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.E.; O’Donnell, P.H.; Balar, A.V.; McGregor, B.A.; Heath, E.I.; Yu, E.Y.; Galsky, M.D.; Hahn, N.M.; Gartner, E.M.; Pinelli, J.M.; et al. Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2592–2600. [Google Scholar] [CrossRef]
- Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res. 2016, 76, 3003–3013. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.; Loriot, Y.; Duran, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Wu, C.; Campbell, M.S.; et al. Primary results of EV-301: A phase III trial of enfortumab vedotin versus chemotherapy in patients with previously treated locally advanced or metastatic urothelial carcinoma. J. Clin. Oncol. 2021, 39, 393. [Google Scholar] [CrossRef]
- Trerotola, M.; Cantanelli, P.; Guerra, E.; Tripaldi, R.; Aloisi, A.L.; Bonasera, V.; Lattanzio, R.; de Lange, R.; Weidle, U.H.; Piantelli, M.; et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 2013, 32, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avellini, C.; Licini, C.; Lazzarini, R.; Gesuita, R.; Guerra, E.; Tossetta, G.; Castellucci, C.; Giannubilo, S.R.; Procopio, A.; Alberti, S.; et al. The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer. Oncotarget 2017, 8, 58642–58653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagawa, S.T.; Faltas, B.M.; Lam, E.T.; Saylor, P.J.; Bardia, A.; Hajdenberg, J.; Morgans, A.K.; Lim, E.A.; Kalinsky, K.; Simpson, P.S.; et al. Sacituzumab govitecan (IMMU-132) in patients with previously treated metastatic urothelial cancer (mUC): Results from a phase I/II study. J. Clin. Oncol. 2019, 37, 354. [Google Scholar] [CrossRef]
- Loriot, Y.; Balar, A.V.; Petrylak, D.P.; Tagawa, S.T.; Rezazadeh, A.; Fléchon, A.; Jain, R.; Agarwal, N.; Bupathi, M.; Barthélémy, P.; et al. LBA24 TROPHY-U-01 cohort 1 final results: A phase II study of sacituzumab govitecan (SG) in metastatic urothelial cancer (mUC) that has progressed after platinum (PLT) and checkpoint inhibitors (CPI). Ann. Oncol. 2020, 31, S1156. [Google Scholar] [CrossRef]
- Grivas, P.; Sternberg, C.N.; Agarwal, N.; Petrylak, D.P.; Tagawa, S.T.; Hong, Q.; Gladden, A.; Kanwal, C.; Goswami, T.; Loriot, Y. 796TiP TROPHY-U-01 Cohort 3: Sacituzumab govitecan (SG) and pembrolizumab (pembro) in patients (pts) with progression or recurrence of metastatic urothelial cancer (mUC) after platinum (PLT)-based therapy. Ann. Oncol. 2020, 31, S604–S605. [Google Scholar] [CrossRef]
- Necchi, A.; Raggi, D.; Bandini, M.; Gallina, A.; Capitanio, U.; Gandaglia, G.; Cucchiara, V.; Fossati, N.; Cobelli, F.D.; Salonia, A.; et al. SURE: An open label, sequential-arm, phase II study of neoadjuvant sacituzumab govitecan (SG), and SG plus pembrolizumab (pembro) before radical cystectomy, for patients with muscle-invasive bladder cancer (MIBC) who cannot receive or refuse cisplatin-based chemotherapy. J. Clin. Oncol. 2021, 39, TPS506. [Google Scholar]
- Rodriguez-Moreno, J.F.; Velasco, G.d.; Fernandez, I.B.; Alvarez-Fernandez, C.; Fernandez, R.; Vazquez-Estevez, S.; Virizuela, J.A.; Gajate, P.; Font, A.; Lainez, N.; et al. Impact of the combination of durvalumab (MEDI4736) plus olaparib (AZD2281) administered prior to surgery in the molecular profile of resectable urothelial bladder cancer: NEODURVARIB Trial. J. Clin. Oncol. 2020, 38, 542. [Google Scholar] [CrossRef]
