NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities
Abstract
:1. Introduction
2. NMDARs
3. Molecular Mechanisms of Astrocyte Mediated Co-Agonism
3.1. Co-Agonist Synthesis
3.2. Release
3.2.1. Exocytosis
3.2.2. Volume-Regulated Chloride/Anion Channel (VRAC)
3.2.3. Hemichannels
3.2.4. Reverse Uptake
3.2.5. P2X Purinoceptor 7
3.2.6. Astrocytic Mechanisms of Tonic and Active Release of Co-Agonists
3.3. Termination of Co-Agonism
3.3.1. Glycine Uptake
3.3.2. D-serine Uptake
3.4. Recycling of d-serine and Glycine
4. Detection of Coincident Neuronal and Astrocytic Activities by NMDARs
4.1. Astrocytes Detect Activity at Segregated Synapse
4.2. Differential Shaping of the Coincidence Window by Glycine and d-serine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, R.G.D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res. Bull. 1999, 50, 437. [Google Scholar] [CrossRef]
- Bliss, T.V.; Lomo, T. Long-Lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anaesthetized Rabbit Following Stimulation of the Perforant Path. J. Physiol. 1973, 232, 331–356. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, R.A. A Brief History of Long-Term Potentiation. Neuron 2017, 93, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef] [Green Version]
- Kemp, J.A.; Foster, A.C.; Leeson, P.D.; Priestley, T.; Tridgett, R.; Iversen, L.L.; Woodruff, G.N. 7-Chlorokynurenic Acid Is a Selective Antagonist at the Glycine Modulatory Site of the N-Methyl-D-Aspartate Receptor Complex. Proc. Natl. Acad. Sci. USA 1988, 85, 6547–6550. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.L. The Co-Agonist Concept: Is the NMDA-Associated Glycine Receptor Saturated in Vivo? Life Sci. 1995, 57, 301–310. [Google Scholar] [CrossRef]
- Berger, A.J.; Dieudonné, S.; Ascher, P. Glycine Uptake Governs Glycine Site Occupancy at NMDA Receptors of Excitatory Synapses. J. Neurophysiol. 1998, 80, 3336–3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panatier, A.; Theodosis, D.T.; Mothet, J.-P.; Touquet, B.; Pollegioni, L.; Poulain, D.A.; Oliet, S.H.R. Glia-Derived D-Serine Controls NMDA Receptor Activity and Synaptic Memory. Cell 2006, 125, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Papouin, T.; Dunphy, J.M.; Tolman, M.; Dineley, K.T.; Haydon, P.G. Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron 2017, 94, 840.e7–854.e7. [Google Scholar] [CrossRef] [Green Version]
- Henneberger, C.; Papouin, T.; Oliet, S.H.R.; Rusakov, D.A. Long-Term Potentiation Depends on Release of d-Serine from Astrocytes. Nature 2010, 463, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Krupa, B.; Kang, J.-S.; Bolshakov, V.Y.; Liu, G. Glycine Site of NMDA Receptor Serves as a Spatiotemporal Detector of Synaptic Activity Patterns. J. Neurophysiol. 2009, 102, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sacchi, S.; Pollegioni, L.; Basu, A.C.; Coyle, J.T.; Bolshakov, V.Y. Identity of Endogenous NMDAR Glycine Site Agonist in Amygdala Is Determined by Synaptic Activity Level. Nat. Commun. 2013, 4, 1760. [Google Scholar] [CrossRef] [Green Version]
- Fossat, P.; Turpin, F.R.; Sacchi, S.; Dulong, J.; Shi, T.; Rivet, J.-M.; Sweedler, J.V.; Pollegioni, L.; Millan, M.J.; Oliet, S.H.R.; et al. Glial D-Serine Gates NMDA Receptors at Excitatory Synapses in Prefrontal Cortex. Cereb. Cortex 2012, 22, 595–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigetomi, E.; Jackson-Weaver, O.; Huckstepp, R.T.; O’Dell, T.J.; Khakh, B.S. TRPA1 Channels Are Regulators of Astrocyte Basal Calcium Levels and Long-Term Potentiation via Constitutive D-Serine Release. J. Neurosci. 2013, 33, 10143–10153. [Google Scholar] [CrossRef] [PubMed]
- Arizono, M.; Inavalli, V.V.G.K.; Panatier, A.; Pfeiffer, T.; Angibaud, J.; Levet, F.; Ter Veer, M.J.T.; Stobart, J.; Bellocchio, L.; Mikoshiba, K.; et al. Structural Basis of Astrocytic Ca2+ Signals at Tripartite Synapses. Nat. Commun. 2020, 11, 1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoletti, P.; Bellone, C.; Zhou, Q. NMDA Receptor Subunit Diversity: Impact on Receptor Properties, Synaptic Plasticity and Disease. Nat. Rev. Neurosci. 2013, 14, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.W.; Ascher, P. Glycine Potentiates the NMDA Response in Cultured Mouse Brain Neurons. Nature 1987, 325, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, N.; Dingledine, R. Requirement for Glycine in Activation of NMDA-Receptors Expressed in Xenopus Oocytes. Science 1988, 241, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Stroebel, D.; Paoletti, P. Architecture and Function of NMDA Receptors: An Evolutionary Perspective. J. Physiol. 2020, JP279028. [Google Scholar] [CrossRef]
- Gibb, A.J.; Ogden, K.K.; McDaniel, M.J.; Vance, K.M.; Kell, S.A.; Butch, C.; Burger, P.; Liotta, D.C.; Traynelis, S.F. A Structurally Derived Model of Subunit-Dependent NMDA Receptor Function. J. Physiol. 2018, 596, 4057–4089. [Google Scholar] [CrossRef]
- Grand, T.; Abi Gerges, S.; David, M.; Diana, M.A.; Paoletti, P. Unmasking GluN1/GluN3A Excitatory Glycine NMDA Receptors. Nat. Commun. 2018, 9, 4769. [Google Scholar] [CrossRef] [Green Version]
- Otsu, Y.; Darcq, E.; Pietrajtis, K.; Mátyás, F.; Schwartz, E.; Bessaih, T.; Abi Gerges, S.; Rousseau, C.V.; Grand, T.; Dieudonné, S.; et al. Control of Aversion by Glycine-Gated GluN1/GluN3A NMDA Receptors in the Adult Medial Habenula. Science 2019, 366, 250–254. [Google Scholar] [CrossRef]
- Gantz, S.C.; Moussawi, K.; Hake, H.S. Delta Glutamate Receptor Conductance Drives Excitation of Mouse Dorsal Raphe Neurons. eLife 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- McGale, E.H.; Pye, I.F.; Stonier, C.; Hutchinson, E.C.; Aber, G.M. Studies of the Inter-Relationship between Cerebrospinal Fluid and Plasma Amino Acid Concentrations in Normal Individuals. J. Neurochem. 1977, 29, 291–297. [Google Scholar] [CrossRef]
- Westergren, I.; Nyström, B.; Hamberger, A.; Nordborg, C.; Johansson, B.B. Concentrations of Amino Acids in Extracellular Fluid after Opening of the Blood-Brain Barrier by Intracarotid Infusion of Protamine Sulfate. J. Neurochem. 1994, 62, 159–165. [Google Scholar] [CrossRef]
- Hashimoto, A.; Oka, T.; Nishikawa, T. Extracellular Concentration of Endogenous Free D-Serine in the Rat Brain as Revealed by in Vivo Microdialysis. Neuroscience 1995, 66, 635–643. [Google Scholar] [CrossRef]
- Pernot, P.; Maucler, C.; Tholance, Y.; Vasylieva, N.; Debilly, G.; Pollegioni, L.; Cespuglio, R.; Marinesco, S. D-Serine Diffusion through the Blood-Brain Barrier: Effect on d-Serine Compartmentalization and Storage. Neurochem. Int. 2012, 60, 837–845. [Google Scholar] [CrossRef]
- Le Douce, J.; Maugard, M.; Veran, J.; Matos, M.; Jégo, P.; Vigneron, P.-A.; Faivre, E.; Toussay, X.; Vandenberghe, M.; Balbastre, Y.; et al. Impairment of Glycolysis-Derived l-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer’s Disease. Cell Metab. 2020, 31, 503–517.e8. [Google Scholar] [CrossRef]
- Matsui, T.; Sekiguchi, M.; Hashimoto, A.; Tomita, U.; Nishikawa, T.; Wada, K. Functional Comparison of D-Serine and Glycine in Rodents: The Effect on Cloned NMDA Receptors and the Extracellular Concentration. J. Neurochem. 1995, 65, 454–458. [Google Scholar] [CrossRef]
