Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers
Abstract
:1. Background
1.1. Multiple Sclerosis
1.2. MS Diagnosis and Biomarkers
1.3. Proteomic Analyses
2. Proteomic Investigations into MS
3. Search Strategy and Selection Criteria
4. Protein Biomarkers and Biological Samples
5. Other Factors Affecting Proteomic Analyses
5.1. Analytical Approaches
5.2. Sample Handling
5.3. Data Acquisition and Analysis
5.4. Age Effect
5.5. Sex Effect
6. Discrepancies between Animal Models and MS at the Proteome Level
7. Differences among MS Phenotypes at the Proteome Level
8. Differentially Abundant Canonical Proteins in MS and Animal Models
8.1. Blood-Related Proteins
8.2. Metabolism
8.3. Immune Response
8.4. Structural Changes
8.5. Proteases and Protease Inhibitors
8.6. Protein Aggregation
8.7. Demyelination and Axonal Injury
9. Conclusions
- Differential changes occur in protein abundance irrespective of whether the samples analysed are from MS patients or animal models. While many discrepancies in the findings are methods-related (top-down vs bottom-up), many differences are also sample-related, which may be due to the sample types analysed and/or to inter-lab variations in sampling, sample preparation, and sample handling.
- Although both methods have advantages and limitations, taking all the different analytical approaches into consideration, we recommend the use of integrative top-down over bottom-up analyses, since this is sensitive, has the highest inherent capacity to resolve intact proteoforms (i.e., quantitatively addresses the inherent complexity of proteomes), yields excellent sequence coverage, and provides a high degree of consistency across technical and biological replicates.
- Due to the inherent complexity of CSF collection with potential confounding blood contamination, CSF is not recommended for routine proteomic analysis; alternatively, easily accessible biological samples such as blood, tears, and urine can be used. Regrettably, these have largely not been utilized or have been handled and analysed with such a divergence of protocols, that few studies can realistically be considered as replicated.
- Neither the literature search nor the bioinformatic analyses revealed any single functional category of proteins but rather a range of different functionalities. Therefore, the published data reinforce the multifactorial nature of MS disease initiation and progression. Consequently, no reliable protein let alone proteoform biomarker, has been identified, and it seems likely that a panel of well-validated biomarkers will be necessary and could include specific validated proteoforms, lipids, and metabolites.
- Many changes in protein abundance identified in MS also occur in Alzheimer’s or Parkinson’s diseases, suggesting that critical mechanisms underlying MS may well be neurodegenerative. This also further complicates the search for effective early biomarkers specific to MS. Again, it may be that specific proteoforms are proven to have discriminatory power, but deep, quantitative proteome analyses will be needed to establish this.
- A common biomarker in MS and other neurodegenerative diseases could be useful for different stages of life. Detecting specific proteoform changes at younger ages may be useful to identify MS. However, further research will be necessary, as it is now apparent that conditions such as Alzheimer’s disease likely also have an earlier prodrome than their clinically identifying sequelae imply. Moreover, if we consider MS as neurodegenerative then many proteins (although perhaps not proteoforms) associated with multiple diseases will likely be proven to be common. Again, the critical question then becomes whether specific proteoforms may be selective biomarkers for the different diseases and their stages.
- Neither EAE nor CPZ show extensive similarities with MS, indicating that the current animal models likely only poorly mimic MS, at least at the proteome level, but may be useful if consensus in the field can be reached regarding the most likely underlying pathway to MS (i.e., inside-out or outside-in). The available animal models could then be used in more targeted studies to explore potential initiating mechanisms (i.e., CPZ) vs those underlying later stages of progression (i.e., EAE). This also emphasizes the importance of developing better animal models for MS to move beyond longstanding research approaches and viewpoints that have often become somewhat dogmatic.
- A lack of consistent procedures in proteomic analyses and the failure of journals to demand the necessary rigour in both methods and data reporting have yielded a literature of contradictory results. This has substantially delayed the identification of definitive proteoform biomarkers and therapeutic targets that directly underlie the fundamental molecular cause(s) of MS. Future research must thus clearly focus on the identification of consistent changes in specific proteoforms rather than canonical proteins.