- Milowsky, M.; Davis, N.; Fung, C.; Johnson, S.; Langenstroer, P.; Jacobsohn, K.; Bylow, K.; Kilari, D. 801TiP A phase II study of cabozantinib in combination with atezolizumab as neoadjuvant treatment for muscle-invasive bladder cancer (ABATE). Ann. Oncol. 2020, 31, S607. [Google Scholar] [CrossRef]
- Sethakorn, N.; O’Donnell, P.H. Spectrum of genomic alterations in FGFR3: Current appraisal of the potential role of FGFR3 in advanced urothelial carcinoma. BJU Int. 2016, 118, 681–691. [Google Scholar] [CrossRef]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Park, I.; Lee, J.L. Systemic treatment for advanced urothelial cancer: An update on recent clinical trials and current treatment options. Korean J. Intern. Med. 2020, 35, 834–853. [Google Scholar] [CrossRef]
- Alkassis, M.; Sarkis, J.; Tayeh, G.A.; Kourie, H.R.; Nemer, E. Immunotherapy in neoadjuvant setting in muscle-invasive bladder cancer, what’s new? Immunotherapy 2021, 13, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Hussain, M.; Gschwend, J.E.; Albers, P.; Oudard, S.; Castellano, D.; Daneshmand, S.; Nishiyama, H.; Majchrowicz, M.; Degaonkar, V.; et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 525–537. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.; Park, S.H.; et al. First results from the phase 3 CheckMate 274 trial of adjuvant nivolumab vs placebo in patients who underwent radical surgery for high-risk muscle-invasive urothelial carcinoma (MIUC). J. Clin. Oncol. 2021, 39, 391. [Google Scholar] [CrossRef]
- Apolo, A.B.; Rosenberg, J.E.; Kim, W.Y.; Chen, R.C.; Sonpavde, G.; Srinivas, S.; Mortazavi, A.; Watt, C.; Mallek, M.; Graap, K.; et al. Alliance A031501: Phase III randomized adjuvant study of MK-3475 (pembrolizumab) in muscle-invasive and locally advanced urothelial carcinoma (MIBC) (AMBASSADOR) versus observation. J. Clin. Oncol. 2019, 37, TPS504. [Google Scholar] [CrossRef]
- Steenbruggen, T.G.; van Ramshorst, M.S.; Kok, M.; Linn, S.C.; Smorenburg, C.H.; Sonke, G.S. Neoadjuvant Therapy for Breast Cancer: Established Concepts and Emerging Strategies. Drugs 2017, 77, 1313–1336. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Lee, H.J. Perioperative immunotherapy for muscle-invasive bladder cancer. Transl. Androl. Urol. 2020, 9, 2976–2985. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Tokunaga, H.; Zhou, J.; Kim, J.; Ayala, G.E.; Benedict, W.F.; Lerner, S.P. p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 1014–1024. [Google Scholar] [CrossRef]
- Shariat, S.F.; Lotan, Y.; Karakiewicz, P.I.; Ashfaq, R.; Isbarn, H.; Fradet, Y.; Bastian, P.J.; Nielsen, M.E.; Capitanio, U.; Jeldres, C.; et al. p53 predictive value for pT1-2 N0 disease at radical cystectomy. J. Urol. 2009, 182, 907–913. [Google Scholar] [CrossRef]
- Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [CrossRef] [Green Version]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Callahan, M.K.; Bono, P.; Kim, J.; Spiliopoulou, P.; Calvo, E.; Pillai, R.N.; Ott, P.A.; de Braud, F.; Morse, M.; et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): A multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016, 17, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Colli, L.M.; Machiela, M.J.; Myers, T.A.; Jessop, L.; Yu, K.; Chanock, S.J. Burden of Nonsynonymous Mutations among TCGA Cancers and Candidate Immune Checkpoint Inhibitor Responses. Cancer Res. 2016, 76, 3767–3772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGranahan, N.; Furness, A.J.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016, 351, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.B.; Assaf, Z.J.; Davarpanah, N.; Hussain, M.; Oudard, S.; Gschwend, J.E.; Albers, P.; Castellano, D.; Nishiyama, H.; Daneshmand, S.; et al. 1O Clinical outcomes in post-operative ctDNA-positive muscle-invasive urothelial carcinoma (MIUC) patients after atezolizumab adjuvant therapy. Ann. Oncol. 2020, 31, S1417. [Google Scholar] [CrossRef]
SWOG-8710 [6] | BA06 30894 [8] | Choueiri et al. [13] (NCT00808639) | Plimack et al. [14] (NCT01031420) | Dash et al. [18] | MSK [20] | |
---|---|---|---|---|---|---|
N | 317 | 976 | 39 | 40 | 42 | 154 |
Phase | 3 | 3 | 2 | 2 | R | R |
Regimen | MVAC | CMV | ddMVAC | aaMVAC | GC | GC |
Duration of NAC, weeks | 14 | NA | 8 | 6 | 12 | 12 |
Median time to definitive treatment after randomization, weeks | 16 | NA | 14 | 9.7 | 19 | 17 |
Planned surgery rates, % | 82 | NA | 97 | 98 | NA | NA |
pCR (pT0N0) rates, % | 38 | NA | 26 | 38 | 26 | 21 |
Downstaging (<pT2) to non-muscle invasive disease, % | 44 | NA | 49 | 53 | 36 | 46 |
EORTC 30994, 2015 [22] (NCT00028756) | SOGUG, 2010 [24] | Cognetti et al., 2012 [23] | |
---|---|---|---|
N | 284 | 142 | 194 |
Phase | 3 | 3 | 3 |
Regimen | GC, high-dose MVAC, MVAC | PGC | GC |
DFS | 5-year DFS rates: 47.6% (AC) vs. 31.8% (control) | NA | 5-year DFS rates: 37.2% (AC) vs. 42.3% (control) |
OS | 5-year OS rates: 53.6% (AC) vs. 47.7% (control) | 5-year OS rates: 60% (AC) vs. 31% (control) | 5-year OS rates: 43.4% (AC) vs. 53.7% (control) |
Trial | Drug | Treatment Line | Number | Phase | Primary Endpoint | ORR, % | Median OS, Months | Median PFS, Months | Grade 3–4 TRAE, % |
---|---|---|---|---|---|---|---|---|---|
IMvigor 210 [35] (NCT02108652) | Atezolizumab | 1 | 119 | 2 | ORR | 23 | 15.9 | 2.7 | 16 |
IMvigor 211 [28] (NCT02302807) | Atezolizumab | 3 | 467 | 3 | OS | 13 | 8.6 | 2.1 | 20 |
JAVELIN Solid Tumor [29] (NCT01772004) | Avelumab | 2 | 249 | 1b | DLT | 17 | 6.5 | 1.6 | 8 |
Study 1108 [34] (NCT01693562) | Durvalumab | 2 | 191 | 1/2 | Safety, ORR | 18 | 18.2 | 1.5 | 7 |
CheckMate 275 [30,37] (NCT02387996) | Nivolumab | 2 | 265 | 2 | ORR | 20 | 8.6 | 1.9 | 25 |
KETNOTE-052 [33,36] (NCT0233542) | Pembrolizumab | 1 | 370 | 2 | ORR | 29 | 11.3 | 2.2 | 21 |
KETNOTE-045 [31,32] (NCT02256436) | Pembrolizumab | 2 | 542 | 3 | OS, PFS | 21 | 10.1 | 2.1 | 15 |
Trial | Agent | Phase | Population | Cisplatin Eligibility | Upper-Tract Disease Included |
---|---|---|---|---|---|
Signle-Agent therapy | |||||
NCT02662309 (ABACUS) | Atezolizumab | 2 | cT2-T4N0 | N | N |