- Singh, L.; Oles, R.J.; Tricklebank, M.D. Modulation of Seizure Susceptibility in the Mouse by the Strychnine-Insensitive Glycine Recognition Site of the NMDA Receptor/Ion Channel Complex. Br. J. Pharmacol. 1990, 99, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.L.; Emmett, M.R.; Rao, T.S.; Mick, S.; Cler, J.; Iyengar, S. In Vivo Modulation of the N-Methyl-D-Aspartate Receptor Complex by D-Serine: Potentiation of Ongoing Neuronal Activity as Evidenced by Increased Cerebellar Cyclic GMP. J. Neurochem. 1989, 53, 979–981. [Google Scholar] [CrossRef]
- Thiels, E.; Weisz, D.J.; Berger, T.W. In Vivo Modulation OfN-Methyl-d- Aspartate Receptor-Dependent Long-Term Potentiation by the Glycine Modulatory Site. Neuroscience 1992, 46, 501–509. [Google Scholar] [CrossRef]
- Bergeron, R.; Meyer, T.M.; Coyle, J.T.; Greene, R.W. Modulation of N-Methyl-D-Aspartate Receptor Function by Glycine Transport. Proc. Natl. Acad. Sci. USA 1998, 95, 15730–15734. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Muhlhauser, M.; Yang, C.R. Glycine Tranporter-1 Blockade Potentiates NMDA-Mediated Responses in Rat Prefrontal Cortical Neurons in Vitro and in Vivo. J. Neurophysiol. 2003, 89, 691–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martina, M.; Gorfinkel, Y.; Halman, S.; Lowe, J.A.; Periyalwar, P.; Schmidt, C.J.; Bergeron, R. Glycine Transporter Type 1 Blockade Changes NMDA Receptor-Mediated Responses and LTP in Hippocampal CA1 Pyramidal Cells by Altering Extracellular Glycine Levels. J. Physiol. 2004, 557, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.M.; Walker, V.E.; Flynn, D.M. Glycine Enhances NMDA-Receptor Mediated Synaptic Potentials in Neocortical Slices. Nature 1989, 338, 422–424. [Google Scholar] [CrossRef]
- Wilcox, K.S.; Fitzsimonds, R.M.; Johnson, B.; Dichter, M.A. Glycine Regulation of Synaptic NMDA Receptors in Hippocampal Neurons. J. Neurophysiol. 1996, 76, 3415–3424. [Google Scholar] [CrossRef]
- Kalbaugh, T.L.; Zhang, J.; Diamond, J.S. Coagonist Release Modulates NMDA Receptor Subtype Contributions at Synaptic Inputs to Retinal Ganglion Cells. J. Neurosci. 2009, 29, 1469–1479. [Google Scholar] [CrossRef]
- Ahmadi, S.; Muth-Selbach, U.; Lauterbach, A.; Lipfert, P.; Neuhuber, W.L.; Zeilhofer, H.U. Facilitation of Spinal NMDA Receptor Currents by Spillover of Synaptically Released Glycine. Science 2003, 300, 2094–2097. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.J.; Yee, B.K. Glycine Transporters as Novel Therapeutic Targets in Schizophrenia, Alcohol Dependence and Pain. Nat. Rev. Drug Discov. 2013, 12, 866–885. [Google Scholar] [CrossRef]
- Oliet, S.H.R.; Mothet, J.-P. Regulation of N-Methyl-d-Aspartate Receptors by Astrocytic d-Serine. Neuroscience 2009, 158, 275–283. [Google Scholar] [CrossRef]
- Wolosker, H. The Neurobiology of D-Serine Signaling. Adv. Pharmacol. 2018, 82, 325–348. [Google Scholar] [CrossRef]
- Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-up Primate Brain. J. Comp. Neurol. 2009, 513, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Araque, A.; Carmignoto, G.; Haydon, P.G.; Oliet, S.H.R.; Robitaille, R.; Volterra, A. Gliotransmitters Travel in Time and Space. Neuron 2014, 81, 728–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, N.B.; Attwell, D. Do Astrocytes Really Exocytose Neurotransmitters? Nat. Rev. Neurosci. 2010, 11, 227–238. [Google Scholar] [CrossRef]
- Wood, P.L.; Hawkinson, J.E.; Goodnough, D.B. Formation of D-Serine from L-Phosphoserine in Brain Synaptosomes. J. Neurochem. 1996, 67, 1485–1490. [Google Scholar] [CrossRef]
- Dunlop, D.S.; Neidle, A. The Origin and Turnover of D-Serine in Brain. Biochem. Biophys. Res. Commun. 1997, 235, 26–30. [Google Scholar] [CrossRef]
- Maugard, M.; Vigneron, P.-A.; Bolaños, J.P.; Bonvento, G. L-Serine Links Metabolism with Neurotransmission. Prog. Neurobiol. 2021, 197, 101896. [Google Scholar] [CrossRef]
- Yang, J.H.; Wada, A.; Yoshida, K.; Miyoshi, Y.; Sayano, T.; Esaki, K.; Kinoshita, M.O.; Tomonaga, S.; Azuma, N.; Watanabe, M.; et al. Brain-Specific Phgdh Deletion Reveals a Pivotal Role for L-Serine Biosynthesis in Controlling the Level of D-Serine, an N-Methyl-D-Aspartate Receptor Co-Agonist, in Adult Brain. J. Biol. Chem. 2010, 285, 41380–41390. [Google Scholar] [CrossRef] [Green Version]
- Neame, S.; Safory, H.; Radzishevsky, I.; Touitou, A.; Marchesani, F.; Marchetti, M.; Kellner, S.; Berlin, S.; Foltyn, V.N.; Engelender, S.; et al. The NMDA Receptor Activation by D-Serine and Glycine Is Controlled by an Astrocytic Phgdh-Dependent Serine Shuttle. Proc. Natl. Acad. Sci. USA 2019, 116, 20736–20742. [Google Scholar] [CrossRef] [Green Version]
- Oldendorf, W.H. Brain Uptake of Radiolabeled Amino Acids, Amines, and Hexoses after Arterial Injection. Am. J. Physiol. 1971, 221, 1629–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridgers, W.F. The Biosynthesis of Serine in Mouse Brain Extracts. J. Biol. Chem. 1965, 240, 4591–4597. [Google Scholar] [CrossRef]
- Locasale, J.W. Serine, Glycine and One-Carbon Units: Cancer Metabolism in Full Circle. Nat. Rev. Cancer 2013, 13, 572–583. [Google Scholar] [CrossRef] [Green Version]
- Wolosker, H.; Blackshaw, S.; Snyder, S.H. Serine Racemase: A Glial Enzyme Synthesizing D-Serine to Regulate Glutamate-N-Methyl-D-Aspartate Neurotransmission. Proc. Natl. Acad. Sci. USA 1999, 96, 13409–13414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, E.R.; Esguerra, M.; Kim, P.M.; Newman, E.A.; Snyder, S.H.; Zahs, K.R.; Miller, R.F. D-Serine and Serine Racemase Are Present in the Vertebrate Retina and Contribute to the Physiological Activation of NMDA Receptors. Proc. Natl. Acad. Sci. USA 2003, 100, 6789–6794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Zhou, E.; Yang, W.; Zhang, X.; Zhang, W.; Rao, Y. D-Serine Made by Serine Racemase in Drosophila Intestine Plays a Physiological Role in Sleep. Nat. Commun. 2019, 10, 1986. [Google Scholar] [CrossRef] [Green Version]
- De Miranda, J.; Santoro, A.; Engelender, S.; Wolosker, H. Human Serine Racemase: Moleular Cloning, Genomic Organization and Functional Analysis. Gene 2000, 256, 183–188. [Google Scholar] [CrossRef]
- De Miranda, J.; Panizzutti, R.; Foltyn, V.N.; Wolosker, H. Cofactors of Serine Racemase That Physiologically Stimulate the Synthesis of the N-Methyl-D-Aspartate (NMDA) Receptor Coagonist D-Serine. Proc. Natl. Acad. Sci. USA 2002, 99, 14542–14547. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.C.; Tsai, G.E.; Ma, C.-L.; Ehmsen, J.T.; Mustafa, A.K.; Han, L.; Jiang, Z.I.; Benneyworth, M.A.; Froimowitz, M.P.; Lange, N.; et al. Targeted Disruption of Serine Racemase Affects Glutamatergic Neurotransmission and Behavior. Mol. Psychiatry 2009, 14, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Labrie, V.; Fukumura, R.; Rastogi, A.; Fick, L.J.; Wang, W.; Boutros, P.C.; Kennedy, J.L.; Semeralul, M.O.; Lee, F.H.; Baker, G.B.; et al. Serine Racemase Is Associated with Schizophrenia Susceptibility in Humans and in a Mouse Model. Hum. Mol. Genet. 2009, 18, 3227–3243. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, Y.; Konno, R.; Sasabe, J.; Ueno, K.; Tojo, Y.; Mita, M.; Aiso, S.; Hamase, K. Alteration of Intrinsic Amounts of D-Serine in the Mice Lacking Serine Racemase and d-Amino Acid Oxidase. Amino Acids 2012, 43, 1919–1931. [Google Scholar] [CrossRef]