- A broader agreement about consistency of analytical approaches is required, rather than the somewhat random choice of samples, analytical methods, and models that the breadth of available literature currently suggests is the case. Perhaps larger, international collaborative studies with set analytical approaches and methodologies are needed.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2DE | Two-dimensional gel electrophoresis | PAGE | Polyacrylamide gel electrophoresis |
BBB | Blood-brain barrier | PANTHER | Protein analysis through evolutionary relationships |
BU | Bottom-up | PET | Positron emission tomography |
CBB | Coomassie brilliant blue | pI | Isoelectric point |
CNS | Central nervous system | PMS | Pediatric MS |
CPZ | Cuprizone | PPMS | Primary progressive MS |
CSF | Cerebrospinal fluid | PRMS | Progressive relapsing MS |
DAVID | Database for annotation, visualization and integrated discovery | PTM | Post-translational modification |
EAE | Experimental autoimmune encephalomyelitis | RRMS | Relapsing-remitting MS |
GFAP | Glial fibrillary acidic protein | SDS | Sodium dodecyl sulfate |
IPG | Immobilized pH gradient | SPMS | Secondary progressive MS |
LC-TMS | Liquid chromatography-tandem mass spectrometry | STRING | Search tool for retrieval of interacting genes/proteins |
MRI | Magnetic resonance imaging | TD | Top-down |
MS | Multiple Sclerosis | TSPO | Translocator protein |
MW | Molecular weight | UMS | Uncategorized MS |
References
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [Green Version]
- Małkiewicz, M.A.; Szarmach, A.; Sabisz, A.; Cubała, W.J.; Szurowska, E.; Winklewski, P.J. Blood-brain barrier permeability and physical exercise. J. Neuroinflam. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.G.; Pacheco-Moises, F.P.; Macias-Islas, M.A.; Flores-Alvarado, L.J.; Mireles-Ramirez, M.A.; Gonzalez-Renovato, E.D.; Hernandez-Navarro, V.E.; Sanchez-Lopez, A.L.; Alatorre-Jimenez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 2014, 45, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Minagar, A.; Alexander, J.S. Blood-brain barrier disruption in multiple sclerosis. Mult. Scler. 2003, 9, 540–549. [Google Scholar] [CrossRef]
- Lucchinetti, C.; Bruck, W.; Parisi, J.; Scheithauer, B.; Rodriguez, M.; Lassmann, H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000, 47, 707–717. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Dutta, R.; Trapp, B.D. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog. Neurobiol. 2011, 93, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Almuslehi, M.S.M.; Sen, M.K.; Shortland, P.J.; Mahns, D.A.; Coorssen, J.R. CD8 T-cell Recruitment Into the Central Nervous System of Cuprizone-Fed Mice: Relevance to Modeling the Etiology of Multiple Sclerosis. Front. Cell Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- Caprariello, A.V.; Rogers, J.A.; Morgan, M.L.; Hoghooghi, V.; Plemel, J.R.; Koebel, A.; Tsutsui, S.; Dunn, J.F.; Kotra, L.P.; Ousman, S.S.; et al. Biochemically altered myelin triggers autoimmune demyelination. Proc. Natl. Acad. Sci. USA 2018, 115, 5528–5533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traka, M.; Podojil, J.R.; McCarthy, D.P.; Miller, S.D.; Popko, B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat. Neurosci. 2016, 19, 65–74. [Google Scholar] [CrossRef]
- Sen, M.K.; Almuslehi, M.S.M.; Shortland, P.J.; Coorssen, J.R.; Mahns, D.A. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail been Wagging the Mouse? Front. Immunol. 2020, 11, 572186. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.; Caprariello, A.V.; Morgan, M.L.; Luchicchi, A.; Schenk, G.J.; Joseph, J.T.; Geurts, J.J.G.; Stys, P.K. Nile Red fluorescence spectroscopy reports early physicochemical changes in myelin with high sensitivity. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