NCT02451423 | Atezolizumab | 2 | cTa-T4N0 | N | N |
NCT03577132 | Atezolizumab | 2 | cT2-T4N0-1 | Y | N |
NCT03498196 (BL-AIR) | Avelumab | 1/2 | cT2-T4aN0 | N | N |
NCT03406650 (SAKK 06/17) | Durvalumab | 2 | cT2-T4N0-1 | Y | Y |
NCT02736266 (PURE-01) | Pembrolizumab | 2 | cT2-T4N0 | Y | N |
NCT03212651 (PANDORE) | Pembrolizumab | 2 | cT2-T4N0 | N | N |
NCT03319745 | Pembrolizumab | 2 | cT2-T4N0 | Y | N |
CPI with other immunotherapy | |||||
NCT02812420 | Durvalumab + Tremelimumab | 1 | cT2-3aN0 | Y | Y |
NCT03472274 (DUTRENEO) | Durvalumab + Tremelimumab | 2 | cT2-T4N0-1 | Y | N |
NCT03234153 (NITIMIB) | Durvalumab + Tremelimumab | 2 | cTa-T4anyN | N | N |
NCT02845323 | Nivolumab + Urelumab | 2 | cTa-T4N0 | N | N |
NCT03387761 (NABUCCO) | Nivolumab + Ipilimumab | 1b | cTa-T4anyN | Y | N |
NCT03520491 (CA209-9DJ) | Nivolumab + Ipilimumab | 2 | cT2-4aN0 | N | N |
NCT03532451 (PrE0807) | Nivolumab + Lirilumab | 1b | cT2-T4aN0-1 | Y | N |
NCT04209114 (CA045-009) | Nivolumab + Bempeg | 3 | cT2-T4N0 | N | N |
NCT03832673 (PECULIAR) | Pembrolizumab + Epacadostat | 2 | cT2-T3N0 | Y | N |
NCT04586244 (Optimus) | Retifanlimab + Epacadostat | 2 | cT2-T3bN0 | N | N |
NCT04430036 | Zalifrelimab + Balstilimab | 2 | cT2-T4N0-1 | Y | N |
CPI with chemotherapy | |||||
NCT02989584 | Atezolizumab + GC | 2 | cT2-T4aN0 | Y | N |
NCT03674424 (AURA) | Avelumab + Chemotherapy | 2 | cT2-T4anyN | Y | N |
NCT03732677 (NIAGARA) | Durvalumab + GC | 3 | cT2-T4aN0 | Y | N |
NCT03549715 (NEMIO) | Durvalumab + Tremelimumab + ddMVAC | 1/2 | cT2-T4N0-1 | Y | N |
NCT03912818 | Durvalumab + Chemotherapy | 2 | cT2-T4N0-1 | Y | N |
NCT03661320 (ENERGIZE) | Nivolumab + BMS-986205 + GC | 3 | cT2-T4N0 | Y | N |
NCT03294304 (BLASST-1) | Nivolumab + GC | 2 | cT2-T4N0-1 | Y | N |
NCT03558087 | Nivolumab + GC | 2 | cTa-T4N0 | Y | N |
NCT04506554 | Nivolumab + aaMVAC | 2 | cT2-T3N0 | Y | N |
NCT04383743 | Pembrolizumab + MVAC | 2 | cT2-T4N0-1 | Y | N |
NCT02690558 | Pembrolizumab + GC | 2 | cT2-T4N0 | Y | N |
NCT02365766 (HCRN GU14-188) | Pembrolizumab + GC | 2 | cT2-T4N0 | Y/N (two cohorts) | Y |
NCT03924856 (KEYNOTE-866) | Pembrolizumab + GC | 3 | cT2-T4N0-1 | Y | N |
NCT04861584 (GZZJU-2021NB) | Teriprizumab + GC | 2 | cT2-T4N0-1 | Y | N |
NCT04730219 | Tislelizumab + Nab-paclitaxel | 2 | cT2-T4aN0 | Y | N |
NCT04553939 | Toripalimab + Gemcitabine | 2 | cT2-T4anyN | N | N |
NCT04099589 | Toripalimab + GC | 2 | cT2-T4aN0 | Y | Y |
CPI with other agents | |||||
NCT04289779 (ABATE) | Atezolizumab + Cabozantinib | 2 | cT2-T4anyN | N | N |
NCT03534492 (NEODURVARIB) | Durvalumab + Olaparib | 2 | cT2-T4aN0 | Y | N |
NCT03773666 (BLASST-2) | Durvalumab + Oleclumab | 1 | cT2-T4aN0 | N | N |
NCT04610671 | Nivolumab + CG0070 | 1 | cT2-T4aN0 | N | N |
NCT03518320 | Nivolumab + TAR-200 | 1 | cT2-T3N0-1 | N | N |
NCT04700124 (KEYNOTE-B15/EV-304) | Pembrolizumab + Enfortumab vedotin | 3 | cT2-T4N0-1 | Y | N |
NCT03924895 (KEYNOTE-905/EV-303) | Pembrolizumab + Enfortumab vedotin | 3 | cT2-T4N0-1 | N | N |
NCT03978624 | Pembrolizumab + Entinostat | 2 | cT2-T4aN0 | N | N |