- Horio, M.; Kohno, M.; Fujita, Y.; Ishima, T.; Inoue, R.; Mori, H.; Hashimoto, K. Levels of D-Serine in the Brain and Peripheral Organs of Serine Racemase (Srr) Knock-out Mice. Neurochem. Int. 2011, 59, 853–859. [Google Scholar] [CrossRef]
- Iwama, H.; Takahashi, K.; Kure, S.; Hayashi, F.; Narisawa, K.; Tada, K.; Mizoguchi, M.; Takashima, S.; Tomita, U.; Nishikawa, T. Depletion of Cerebral D-Serine in Non-Ketotic Hyperglycinemia: Possible Involvement of Glycine Cleavage System in Control of Endogenous D-Serine. Biochem. Biophys. Res. Commun. 1997, 231, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Panizzutti, R.; de Miranda, J.; Ribeiro, C.S.; Engelender, S.; Wolosker, H. A New Strategy to Decrease N-Methyl-D-Aspartate (NMDA) Receptor Coactivation: Inhibition of D-Serine Synthesis by Converting Serine Racemase into an Eliminase. Proc. Natl. Acad. Sci. USA 2001, 98, 5294–5299. [Google Scholar] [CrossRef] [Green Version]
- Foltyn, V.N.; Bendikov, I.; de Miranda, J.; Panizzutti, R.; Dumin, E.; Shleper, M.; Li, P.; Toney, M.D.; Kartvelishvily, E.; Wolosker, H. Serine Racemase Modulates Intracellular D-Serine Levels through an α,β-Elimination Activity. J. Biol. Chem. 2005, 280, 1754–1763. [Google Scholar] [CrossRef] [Green Version]
- Mothet, J.-P.; Pollegioni, L.; Ouanounou, G.; Martineau, M.; Fossier, P.; Baux, G. Glutamate Receptor Activation Triggers a Calcium-Dependent and SNARE Protein-Dependent Release of the Gliotransmitter D-Serine. Proc. Natl. Acad. Sci. USA 2005, 102, 5606–5611. [Google Scholar] [CrossRef] [Green Version]
- Miya, K.; Inoue, R.; Takata, Y.; Abe, M.; Natsume, R.; Sakimura, K.; Hongou, K.; Miyawaki, T.; Mori, H. Serine Racemase Is Predominantly Localized in Neurons in Mouse Brain. J. Comp. Neurol. 2008, 510, 641–654. [Google Scholar] [CrossRef]
- Schell, M.J.; Molliver, M.E.; Snyder, S.H. D-Serine, an Endogenous Synaptic Modulator: Localization to Astrocytes and Glutamate-Stimulated Release. Proc. Natl. Acad. Sci. USA 1995, 92, 3948–3952. [Google Scholar] [CrossRef] [Green Version]
- Meunier, C.N.J.; Dallérac, G.; Le Roux, N.; Sacchi, S.; Levasseur, G.; Amar, M.; Pollegioni, L.; Mothet, J.-P.; Fossier, P. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period. PLoS ONE 2016, 11, e0151233. [Google Scholar] [CrossRef] [Green Version]
- Papouin, T.; Henneberger, C.; Rusakov, D.A.; Oliet, S.H.R. Astroglial versus Neuronal D-Serine: Fact Checking. Trends Neurosci. 2017, 40, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Wolosker, H.; Balu, D.T.; Coyle, J.T. Astroglial Versus Neuronal D-Serine: Check Your Controls! Trends Neurosci. 2017, 40, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, H. Serine Racemase and the Serine Shuttle between Neurons and Astrocytes. Biochim. Biophys. Acta 2011, 1814, 1558–1566. [Google Scholar] [CrossRef]
- Ma, T.M.; Abazyan, S.; Abazyan, B.; Nomura, J.; Yang, C.; Seshadri, S.; Sawa, A.; Snyder, S.H.; Pletnikov, M.V. Pathogenic Disruption of DISC1-Serine Racemase Binding Elicits Schizophrenia-like Behavior via D-Serine Depletion. Mol. Psychiatry 2013, 18, 557–567. [Google Scholar] [CrossRef]
- Xia, M.; Liu, Y.; Figueroa, D.J.; Chiu, C.-S.; Wei, N.; Lawlor, A.-M.; Lu, P.; Sur, C.; Koblan, K.S.; Connolly, T.M. Characterization and Localization of a Human Serine Racemase. Mol. Brain Res. 2004, 125, 96–104. [Google Scholar] [CrossRef]
- Verrall, L.; Walker, M.; Rawlings, N.; Benzel, I.; Kew, J.N.C.; Harrison, P.J.; Burnet, P.W.J. D-Amino Acid Oxidase and Serine Racemase in Human Brain: Normal Distribution and Altered Expression in Schizophrenia. Eur. J. Neurosci. 2007, 26, 1657–1669. [Google Scholar] [CrossRef] [Green Version]
- Kartvelishvily, E.; Shleper, M.; Balan, L.; Dumin, E.; Wolosker, H. Neuron-Derived D-Serine Release Provides a Novel Means to Activate N-Methyl-D-Aspartate Receptors. J. Biol. Chem. 2006, 281, 14151–14162. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Ma, N.; Nagahama, M.; Yamada, K.; Semba, R. Localization of D-Serine and Serine Racemase in Neurons and Neuroglias in Mouse Brain. Neurol. Sci. 2011, 32, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Benneyworth, M.A.; Li, Y.; Basu, A.C.; Bolshakov, V.Y.; Coyle, J.T. Cell Selective Conditional Null Mutations of Serine Racemase Demonstrate a Predominate Localization in Cortical Glutamatergic Neurons. Cell. Mol. Neurobiol. 2012, 32, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Balu, D.T.; Takagi, S.; Puhl, M.D.; Benneyworth, M.A.; Coyle, J.T. D-Serine and Serine Racemase Are Localized to Neurons in the Adult Mouse and Human Forebrain. Cell. Mol. Neurobiol. 2014, 34, 419–435. [Google Scholar] [CrossRef] [Green Version]
- Neidle, A.; Dunlop, D.S. Allosteric Regulation of Mouse Brain Serine Racemase. Neurochem. Res. 2002, 27, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Ohnishi, T.; Hashimoto, K.; Ohba, H.; Iwayama-Shigeno, Y.; Toyoshima, M.; Okuno, A.; Takao, H.; Toyota, T.; Minabe, Y.; et al. Identification of Multiple Serine Racemase (SRR) MRNA Isoforms and Genetic Analyses of SRR and DAO in Schizophrenia and D-Serine Levels. Biol. Psychiatry 2005, 57, 1493–1503. [Google Scholar] [CrossRef]
- Balan, L.; Foltyn, V.N.; Zehl, M.; Dumin, E.; Dikopoltsev, E.; Knoh, D.; Ohno, Y.; Kihara, A.; Jensen, O.N.; Radzishevsky, I.S.; et al. Feedback Inactivation of D-Serine Synthesis by NMDA Receptor-Elicited Translocation of Serine Racemase to the Membrane. Proc. Natl. Acad. Sci. USA 2009, 106, 7589–7594. [Google Scholar] [CrossRef] [Green Version]
- Ehmsen, J.T.; Ma, T.M.; Sason, H.; Rosenberg, D.; Ogo, T.; Furuya, S.; Snyder, S.H.; Wolosker, H. D-Serine in Glia and Neurons Derives from 3-Phosphoglycerate Dehydrogenase. J. Neurosci. 2013, 33, 12464–12469. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.; Peng, H.; Yu, Y.; Stanton, P.K.; Guilarte, T.R.; Kang, J. Astrocytes Release D-Serine by a Large Vesicle. Neuroscience 2013, 240, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Meunier, C.; Wang, N.; Yi, C.; Dallerac, G.; Ezan, P.; Koulakoff, A.; Leybaert, L.; Giaume, C. Contribution of Astroglial Cx43 Hemichannels to the Modulation of Glutamatergic Currents by D-Serine in the Mouse Prefrontal Cortex. J. Neurosci. 2017, 37, 9064–9075. [Google Scholar] [CrossRef] [Green Version]
- Casper, K.B.; Jones, K.; McCarthy, K.D. Characterization of Astrocyte-Specific Conditional Knockouts. Genes 2007, 45, 292–299. [Google Scholar] [CrossRef]
- Wong, J.M.; Folorunso, O.O.; Barragan, E.V.; Berciu, C.; Harvey, T.L.; Coyle, J.T.; Balu, D.T.; Gray, J.A. Postsynaptic Serine Racemase Regulates NMDA Receptor Function. J. Neurosci. 2020, 40, 9564–9575. [Google Scholar] [CrossRef]
- Ferreira, J.S.; Papouin, T.; Ladépêche, L.; Yao, A.; Langlais, V.C.; Bouchet, D.; Dulong, J.; Mothet, J.-P.; Sacchi, S.; Pollegioni, L.; et al. Co-Agonists Differentially Tune GluN2B-NMDA Receptor Trafficking at Hippocampal Synapses. eLife 2017, 6, e25492. [Google Scholar] [CrossRef]
- Stříšovský, K.; Jirásková, J.; Mikulová, A.; Rulíšek, L.; Konvalinka, J. Dual Substrate and Reaction Specificity in Mouse Serine Racemase: Identification of High-Affinity Dicarboxylate Substrate and Inhibitors and Analysis of the β-Eliminase Activity †. Biochemistry 2005, 44, 13091–13100. [Google Scholar] [CrossRef]