- Sen, M.K.; Mahns, D.A.; Coorssen, J.R.; Shortland, P.J. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci. Biobehav. Rev. 2019, 107, 23–46. [Google Scholar] [CrossRef]
- Stys, P.K.; Zamponi, G.W.; van Minnen, J.; Geurts, J.J. Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 2012, 13, 507–514. [Google Scholar] [CrossRef]
- Breij, E.C.; Brink, B.P.; Veerhuis, R.; van den Berg, C.; Vloet, R.; Yan, R.; Dijkstra, C.D.; van der Valk, P.; Bö, L. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann. Neurol. 2008, 63, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Hemond, C.C.; Bakshi, R. Magnetic Resonance Imaging in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8. [Google Scholar] [CrossRef]
- Filippi, M.; Preziosa, P.; Banwell, B.L.; Barkhof, F.; Ciccarelli, O.; De Stefano, N.; Geurts, J.J.G.; Paul, F.; Reich, D.S.; Toosy, A.T.; et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: Practical guidelines. Brain 2019, 142, 1858–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayana, P.A.; Doyle, T.J.; Lai, D.; Wolinsky, J.S. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann. Neurol. 1998, 43, 56–71. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, N.; Matthews, P.M.; Fu, L.; Narayanan, S.; Stanley, J.; Francis, G.S.; Antel, J.P.; Arnold, D.L. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 1998, 121, 1469–1477. [Google Scholar] [CrossRef]
- Filippi, M.; Bozzali, M.; Rovaris, M.; Gonen, O.; Kesavadas, C.; Ghezzi, A.; Martinelli, V.; Grossman, R.I.; Scotti, G.; Comi, G.; et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 2003, 126, 433–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niino, M.; Miyazaki, Y. Radiologically isolated syndrome and clinically isolated syndrome. Clin. Exp. Neuroimmunol. 2017, 8, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Urenjak, J.; Williams, S.R.; Gadian, D.G.; Noble, M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J. Neurochem. 1992, 59, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, M.M.; Saito, Y.; Knapp, G.W.; Ting, J.P.; Suzuki, K.; Matsushima, G.K. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 1998, 92, 38–49. [Google Scholar] [CrossRef]
- Airas, L.; Rissanen, E.; Rinne, J.O. Imaging neuroinflammation in multiple sclerosis using TSPO-PET. Clin. Transl. Imaging 2015, 3, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Largeau, B.; Dupont, A.C.; Guilloteau, D.; Santiago-Ribeiro, M.J.; Arlicot, N. TSPO PET Imaging: From Microglial Activation to Peripheral Sterile Inflammatory Diseases? Contrast. Media Mol. Imaging 2017, 6592139. [Google Scholar] [CrossRef]
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016, 139, 136–153. [Google Scholar] [CrossRef] [Green Version]
- De Picker, L.; Morrens, M. Perspective: Solving the Heterogeneity Conundrum of TSPO PET Imaging in Psychosis. Front. Psychiatry 2020, 11. [Google Scholar] [CrossRef]
- Airas, L.; Nylund, M.; Rissanen, E. Evaluation of Microglial Activation in Multiple Sclerosis Patients Using Positron Emission Tomography. Front. Neurol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.I.; Bell, J.S.; DeLuca, G.C. Vascular pathology in multiple sclerosis: Reframing pathogenesis around the blood-brain barrier. J. Neurol. Neurosurg. Psychiatry 2018, 89, 42–52. [Google Scholar] [CrossRef]