NA (SURE) | Pembrolizumab + Sacituzumab govitecan | 2 | cT2-T4N0 | N | N |
NCT04813107 | Tislelizumab + APL-1202 | 1/2 | cT2-T4aN0 | N | N |
CPI with radiation | |||||
NCT04543110 (RADIANT) | Durvalumab + Radiation | 2 | cT2-T4aN0 | N | N |
NCT04779489 (CIRTiN-BC) | CPIs + Radiation | 2 | anyTN+ | N | N |
NCT03529890 (RACE IT) | Nivolumab + Radiation | 2 | cT3-T4anyN | N | N |
Trial | Phase | Agent | Control | N | Primary Endpoint | Upper Tract | Cisplatin-Based NAC |
---|---|---|---|---|---|---|---|
NCT03244384 [76] (AMBASSADOR) | 3 | Pembrolizumab | Observation | 739 | OS, DFS | Included | Included |
NCT02632409 [75] (CheckMate 274) | 3 | Nivolumab | Placebo | 700 | DFS | Included | Included |
NCT02450331 [74] (IMvigor010) | 3 | Atezolizumab | Observation | 809 | DFS | Included | Included |
Trial | Phase | Agent | Arm |
---|---|---|---|
NCT04209114 (CA045-009) | 3 | Nivolumab + Bempeg | Arm A: Neoadjuvant nivolumab + bempeg => RC => Adjuvant nivolumab + bempeg Arm B: Neoadjuvant nivolumab => RC => Adjuvant nivolumab Arm C: RC alone |
NCT03732677 (NIAGARA) | 3 | Durvalumab + GC | Arm A: Neoadjuvant durvalumab + GC => RC => Adjuvant durvaluamb Arm B: Neoadjuvant GC => RC => No adjuvant therapy |
NCT03661320 (ENERGIZE) | 3 | Nivolumab + BMS-986205 + GC | Arm A: Neoadjuvant GC => RC => No adjuvant therapy Arm B: Neoadjuvant nivolumab + placebo + GC => RC => Adjuvant nivolumab + placebo Arm C: Neoadjuvant nivolumab + BMS-986205 + GC => RC => Adjuvant nivolumab + BMS-986205 |
NCT03924856 (KEYNOTE-866) | 3 | Pembrolizumab + GC | Arm A: Neoadjuvant pembrolizumab + GC => RC => Adjuvant pembrolizumab Arm B: Neoadjuvant placebo + GC => RC => Adjuvant placebo |
NCT04700124 (KEYNOTE-B15/EV-304) | 3 | Pembrolizumab + Enfortumab vedotin | Arm A: Neoadjuvant pembrolizumab + enfortumab vedotin => RC => Adjuvant pembrolizumab + enfortumab vedotin Arm B: Neoadjuvant GC => RC => No adjuvant therapy |
NCT03924895 (KEYNOTE-905/EV-303) | 3 | Pembrolizumab + Enfortumab vedotin | Arm A: Neoadjuvant pembrolizumab + enfortumab vedotin => RC => Adjuvant pembrolizumab + enfortumab vedotin Arm B: Neoadjuvant pembrolizumab => RC => Adjuvant pembrolizumab Arm C: RC alone |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.-H.; Lee, H.-J. Perioperative Systemic Treatment for Muscle-Invasive Bladder Cancer: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 7201. https://doi.org/10.3390/ijms22137201
Kim I-H, Lee H-J. Perioperative Systemic Treatment for Muscle-Invasive Bladder Cancer: Current Evidence and Future Perspectives. International Journal of Molecular Sciences. 2021; 22(13):7201. https://doi.org/10.3390/ijms22137201
Chicago/Turabian StyleKim, In-Ho, and Hyo-Jin Lee. 2021. "Perioperative Systemic Treatment for Muscle-Invasive Bladder Cancer: Current Evidence and Future Perspectives" International Journal of Molecular Sciences 22, no. 13: 7201. https://doi.org/10.3390/ijms22137201
APA StyleKim, I. -H., & Lee, H. -J. (2021). Perioperative Systemic Treatment for Muscle-Invasive Bladder Cancer: Current Evidence and Future Perspectives. International Journal of Molecular Sciences, 22(13), 7201. https://doi.org/10.3390/ijms22137201