- Strísovský, K.; Jirásková, J.; Barinka, C.; Majer, P.; Rojas, C.; Slusher, B.S.; Konvalinka, J. Mouse Brain Serine Racemase Catalyzes Specific Elimination of L-Serine to Pyruvate. FEBS Lett. 2003, 535, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Lenhard, B.; Orellana, O.; Ibba, M.; Weygand-Durasević, I. TRNA Recognition and Evolution of Determinants in Seryl-TRNA Synthesis. Nucleic Acids Res. 1999, 27, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Furuya, S.; Watanabe, M. Novel Neuroglial and Glioglial Relationships Mediated by L-Serine Metabolism. Arch. Histol. Cytol. 2003, 66, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Hanada, K.; Hara, T.; Nishijima, M. Purification of the Serine Palmitoyltransferase Complex Responsible for Sphingoid Base Synthesis by Using Affinity Peptide Chromatography Techniques. J. Biol. Chem. 2000, 275, 8409–8415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumin, E.; Bendikov, I.; Foltyn, V.N.; Misumi, Y.; Ikehara, Y.; Kartvelishvily, E.; Wolosker, H. Modulation of D-Serine Levels via Ubiquitin-Dependent Proteasomal Degradation of Serine Racemase. J. Biol. Chem. 2006, 281, 20291–20302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Z.; Yang, B.; Theus, M.H.; Sick, J.T.; Bethea, J.R.; Sick, T.J.; Liebl, D.J. EphrinBs Regulate D-Serine Synthesis and Release in Astrocytes. J. Neurosci. 2010, 30, 16015–16024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, M.; Sasabe, J.; Miyoshi, Y.; Kuwasako, K.; Muto, Y.; Hamase, K.; Matsuoka, M.; Imanishi, N.; Aiso, S. Glycolytic Flux Controls D-Serine Synthesis through Glyceraldehyde-3-Phosphate Dehydrogenase in Astrocytes. Proc. Natl. Acad. Sci. USA 2015, 112, E2217–E2224. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.M.; Aizawa, H.; Kim, P.S.; Huang, A.S.; Wickramasinghe, S.R.; Kashani, A.H.; Barrow, R.K.; Huganir, R.L.; Ghosh, A.; Snyder, S.H. Serine Racemase: Activation by Glutamate Neurotransmission via Glutamate Receptor Interacting Protein and Mediation of Neuronal Migration. Proc. Natl. Acad. Sci. USA 2005, 102, 2105–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlop, D.S.; Neidle, A. Regulation of Serine Racemase Activity by Amino Acids. Mol. Brain Res. 2005, 133, 208–214. [Google Scholar] [CrossRef]
- Rosenberg, D.; Artoul, S.; Segal, A.C.; Kolodney, G.; Radzishevsky, I.; Dikopoltsev, E.; Foltyn, V.N.; Inoue, R.; Mori, H.; Billard, J.-M.; et al. Neuronal D-Serine and Glycine Release Via the Asc-1 Transporter Regulates NMDA Receptor-Dependent Synaptic Activity. J. Neurosci. 2013, 33, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, D.; Kartvelishvily, E.; Shleper, M.; Klinker, C.M.C.; Bowser, M.T.; Wolosker, H. Neuronal Release of D-serine: A Physiological Pathway Controlling Extracellular D-serine Concentration. FASEB J. 2010, 24, 2951–2961. [Google Scholar] [CrossRef] [Green Version]
- Wolosker, H.; Balu, D.T.; Coyle, J.T. The Rise and Fall of the D-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci. 2016, 39, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Harsing, L.G.; Matyus, P. Mechanisms of Glycine Release, Which Build up Synaptic and Extrasynaptic Glycine Levels: The Role of Synaptic and Non-Synaptic Glycine Transporters. Brain Res. Bull. 2013, 93, 110–119. [Google Scholar] [CrossRef]
- Fellin, T.; Halassa, M.M.; Terunuma, M.; Succol, F.; Takano, H.; Frank, M.; Moss, S.J.; Haydon, P.G. Endogenous Nonneuronal Modulators of Synaptic Transmission Control Cortical Slow Oscillations in Vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 15037–15042. [Google Scholar] [CrossRef] [Green Version]
- Sultan, S.; Li, L.; Moss, J.; Petrelli, F.; Cassé, F.; Gebara, E.; Lopatar, J.; Pfrieger, F.W.; Bezzi, P.; Bischofberger, J.; et al. Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes. Neuron 2015, 88, 957–972. [Google Scholar] [CrossRef] [Green Version]
- Bergersen, L.H.; Morland, C.; Ormel, L.; Rinholm, J.E.; Larsson, M.; Wold, J.F.H.; Røe, A.T.; Stranna, A.; Santello, M.; Bouvier, D.; et al. Immunogold Detection of L-Glutamate and D-Serine in Small Synaptic-like Microvesicles in Adult Hippocampal Astrocytes. Cereb. Cortex 2012, 22, 1690–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.M.; Diaz, C.M.; Macnab, L.T.; Sullivan, R.K.P.; Pow, D.V. Immunocytochemical Analysis OfD-Serine Distribution in the Mammalian Brain Reveals Novel Anatomical Compartmentalizations in Glia and Neurons. Glia 2006, 53, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Martineau, M.; Shi, T.; Puyal, J.; Knolhoff, A.M.; Dulong, J.; Gasnier, B.; Klingauf, J.; Sweedler, J.V.; Jahn, R.; Mothet, J.-P. Storage and Uptake of D-Serine into Astrocytic Synaptic-Like Vesicles Specify Gliotransmission. J. Neurosci. 2013, 33, 3413–3423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martineau, M.; Galli, T.; Baux, G.; Mothet, J.-P. Confocal Imaging and Tracking of the Exocytotic Routes for D-Serine-Mediated Gliotransmission. Glia 2008, 56, 1271–1284. [Google Scholar] [CrossRef]
- Harris, K.M.; Sultan, P. Variation in the Number, Location and Size of Synaptic Vesicles Provides an Anatomical Basis for the Nonuniform Probability of Release at Hippocampal CA1 Synapses. Neuropharmacology 1995, 34, 1387–1395. [Google Scholar] [CrossRef]
- Bezzi, P.; Gundersen, V.; Galbete, J.L.; Seifert, G.; Steinhäuser, C.; Pilati, E.; Volterra, A. Astrocytes Contain a Vesicular Compartment That Is Competent for Regulated Exocytosis of Glutamate. Nat. Neurosci. 2004, 7, 613–620. [Google Scholar] [CrossRef]
- Takano, T.; Kang, J.; Jaiswal, J.K.; Simon, S.M.; Lin, J.H.-C.; Yu, Y.; Li, Y.; Yang, J.; Dienel, G.; Zielke, H.R.; et al. Receptor-Mediated Glutamate Release from Volume Sensitive Channels in Astrocytes. Proc. Natl. Acad. Sci. USA 2005, 102, 16466–16471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauber, T. The Volume-Regulated Anion Channel Is Formed by LRRC8 Heteromers—Molecular Identification and Roles in Membrane Transport and Physiology. Biol. Chem. 2015, 396, 975–990. [Google Scholar] [CrossRef]
- Hyzinski-García, M.C.; Rudkouskaya, A.; Mongin, A.A. LRRC8A Protein Is Indispensable for Swelling-activated and ATP-induced Release of Excitatory Amino Acids in Rat Astrocytes. J. Physiol. 2014, 592, 4855–4862. [Google Scholar] [CrossRef] [PubMed]
- Nilius, B.; Oike, M.; Zahradnik, I.; Droogmans, G. Activation of a Cl- Current by Hypotonic Volume Increase in Human Endothelial Cells. J. Gen. Physiol. 1994, 103, 787–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackerman, M.J.; Krapivinsky, G.B.; Gordon, E.; Krapivinsky, L.; Clapham, D.C. Characterization of a Native Swelling-Induced Chloride Current, ICl.Swell, and Its Regulatory Protein, PICln, in Xenopus Oocytes. Jpn. J. Physiol. 1994, 44 Suppl. S2, S17–S24. [Google Scholar] [PubMed]