- Varatharaj, A.; Liljeroth, M.; Cramer, S.; Stuart, C.; Zotova, E.; Darekar, A.; Larsson, H.; Galea, I. Systemic inflammation and blood brain barrier abnormality in relapsing—Remitting multiple sclerosis. Lancet 2017, 389, S96. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.O.; Frank, J.A.; Patronas, N.; McFarlin, D.E.; McFarland, H.F. Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: Implications for clinical trials and natural history. Ann. Neurol. 1991, 29, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Xiao, Z.J.; Yang, B.; Lan, Z.; Fang, F. Blood-Brain Barrier: More Contributor to Disruption of Central Nervous System Homeostasis Than Victim in Neurological Disorders. Front. Neurosci. 2020, 14. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, Y.; Yokoyama, K.; Saiki, S.; Takahashi, T.; Matsuoka, J.; Hattori, N. Blood-brain barrier disruption is more severe in neuromyelitis optica than in multiple sclerosis and correlates with clinical disability. J. Int. Med. Res. 2012, 40, 1483–1491. [Google Scholar] [CrossRef]
- Hafler, D.A.; Slavik, J.M.; Anderson, D.E.; O’Connor, K.C.; De Jager, P.; Baecher-Allan, C. Multiple sclerosis. Immunol. Rev. 2005, 204, 208–231. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Ömerhoca, S.; Akkaş, S.Y.; İçen, N.K. Multiple Sclerosis: Diagnosis and Differential Diagnosis. Noro Psikiyatr Ars 2018, 55, S1–S9. [Google Scholar] [CrossRef]
- Palace, J. Making the diagnosis of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2001, 71, 3–8. [Google Scholar] [CrossRef]
- Wootla, B.; Denic, A.; Keegan, B.M.; Winters, J.L.; Astapenko, D.; Warrington, A.E.; Bieber, A.J.; Rodriguez, M. Evidence for the role of B cells and immunoglobulins in the pathogenesis of multiple sclerosis. Neurol. Res. Int. 2011, 2011, 780712. [Google Scholar] [CrossRef] [PubMed]
- Winger, R.C.; Zamvil, S.S. Antibodies in multiple sclerosis oligoclonal bands target debris. Proc. Natl. Acad. Sci. USA 2016, 113, 7696–7698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, P.; Wu, D.; Xu, D.; Hou, Y.; Wang, Q.; Li, M.; Li, Y.; Zeng, X.; Zhang, F.; et al. Serum IgG subclasses in autoimmune diseases. Medicine 2015, 94, e387. [Google Scholar] [CrossRef]
- Singh, V.K.; Fudenberg, H.H. Increase of immunoglobulin G3 subclass is related to brain autoantibody in Alzheimer’s disease but not in Down’s syndrome. Autoimmunit 1989, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Ounanian, A.; Guilbert, B.; Renversez, J.C.; Seigneurin, J.M.; Avrameas, S. Antibodies to viral antigens, xenoantigens, and autoantigens in Alzheimer’s disease. J. Clin. Lab. Anal. 1990, 4, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Mazzarello, P.; Poloni, M.; Citterio, A.; Camana, C.; Ceroni, M. Cerebrospinal Fluid IgG Changes in Neurosyphilis After High-Dose Penicillin G Treatment. Arch. Neurol. 1987, 44, 249. [Google Scholar] [CrossRef]
- Mehta, P.D.; Patrick, B.A.; Thormar, H. Identification of virus-specific oligoclonal bands in subacute sclerosing panencephalitis by immunofixation after isoelectric focusing and peroxidase staining. J. Clin. Microbiol. 1982, 16, 985–987. [Google Scholar] [CrossRef] [Green Version]
- Mturi, N.; Keir, G.; Maclennan, C.A.; Ross, A.; Willis, A.C.; Elford, B.C.; Berkley, J.A.; Newton, C.R.J.C. Cerebrospinal Fluid Studies in Kenyan Children with Severe Falciparum Malaria. Open Trop. Med. J. 2008, 1, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttner, H.B.; Schellinger, P.D.; Struffert, T.; Richter, G.; Engelhorn, T.; Bassemir, T.; Mäurer, M.; Garcia, M.; Schwab, S.; Köhrmann, M.; et al. MRI criteria in MS patients with negative and positive oligoclonal bands: Equal fulfillment of Barkhof’s criteria but different lesion patterns. J. Neurol. 2009, 256, 1121–1125. [Google Scholar] [CrossRef]
- Zeman, A.Z.; Kidd, D.; McLean, B.N.; Kelly, M.A.; Francis, D.A.; Miller, D.H.; Kendall, B.E.; Rudge, P.; Thompson, E.J.; McDonald, W.I. A study of oligoclonal band negative multiple sclerosis. J. Neurol. Nneurosurg. Psychiatry 1996, 60, 27–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaitán, M.I.; Correale, J. Multiple Sclerosis Misdiagnosis: A Persistent Problem to Solve. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Solomon, A.J.; Naismith, R.T.; Cross, A.H. Misdiagnosis of multiple sclerosis: Impact of the 2017 McDonald criteria on clinical practice. Neurology 2019, 92, 26–33. [Google Scholar] [CrossRef]