- Qiu, Z.; Dubin, A.E.; Mathur, J.; Tu, B.; Reddy, K.; Miraglia, L.J.; Reinhardt, J.; Orth, A.P.; Patapoutian, A. SWELL1, a Plasma Membrane Protein, Is an Essential Component of Volume-Regulated Anion Channel. Cell 2014, 157, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Voss, F.K.; Ullrich, F.; Munch, J.; Lazarow, K.; Lutter, D.; Mah, N.; Andrade-Navarro, M.A.; von Kries, J.P.; Stauber, T.; Jentsch, T.J. Identification of LRRC8 Heteromers as an Essential Component of the Volume-Regulated Anion Channel VRAC. Science 2014, 344, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Mongin, A.A.; Kimelberg, H.K. ATP Regulates Anion Channel-Mediated Organic Osmolyte Release from Cultured Rat Astrocytes via Multiple Ca 2+ -Sensitive Mechanisms. Am. J. Physiol. Cell Physiol. 2005, 288, C204–C213. [Google Scholar] [CrossRef]
- Mongin, A.A.; Kimelberg, H.K. ATP Potently Modulates Anion Channel-Mediated Excitatory Amino Acid Release from Cultured Astrocytes. Am. J. Physiol. Cell Physiol. 2002, 283, C569–C578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, S.K.; Cheema, T.A.; Foster, D.J.; Heacock, A.M. Volume-Dependent Osmolyte Efflux from Neural Tissues: Regulation by G-Protein-Coupled Receptors. J. Neurochem. 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akita, T.; Fedorovich, S.V.; Okada, Y. Ca2+ Nanodomain-Mediated Component of Swelling-Induced Volume-Sensitive Outwardly Rectifying Anion Current Triggered by Autocrine Action of ATP in Mouse Astrocytes. Cell. Physiol. Biochem. 2011, 28, 1181–1190. [Google Scholar] [CrossRef]
- Akita, T.; Okada, Y. Regulation of Bradykinin-Induced Activation of Volume-Sensitive Outwardly Rectifying Anion Channels by Ca 2+ Nanodomains in Mouse Astrocytes: VSOR Channel Regulation via Ca 2+ Nanodomains. J. Physiol. 2011, 589, 3909–3927. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-T.; Akita, T.; Shimizu, T.; Sabirov, R.Z.; Okada, Y. Bradykinin-Induced Astrocyte-Neuron Signalling: Glutamate Release Is Mediated by ROS-Activated Volume-Sensitive Outwardly Rectifying Anion Channels: Anion Channels Mediate Astrocyte-Neuron Signalling. J. Physiol. 2009, 587, 2197–2209. [Google Scholar] [CrossRef]
- Stout, C.E.; Costantin, J.L.; Naus, C.C.G.; Charles, A.C. Intercellular Calcium Signaling in Astrocytes via ATP Release through Connexin Hemichannels. J. Biol. Chem. 2002, 277, 10482–10488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.-C.; Wyeth, M.S.; Baltan-Tekkok, S.; Ransom, B.R. Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release. J. Neurosci. 2003, 23, 3588–3596. [Google Scholar] [CrossRef] [Green Version]
- Chever, O.; Lee, C.-Y.; Rouach, N. Astroglial Connexin43 Hemichannels Tune Basal Excitatory Synaptic Transmission. J. Neurosci. 2014, 34, 11228–11232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vuyst, E.; Wang, N.; Decrock, E.; de Bock, M.; Vinken, M.; van Moorhem, M.; Lai, C.; Culot, M.; Rogiers, V.; Cecchelli, R.; et al. Ca2+ Regulation of Connexin 43 Hemichannels in C6 Glioma and Glial Cells. Cell Calcium 2009, 46, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.A.; Stehberg, J. Hemichannels: New Roles in Astroglial Function. Front. Physiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, K.; Bard, L.; Reynolds, J.P.; King, C.; Jensen, T.P.; Gourine, A.V.; Rusakov, D.A. Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca(2+) in Neurons and Astroglia. Neuron 2015, 88, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigetomi, E.; Tong, X.; Kwan, K.Y.; Corey, D.P.; Khakh, B.S. TRPA1 Channels Regulate Astrocyte Resting Calcium and Inhibitory Synapse Efficacy through GAT-3. Nat. Neurosci. 2012, 15, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Retamal, M.A.; Froger, N.; Palacios-Prado, N.; Ezan, P.; Sáez, P.J.; Sáez, J.C.; Giaume, C. Cx43 Hemichannels and Gap Junction Channels in Astrocytes Are Regulated Oppositely by Proinflammatory Cytokines Released from Activated Microglia. J. Neurosci. 2007, 27, 13781–13792. [Google Scholar] [CrossRef]
- Stout, C.; Charles, A. Modulation of Intercellular Calcium Signaling in Astrocytes by Extracellular Calcium and Magnesium. Glia 2003, 43, 265–273. [Google Scholar] [CrossRef]
- Pearson, R.A.; Dale, N.; Llaudet, E.; Mobbs, P. ATP Released via Gap Junction Hemichannels from the Pigment Epithelium Regulates Neural Retinal Progenitor Proliferation. Neuron 2005, 46, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Schalper, K.A.; Palacios-Prado, N.; Retamal, M.A.; Shoji, K.F.; Martínez, A.D.; Sáez, J.C. Connexin Hemichannel Composition Determines the FGF-1-Induced Membrane Permeability and Free [Ca2+]i Responses. Mol. Biol. Cell 2008, 19, 3501–3513. [Google Scholar] [CrossRef] [Green Version]
- Anselmi, F.; Hernandez, V.H.; Crispino, G.; Seydel, A.; Ortolano, S.; Roper, S.D.; Kessaris, N.; Richardson, W.; Rickheit, G.; Filippov, M.A.; et al. ATP Release through Connexin Hemichannels and Gap Junction Transfer of Second Messengers Propagate Ca2+ Signals across the Inner Ear. Proc. Natl. Acad. Sci. USA 2008, 105, 18770–18775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braet, K.; Vandamme, W.; Martin, P.E.M.; Evans, W.H.; Leybaert, L. Photoliberating Inositol-1,4,5-Trisphosphate Triggers ATP Release That Is Blocked by the Connexin Mimetic Peptide Gap 26. Cell Calcium 2003, 33, 37–48. [Google Scholar] [CrossRef]
- Braet, K.; Aspeslagh, S.; Vandamme, W.; Willecke, K.; Martin, P.E.M.; Evans, W.H.; Leybaert, L. Pharmacological Sensitivity of ATP Release Triggered by Photoliberation of Inositol-1,4,5-Trisphosphate and Zero Extracellular Calcium in Brain Endothelial Cells. J. Cell. Physiol. 2003, 197, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Schalper, K.A.; Sánchez, H.A.; Lee, S.C.; Altenberg, G.A.; Nathanson, M.H.; Sáez, J.C. Connexin 43 Hemichannels Mediate the Ca2+ Influx Induced by Extracellular Alkalinization. Am. J. Physiol. Cell Physiol. 2010, 299, C1504–C1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehberg, J.; Moraga-Amaro, R.; Salazar, C.; Becerra, A.; Echeverría, C.; Orellana, J.A.; Bultynck, G.; Ponsaerts, R.; Leybaert, L.; Simon, F.; et al. Release of Gliotransmitters through Astroglial Connexin 43 Hemichannels Is Necessary for Fear Memory Consolidation in the Basolateral Amygdala. FASEB J. 2012, 26, 3649–3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, C.; Theis, M.; De Souza Silva, M.A.; Dere, E.; Söhl, G.; Teubner, B.; Namestkova, K.; Willecke, K.; Huston, J.P. Mice with Astrocyte-Directed Inactivation of Connexin43 Exhibit Increased Exploratory Behaviour, Impaired Motor Capacities, and Changes in Brain Acetylcholine Levels. Eur. J. Neurosci. 2003, 18, 2313–2318. [Google Scholar] [CrossRef]
- Dun, Y.; Mysona, B.; Itagaki, S.; Martin-Studdard, A.; Ganapathy, V.; Smith, S.B. Functional and Molecular Analysis of D-Serine Transport in Retinal Müller Cells. Exp. Eye Res. 2007, 84, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gliddon, C.M.; Shao, Z.; LeMaistre, J.L.; Anderson, C.M. Cellular Distribution of the Neutral Amino Acid Transporter Subtype ASCT2 in Mouse Brain. J. Neurochem. 2009, 108, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Maucler, C.; Pernot, P.; Vasylieva, N.; Pollegioni, L.; Marinesco, S. In Vivo d -Serine Hetero-Exchange through Alanine-Serine-Cysteine (ASC) Transporters Detected by Microelectrode Biosensors. ACS Chem. Neurosci. 2013, 4, 772–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bröer, A.; Brookes, N.; Ganapathy, V.; Dimmer, K.S.; Wagner, C.A.; Lang, F.; Bröer, S. The Astroglial ASCT2 Amino Acid Transporter as a Mediator of Glutamine Efflux. J. Neurochem. 1999, 73, 2184–2194. [Google Scholar]
- Kaplan, E.; Zubedat, S.; Radzishevsky, I.; Valenta, A.C.; Rechnitz, O.; Sason, H.; Sajrawi, C.; Bodner, O.; Konno, K.; Esaki, K.; et al. ASCT1 (Slc1a4) Transporter Is a Physiologic Regulator of Brain d-Serine and Neurodevelopment. Proc. Natl. Acad. Sci. USA 2018, 115, 9628–9633. [Google Scholar] [CrossRef] [Green Version]
- Attwell, D.; Barbour, B.; Szatkowski, M. Nonvesicular Release of Neurotransmitter. Neuron 1993, 11, 401–407. [Google Scholar] [CrossRef]
- Eulenburg, V.; Armsen, W.; Betz, H.; Gomeza, J. Glycine Transporters: Essential Regulators of Neurotransmission. Trends Biochem. Sci. 2005, 30, 325–333. [Google Scholar] [CrossRef]
- Supplisson, S.; Roux, M.J. Why Glycine Transporters Have Different Stoichiometries. FEBS Lett. 2002, 529, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Roux, M.J.; Supplisson, S. Neuronal and Glial Glycine Transporters Have Different Stoichiometries. Neuron 2000, 25, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Sakata, K.; Sato, K.; Schloss, P.; Betz, H.; Shimada, S.; Tohyama, M. Characterization of Glycine Release Mediated by Glycine Transporter 1 Stably Expressed in HEK-293 Cells. Brain Res. Mol. Brain Res. 1997, 49, 89–94. [Google Scholar] [CrossRef]
- Huang, H.; Barakat, L.; Wang, D.; Bordey, A. Bergmann Glial GlyT1 Mediates Glycine Uptake and Release in Mouse Cerebellar Slices. J. Physiol. 2004, 560, 721–736. [Google Scholar] [CrossRef]
- Billups, D.; Attwell, D. Active Release of Glycine or D-Serine Saturates the Glycine Site of NMDA Receptors at the Cerebellar Mossy Fibre to Granule Cell Synapse. Eur. J. Neurosci. 2003, 18, 2975–2980. [Google Scholar] [CrossRef]
- Marcaggi, P.; Attwell, D. Role of Glial Amino Acid Transporters in Synaptic Transmission and Brain Energetics. Glia 2004, 47, 217–225. [Google Scholar] [CrossRef]
- Aubrey, K.R.; Vandenberg, R.J.; Clements, J.D. Dynamics of Forward and Reverse Transport by the Glial Glycine Transporter, Glyt1b. Biophys. J. 2005, 89, 1657–1668. [Google Scholar] [CrossRef] [Green Version]
- Shibasaki, K.; Hosoi, N.; Kaneko, R.; Tominaga, M.; Yamada, K. Glycine Release from Astrocytes via Functional Reversal of GlyT1. J. Neurochem. 2017, 140, 395–403. [Google Scholar] [CrossRef]
- Duan, S.; Anderson, C.M.; Keung, E.C.; Chen, Y.; Chen, Y.; Swanson, R.A. P2X7 Receptor-Mediated Release of Excitatory Amino Acids from Astrocytes. J. Neurosci. 2003, 23, 1320–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suadicani, S.O.; Brosnan, C.F.; Scemes, E. P2X7 Receptors Mediate ATP Release and Amplification of Astrocytic Intercellular Ca2+ Signaling. J. Neurosci. 2006, 26, 1378–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, N.; Vayro, S.; Kirchhoff, F.; Verkhratsky, A.; Robbins, J.; Gorecki, D.C.; Butt, A.M. Mechanisms of ATP- and Glutamate-Mediated Calcium Signaling in White Matter Astrocytes. Glia 2008, 56, 734–749. [Google Scholar] [CrossRef] [PubMed]
- Shiratori-Hayashi, M.; Yamaguchi, C.; Eguchi, K.; Shiraishi, Y.; Kohno, K.; Mikoshiba, K.; Inoue, K.; Nishida, M.; Tsuda, M. Astrocytic STAT3 Activation and Chronic Itch Require IP3R1/TRPC-Dependent Ca2+ Signals in Mice. J. Allergy Clin. Immunol. 2020, S0091674920311052. [Google Scholar] [CrossRef]
- Ye, Z.-C.; Oberheim, N.; Kettenmann, H.; Ransom, B.R. Pharmacological “Cross-Inhibition” of Connexin Hemichannels and Swelling Activated Anion Channels. Glia 2009, 57, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Bowens, N.H.; Dohare, P.; Kuo, Y.-H.; Mongin, A.A. DCPIB, the Proposed Selective Blocker of Volume-Regulated Anion Channels, Inhibits Several Glutamate Transport Pathways in Glial Cells. Mol. Pharmacol. 2013, 83, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Hirase, H.; Iwai, Y.; Takata, N.; Shinohara, Y.; Mishima, T. Volume Transmission Signalling via Astrocytes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benveniste, M.; Clements, J.; Vyklický, L.; Mayer, M.L. A Kinetic Analysis of the Modulation of N-Methyl-D-Aspartic Acid Receptors by Glycine in Mouse Cultured Hippocampal Neurones. J. Physiol. 1990, 428, 333–357. [Google Scholar] [CrossRef] [PubMed]
- Lerma, J.; Zukin, R.S.; Bennett, M.V. Glycine Decreases Desensitization of N-Methyl-D-Aspartate (NMDA) Receptors Expressed in Xenopus Oocytes and Is Required for NMDA Responses. Proc. Natl. Acad. Sci. USA 1990, 87, 2354–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyklický, L.; Benveniste, M.; Mayer, M.L. Modulation of N-Methyl-D-Aspartic Acid Receptor Desensitization by Glycine in Mouse Cultured Hippocampal Neurones. J. Physiol. 1990, 428, 313–331. [Google Scholar] [CrossRef] [PubMed]
- Cummings, K.A.; Popescu, G.K. Glycine-Dependent Activation of NMDA Receptors. J. Gen. Physiol. 2015, 145, 513–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.E.; Borden, L.A.; Hartig, P.R.; Branchek, T.; Weinshank, R.L. Cloning and Expression of a Glycine Transporter Reveal Colocalization with NMDA Receptors. Neuron 1992, 8, 927–935. [Google Scholar] [CrossRef]
- Zafra, F.; Aragón, C.; Olivares, L.; Danbolt, N.C.; Giménez, C.; Storm-Mathisen, J. Glycine Transporters Are Differentially Expressed among CNS Cells. J. Neurosci. 1995, 15, 3952–3969. [Google Scholar] [CrossRef]
- Tsai, G.; Ralph-Williams, R.J.; Martina, M.; Bergeron, R.; Berger-Sweeney, J.; Dunham, K.S.; Jiang, Z.; Caine, S.B.; Coyle, J.T. Gene Knockout of Glycine Transporter 1: Characterization of the Behavioral Phenotype. Proc. Natl. Acad. Sci. USA 2004, 101, 8485–8490. [Google Scholar] [CrossRef] [Green Version]
- Gabernet, L.; Pauly-Evers, M.; Schwerdel, C.; Lentz, M.; Bluethmann, H.; Vogt, K.; Alberati, D.; Mohler, H.; Boison, D. Enhancement of the NMDA Receptor Function by Reduction of Glycine Transporter-1 Expression. Neurosci. Lett. 2005, 373, 79–84. [Google Scholar] [CrossRef]
- Gomeza, J.; Hülsmann, S.; Ohno, K.; Eulenburg, V.; Szöke, K.; Richter, D.; Betz, H. Inactivation of the Glycine Transporter 1 Gene Discloses Vital Role of Glial Glycine Uptake in Glycinergic Inhibition. Neuron 2003, 40, 785–796. [Google Scholar] [CrossRef] [Green Version]
- Kowalczuk, S.; Bröer, A.; Munzinger, M.; Tietze, N.; Klingel, K.; Bröer, S. Molecular Cloning of the Mouse IMINO System: An Na+- and Cl−-Dependent Proline Transporter. Biochem. J. 2005, 386, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, M.; Roh, J.D.; Kim, Y.; Kim, S.S.; Han, H.M.; Yang, E.; Kang, H.; Lee, S.; Kim, J.Y.; Kang, R.; et al. SLC6A20 Transporter: A Novel Regulator of Brain Glycine Homeostasis and NMDAR Function. EMBO Mol. Med. 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Gomeza, J.; Ohno, K.; Betz, H. Glycine Transporter Isoforms in the Mammalian Central Nervous System: Structures, Functions and Therapeutic Promises. Curr. Opin. Drug Discov. Devel. 2003, 6, 675–682. [Google Scholar] [PubMed]
- Betz, H.; Gomeza, J.; Armsen, W.; Scholze, P.; Eulenburg, V. Glycine Transporters: Essential Regulators of Synaptic Transmission. Biochem. Soc. Trans. 2006, 34, 55–58. [Google Scholar] [CrossRef]
- Bodner, O.; Radzishevsky, I.; Foltyn, V.N.; Touitou, A.; Valenta, A.C.; Rangel, I.F.; Panizzutti, R.; Kennedy, R.T.; Billard, J.M.; Wolosker, H. D-Serine Signaling and NMDAR-Mediated Synaptic Plasticity Are Regulated by System A-Type of Glutamine/D-Serine Dual Transporters. J. Neurosci. 2020, 40, 6489–6502. [Google Scholar] [CrossRef]