- Bjornevik, K.; Munger, K.L.; Cortese, M.; Barro, C.; Healy, B.C.; Niebuhr, D.W.; Scher, A.I.; Kuhle, J.; Ascherio, A. Serum Neurofilament Light Chain Levels in Patients With Presymptomatic Multiple Sclerosis. JAMA Neurol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Dagley, L.F.; Emili, A.; Purcell, A.W. Application of quantitative proteomics technologies to the biomarker discovery pipeline for multiple sclerosis. Proteomics Clin. Appl. 2013, 7, 91–108. [Google Scholar] [CrossRef]
- Comes, A.L.; Papiol, S.; Mueller, T.; Geyer, P.E.; Mann, M.; Schulze, T.G. Proteomics for blood biomarker exploration of severe mental illness: Pitfalls of the past and potential for the future. Transl. Psychiatry 2018, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Ahram, M.; Petricoin, E.F. Proteomics Discovery of Disease Biomarkers. Biomark. Insights 2008, 3, 325–333. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Forne, I.; Imhof, A. Bioinformatic analysis of proteomics data. BMC Syst. Biol. 2014, 8, S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berge, T.; Eriksson, A.; Brorson, I.S.; Hogestol, E.A.; Berg-Hansen, P.; Doskeland, A.; Mjaavatten, O.; Bos, S.D.; Harbo, H.F.; Berven, F. Quantitative proteomic analyses of CD4(+) and CD8(+) T cells reveal differentially expressed proteins in multiple sclerosis patients and healthy controls. Clin. Proteomics 2019, 16, 19. [Google Scholar] [CrossRef] [Green Version]
- Broadwater, L.; Pandit, A.; Clements, R.; Azzam, S.; Vadnal, J.; Sulak, M.; Yong, V.W.; Freeman, E.J.; Gregory, R.B.; McDonough, J. Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim. Biophys. Acta 2011, 1812, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Chiasserini, D.; Di Filippo, M.; Candeliere, A.; Susta, F.; Orvietani, P.L.; Calabresi, P.; Binaglia, L.; Sarchielli, P. CSF proteome analysis in multiple sclerosis patients by two-dimensional electrophoresis. Eur. J. Neurol. 2008, 15, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Comabella, M.; Fernandez, M.; Martin, R.; Rivera-Vallve, S.; Borras, E.; Chiva, C.; Julia, E.; Rovira, A.; Canto, E.; Alvarez-Cermeno, J.C.; et al. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 2010, 133, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- D’Aguanno, S.; Barassi, A.; Lupisella, S.; d’eril, G.M.; Del Boccio, P.; Pieragostino, D.; Pallotti, F.; Carelli, V.; Valentino, M.L.; Liguori, R.; et al. Differential cerebro spinal fluid proteome investigation of Leber hereditary optic neuropathy (LHON) and multiple sclerosis. J. Neuroimmunol. 2008, 193, 156–160. [Google Scholar] [CrossRef] [PubMed]
- De Masi, R.; Vergara, D.; Pasca, S.; Acierno, R.; Greco, M.; Spagnolo, L.; Blasi, E.; Sanapo, F.; Trianni, G.; Maffia, M. PBMCs protein expression profile in relapsing IFN-treated multiple sclerosis: A pilot study on relation to clinical findings and brain atrophy. J. Neuroimmunol. 2009, 210, 80–86. [Google Scholar] [CrossRef]
- Dumont, D.; Noben, J.P.; Raus, J.; Stinissen, P.; Robben, J. Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics 2004, 4, 2117–2124. [Google Scholar] [CrossRef]
- Hammack, B.N.; Fung, K.Y.; Hunsucker, S.W.; Duncan, M.W.; Burgoon, M.P.; Owens, G.P.; Gilden, D.H. Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult. Scler. 2004, 10, 245–260. [Google Scholar] [CrossRef]