- Helboe, L.; Egebjerg, J.; Møller, M.; Thomsen, C. Distribution and Pharmacology of Alanine-Serine-Cysteine Transporter 1 (Asc-1) in Rodent Brain. Eur. J. Neurosci. 2003, 18, 2227–2238. [Google Scholar] [CrossRef]
- Rutter, A.R.; Fradley, R.L.; Garrett, E.M.; Chapman, K.L.; Lawrence, J.M.; Rosahl, T.W.; Patel, S. Evidence from Gene Knockout Studies Implicates Asc-1 as the Primary Transporter Mediating d-Serine Reuptake in the Mouse CNS. Eur. J. Neurosci. 2007, 25, 1757–1766. [Google Scholar] [CrossRef]
- Fukasawa, Y.; Segawa, H.; Kim, J.Y.; Chairoungdua, A.; Kim, D.K.; Matsuo, H.; Cha, S.H.; Endou, H.; Kanai, Y. Identification and Characterization of a Na(+)-Independent Neutral Amino Acid Transporter That Associates with the 4F2 Heavy Chain and Exhibits Substrate Selectivity for Small Neutral D- and L-Amino Acids. J. Biol. Chem. 2000, 275, 9690–9698. [Google Scholar] [CrossRef] [Green Version]
- Safory, H.; Neame, S.; Shulman, Y.; Zubedat, S.; Radzishevsky, I.; Rosenberg, D.; Sason, H.; Engelender, S.; Avital, A.; Hülsmann, S.; et al. The Alanine-Serine-Cysteine-1 (Asc-1) Transporter Controls Glycine Levels in the Brain and Is Required for Glycinergic Inhibitory Transmission. EMBO Rep. 2015, 16, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, H.; Kanai, Y.; Tokunaga, M.; Nakata, T.; Chairoungdua, A.; Ishimine, H.; Tsukada, S.; Ooigawa, H.; Nawashiro, H.; Kobayashi, Y.; et al. High Affinity D- and L-Serine Transporter Asc-1: Cloning and Dendritic Localization in the Rat Cerebral and Cerebellar Cortices. Neurosci. Lett. 2004, 358, 123–126. [Google Scholar] [CrossRef]
- Chaudhry, F.A.; Schmitz, D.; Reimer, R.J.; Larsson, P.; Gray, A.T.; Nicoll, R.; Kavanaugh, M.; Edwards, R.H. Glutamine Uptake by Neurons: Interaction of Protons with System a Transporters. J. Neurosci. 2002, 22, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, B.; Schäfer, M.K.-H.; Erickson, J.D.; Hediger, M.A.; Weihe, E.; Varoqui, H. Functional Properties and Cellular Distribution of the System A Glutamine Transporter SNAT1 Support Specialized Roles in Central Neurons. J. Biol. Chem. 2003, 278, 23720–23730. [Google Scholar] [CrossRef] [Green Version]
- Melone, M.; Quagliano, F.; Barbaresi, P.; Varoqui, H.; Erickson, J.D.; Conti, F. Localization of the Glutamine Transporter SNAT1 in Rat Cerebral Cortex and Neighboring Structures, with a Note on Its Localization in Human Cortex. Cereb. Cortex 2004, 14, 562–574. [Google Scholar] [CrossRef]
- González-González, I.M.; Cubelos, B.; Giménez, C.; Zafra, F. Immunohistochemical Localization of the Amino Acid Transporter SNAT2 in the Rat Brain. Neuroscience 2005, 130, 61–73. [Google Scholar] [CrossRef]
- Varoqui, H.; Zhu, H.; Yao, D.; Ming, H.; Erickson, J.D. Cloning and Functional Identification of a Neuronal Glutamine Transporter. J. Biol. Chem. 2000, 275, 4049–4054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Huang, W.; Sugawara, M.; Devoe, L.D.; Leibach, F.H.; Prasad, P.D.; Ganapathy, V. Cloning and Functional Expression of ATA1, a Subtype of Amino Acid Transporter A, from Human Placenta. Biochem. Biophys. Res. Commun. 2000, 273, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Buntup, D.; Skare, O.; Solbu, T.T.; Chaudhry, F.A.; Storm-Mathisen, J.; Thangnipon, W. Beta-Amyloid 25-35 Peptide Reduces the Expression of Glutamine Transporter SAT1 in Cultured Cortical Neurons. Neurochem. Res. 2008, 33, 248–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blot, A.; Billups, D.; Bjørkmo, M.; Quazi, A.Z.; Uwechue, N.M.; Chaudhry, F.A.; Billups, B. Functional Expression of Two System A Glutamine Transporter Isoforms in Rat Auditory Brainstem Neurons. Neuroscience 2009, 164, 998–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solbu, T.T.; Bjørkmo, M.; Berghuis, P.; Harkany, T.; Chaudhry, F.A. SAT1, A Glutamine Transporter, Is Preferentially Expressed in GABAergic Neurons. Front. Neuroanat. 2010, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, R.J.; Chaudhry, F.A.; Gray, A.T.; Edwards, R.H. Amino Acid Transport System a Resembles System N in Sequence but Differs in Mechanism. Proc. Natl. Acad. Sci. USA 2000, 97, 7715–7720. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, M.; Nakanishi, T.; Fei, Y.J.; Huang, W.; Ganapathy, M.E.; Leibach, F.H.; Ganapathy, V. Cloning of an Amino Acid Transporter with Functional Characteristics and Tissue Expression Pattern Identical to That of System A. J. Biol. Chem. 2000, 275, 16473–16477. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Mackenzie, B.; Ming, H.; Varoqui, H.; Zhu, H.; Hediger, M.A.; Erickson, J.D. A Novel System a Isoform Mediating Na+/Neutral Amino Acid Cotransport. J. Biol. Chem. 2000, 275, 22790–22797. [Google Scholar] [CrossRef] [Green Version]
- Melone, M.; Varoqui, H.; Erickson, J.D.; Conti, F. Localization of the Na(+)-Coupled Neutral Amino Acid Transporter 2 in the Cerebral Cortex. Neuroscience 2006, 140, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Jenstad, M.; Quazi, A.Z.; Zilberter, M.; Haglerød, C.; Berghuis, P.; Saddique, N.; Goiny, M.; Buntup, D.; Davanger, S.; S Haug, F.-M.; et al. System A Transporter SAT2 Mediates Replenishment of Dendritic Glutamate Pools Controlling Retrograde Signaling by Glutamate. Cereb. Cortex 2009, 19, 1092–1106. [Google Scholar] [CrossRef] [Green Version]
- Sakimura, K.; Nakao, K.; Yoshikawa, M.; Suzuki, M.; Kimura, H. A Novel Na+ -Independent Alanine-Serine-Cysteine Transporter 1 Inhibitor Inhibits Both Influx and Efflux of D-Serine: ACPP Is a Novel Asc-1 Inhibitor. J. Neurosci. Res. 2016, 94, 888–895. [Google Scholar] [CrossRef]
- Sason, H.; Billard, J.M.; Smith, G.P.; Safory, H.; Neame, S.; Kaplan, E.; Rosenberg, D.; Zubedat, S.; Foltyn, V.N.; Christoffersen, C.T.; et al. Asc-1 Transporter Regulation of Synaptic Activity via the Tonic Release of d-Serine in the Forebrain. Cereb. Cortex 2016, bhv350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, A.; Kanda, J.; Oka, T. Effects of N-Methyl-D-Aspartate, Kainate or Veratridine on Extracellular Concentrations of Free D-Serine and L-Glutamate in Rat Striatum: An in Vivo Microdialysis Study. Brain Res. Bull. 2000, 53, 347–351. [Google Scholar] [CrossRef]
- Foster, A.C.; Farnsworth, J.; Lind, G.E.; Li, Y.-X.; Yang, J.-Y.; Dang, V.; Penjwini, M.; Viswanath, V.; Staubli, U.; Kavanaugh, M.P. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures. PLoS ONE 2016, 11, e0156551. [Google Scholar] [CrossRef]
- Utsunomiya-Tate, N.; Endou, H.; Kanai, Y. Cloning and Functional Characterization of a System ASC-like Na+-Dependent Neutral Amino Acid Transporter. J. Biol. Chem. 1996, 271, 14883–14890. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.S.; Reis, M.; Panizzutti, R.; de Miranda, J.; Wolosker, H. Glial Transport of the Neuromodulator D-Serine. Brain Res. 2002, 929, 202–209. [Google Scholar] [CrossRef]
- Shao, Z.; Kamboj, A.; Anderson, C.M. Functional and Immunocytochemical Characterization of D-Serine Transporters in Cortical Neuron and Astrocyte Cultures. J. Neurosci. Res. 2009, 87, 2520–2530. [Google Scholar] [CrossRef] [PubMed]
- Mothet, J.-P.; Parent, A.T.; Wolosker, H.; Brady, R.O.; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D-Serine Is an Endogenous Ligand for the Glycine Site of the N-Methyl-D-Aspartate Receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 4926–4931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongsouthi, V.; Whitfield, J.H.; Unichenko, P.; Mitchell, J.A.; Breithausen, B.; Khersonsky, O.; Kremers, L.; Janovjak, H.; Monai, H.; Hirase, H.; et al. A Computationally Designed Fluorescent Biosensor for D-Serine. bioRxiv 2020. [Google Scholar] [CrossRef]
- Horiike, K.; Tojo, H.; Arai, R.; Yamano, T.; Nozaki, M.; Maeda, T. Localization of D-Amino Acid Oxidase in Bergmann Glial Cells and Astrocytes of Rat Cerebellum. Brain Res. Bull. 1987, 19, 587–596. [Google Scholar] [CrossRef]
- Horiike, K.; Tojo, H.; Arai, R.; Nozaki, M.; Maeda, T. D-Amino-Acid Oxidase Is Confined to the Lower Brain Stem and Cerebellum in Rat Brain: Regional Differentiation of Astrocytes. Brain Res. 1994, 652, 297–303. [Google Scholar] [CrossRef]
- Hashimoto, A.; Nishikawa, T.; Konno, R.; Niwa, A.; Yasumura, Y.; Oka, T.; Takahashi, K. Free D-Serine, d-Aspartate and d-Alanine in Central Nervous System and Serum in Mutant Mice Lacking d-Amino Acid Oxidase. Neurosci. Lett. 1993, 152, 33–36. [Google Scholar] [CrossRef]
- Morikawa, A.; Hamase, K.; Inoue, T.; Konno, R.; Niwa, A.; Zaitsu, K. Determination of Free D-Aspartic Acid, d-Serine and d-Alanine in the Brain of Mutant Mice Lacking d-Amino-Acid Oxidase Activity. J. Chromatogr. B Biomed. Sci. Appl. 2001, 757, 119–125. [Google Scholar] [CrossRef]
- Smith, S.M.; Uslaner, J.M.; Hutson, P.H. The Therapeutic Potential of D-Amino Acid Oxidase (DAAO) Inhibitors. Open Med. Chem. J. 2010, 4, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Maekawa, M.; Watanabe, M.; Yamaguchi, S.; Konno, R.; Hori, Y. Spatial Learning and Long-Term Potentiation of Mutant Mice Lacking d-Amino-Acid Oxidase. Neurosci. Res. 2005, 53, 34–38. [Google Scholar] [CrossRef]
- Pritchett, D.; Hasan, S.; Tam, S.K.E.; Engle, S.J.; Brandon, N.J.; Sharp, T.; Foster, R.G.; Harrison, P.J.; Bannerman, D.M.; Peirson, S.N. D-Amino Acid Oxidase Knockout (Dao(-/-)) Mice Show Enhanced Short-Term Memory Performance and Heightened Anxiety, but No Sleep or Circadian Rhythm Disruption. Eur. J. Neurosci. 2015, 41, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Pritchett, D.; Taylor, A.M.; Barkus, C.; Engle, S.J.; Brandon, N.J.; Sharp, T.; Foster, R.G.; Harrison, P.J.; Peirson, S.N.; Bannerman, D.M. Searching for Cognitive Enhancement in the Morris Water Maze: Better and Worse Performance in D-Amino Acid Oxidase Knockout (Dao(-/-)) Mice. Eur. J. Neurosci. 2016, 43, 979–989. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, A.; Nishikawa, T.; Oka, T.; Takahashi, K.; Hayashi, T. Determination of Free Amino Acid Enantiomers in Rat Brain and Serum by High-Performance Liquid Chromatography after Derivatization with N-Tert.-Butyloxycarbonyl-l-Cysteine and o-Phthaldialdehyde. J. Chromatogr. B Biomed. Sci. Appl. 1992, 582, 41–48. [Google Scholar] [CrossRef]
- Takahashi, K.; Hayashi, F.; Nishikawa, T. In Vivo Evidence for the Link between L- and D-Serine Metabolism in Rat Cerebral Cortex. J. Neurochem. 1997, 69, 1286–1290. [Google Scholar] [CrossRef] [Green Version]
- Kemp, J.A.; Leeson, P.D. The Glycine Site of the NMDA Receptor--Five Years On. Trends Pharmacol. Sci. 1993, 14, 20–25. [Google Scholar] [CrossRef]
- Takata, N.; Mishima, T.; Hisatsune, C.; Nagai, T.; Ebisui, E.; Mikoshiba, K.; Hirase, H. Astrocyte Calcium Signaling Transforms Cholinergic Modulation to Cortical Plasticity In Vivo. J. Neurosci. 2011, 31, 18155–18165. [Google Scholar] [CrossRef]
- Panatier, A.; Vallée, J.; Haber, M.; Murai, K.K.; Lacaille, J.-C.; Robitaille, R. Astrocytes Are Endogenous Regulators of Basal Transmission at Central Synapses. Cell 2011, 146, 785–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindocci, E.; Savtchouk, I.; Liaudet, N.; Becker, D.; Carriero, G.; Volterra, A. Three-Dimensional Ca2+ Imaging Advances Understanding of Astrocyte Biology. Science 2017, 356, eaai8185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwood, M.W.; Arizono, M.; Hisatsune, C.; Bannai, H.; Ebisui, E.; Sherwood, J.L.; Panatier, A.; Oliet, S.H.R.; Mikoshiba, K. Astrocytic IP 3 Rs: Contribution to Ca 2+ Signalling and Hippocampal LTP: Astrocytic IP 3 Rs: Ca 2+ Signalling and LTP. Glia 2017, 65, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Lind, B.L.; Jessen, S.B.; Lønstrup, M.; Joséphine, C.; Bonvento, G.; Lauritzen, M. Fast Ca2+ Responses in Astrocyte End-Feet and Neurovascular Coupling in Mice. Glia 2018, 66, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Stobart, J.L.; Ferrari, K.D.; Barrett, M.J.P.; Glück, C.; Stobart, M.J.; Zuend, M.; Weber, B. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons. Neuron 2018, 98, 726.e4–735.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains. J. Neurosci. 2002, 22, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Halassa, M.M.; Fellin, T.; Takano, H.; Dong, J.-H.; Haydon, P.G. Synaptic Islands Defined by the Territory of a Single Astrocyte. J. Soc. Neurosci. 2007, 27, 6473–6477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witcher, M.R.; Kirov, S.A.; Harris, K.M. Plasticity of Perisynaptic Astroglia during Synaptogenesis in the Mature Rat Hippocampus. Glia 2007, 55, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Di Castro, M.A.; Chuquet, J.; Liaudet, N.; Bhaukaurally, K.; Santello, M.; Bouvier, D.; Tiret, P.; Volterra, A. Local Ca2+ Detection and Modulation of Synaptic Release by Astrocytes. Nat. Neurosci. 2011, 14, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Barbour, B. An Evaluation of Synapse Independence. J. Neurosci. 2001, 21, 7969–7984. [Google Scholar] [CrossRef] [Green Version]
- Papouin, T.; Ladépêche, L.; Ruel, J.; Sacchi, S.; Labasque, M.; Hanini, M.; Groc, L.; Pollegioni, L.; Mothet, J.-P.; Oliet, S.H.R. Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists. Cell 2012, 150, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Le Bail, M.; Martineau, M.; Sacchi, S.; Yatsenko, N.; Radzishevsky, I.; Conrod, S.; Ait Ouares, K.; Wolosker, H.; Pollegioni, L.; Billard, J.-M.; et al. Identity of the NMDA Receptor Coagonist Is Synapse Specific and Developmentally Regulated in the Hippocampus. Proc. Natl. Acad. Sci. USA 2015, 112, E204–E213. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherwood, M.W.; Oliet, S.H.R.; Panatier, A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int. J. Mol. Sci. 2021, 22, 7258. https://doi.org/10.3390/ijms22147258
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. International Journal of Molecular Sciences. 2021; 22(14):7258. https://doi.org/10.3390/ijms22147258
Chicago/Turabian StyleSherwood, Mark W., Stéphane H. R. Oliet, and Aude Panatier. 2021. "NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities" International Journal of Molecular Sciences 22, no. 14: 7258. https://doi.org/10.3390/ijms22147258
APA StyleSherwood, M. W., Oliet, S. H. R., & Panatier, A. (2021). NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. International Journal of Molecular Sciences, 22(14), 7258. https://doi.org/10.3390/ijms22147258