- Harris, V.K.; Diamanduros, A.; Good, P.; Zakin, E.; Chalivendra, V.; Sadiq, S.A. Bri2-23 is a potential cerebrospinal fluid biomarker in multiple sclerosis. Neurobiol. Dis. 2010, 40, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Hassan, D.; Provansal, M.; Lehmann, S.; Rizk, M.; Moez, P.; Vialaret, J.; Hirtz, C.; Essa, A.; Agamia, H. Proteomic profile of cerebrospinal fluid in patients with multiple sclerosis using two dimensional gel electrophoresis. Br. J. Biomed. Sci. 2016, 73, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wu, T.; Jelinek, C.A.; Bielekova, B.; Chang, L.; Newsome, S.; Gnanapavan, S.; Giovannoni, G.; Chen, D.; Calabresi, P.A.; et al. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS). Clin. Proteomics 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Wu, J.; Yang, Y.; Liu, J.; Ding, Y.; Ding, M. Proteomic analysis of the cerebrospinal fluid in multiple sclerosis and neuromyelitis optica patients. Mol. Med. Rep. 2012, 6, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroksveen, A.C.; Aasebo, E.; Vethe, H.; Van Pesch, V.; Franciotta, D.; Teunissen, C.E.; Ulvik, R.J.; Vedeler, C.; Myhr, K.M.; Barsnes, H.; et al. Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM. J. Proteomics 2013, 78, 312–325. [Google Scholar] [CrossRef]
- Kroksveen, A.C.; Guldbrandsen, A.; Vedeler, C.; Myhr, K.M.; Opsahl, J.A.; Berven, F.S. Cerebrospinal fluid proteome comparison between multiple sclerosis patients and controls. Acta Neurol. Scand. Suppl. 2012, 90–96. [Google Scholar] [CrossRef]
- Lehmensiek, V.; Sussmuth, S.D.; Tauscher, G.; Brettschneider, J.; Felk, S.; Gillardon, F.; Tumani, H. Cerebrospinal fluid proteome profile in multiple sclerosis. Mult. Scler. 2007, 13, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, Z.; Yang, M.; Qin, Y.; Lin, C.; Liu, S. Differential expression of complement proteins in cerebrospinal fluid from active multiple sclerosis patients. J. Cell Biochem. 2011, 112, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Liguori, M.; Qualtieri, A.; Tortorella, C.; Direnzo, V.; Bagala, A.; Mastrapasqua, M.; Spadafora, P.; Trojano, M. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration. PLoS ONE 2014, 9, e103984. [Google Scholar] [CrossRef]
- Liu, J.; Yin, L.; Dong, H.; Xu, E.; Zhang, L.; Qiao, Y.; Liu, Y.; Li, L.; Jia, J. Decreased serum levels of nucleolin protein fragment, as analyzed by bead-based proteomic technology, in multiple sclerosis patients compared to controls. J. Neuroimmunol. 2012, 250, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bai, S.; Qin, Z.; Yang, Y.; Cui, Y.; Qin, Y. Quantitative proteomic analysis of the cerebrospinal fluid of patients with multiple sclerosis. J. Cell Mol. Med. 2009, 13, 1586–1603. [Google Scholar] [CrossRef] [Green Version]
- Ly, L.; Barnett, M.H.; Zheng, Y.Z.; Gulati, T.; Prineas, J.W.; Crossett, B. Comprehensive tissue processing strategy for quantitative proteomics of formalin-fixed multiple sclerosis lesions. J. Proteome Res. 2011, 10, 4855–4868. [Google Scholar] [CrossRef] [PubMed]
- Noben, J.P.; Dumont, D.; Kwasnikowska, N.; Verhaert, P.; Somers, V.; Hupperts, R.; Stinissen, P.; Robben, J. Lumbar cerebrospinal fluid proteome in multiple sclerosis: Characterization by ultrafiltration, liquid chromatography, and mass spectrometry. J. Proteome Res. 2006, 5, 1647–1657. [Google Scholar] [CrossRef] [Green Version]
- Ottervald, J.; Franzen, B.; Nilsson, K.; Andersson, L.I.; Khademi, M.; Eriksson, B.; Kjellstrom, S.; Marko-Varga, G.; Vegvari, A.; Harris, R.A.; et al. Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J. Proteomics 2010, 73, 1117–1132. [Google Scholar] [CrossRef]
- Rithidech, K.N.; Honikel, L.; Milazzo, M.; Madigan, D.; Troxell, R.; Krupp, L.B. Protein expression profiles in pediatric multiple sclerosis: Potential biomarkers. Mult. Scler. 2009, 15, 455–464. [Google Scholar] [CrossRef]
- Salvisberg, C.; Tajouri, N.; Hainard, A.; Burkhard, P.R.; Lalive, P.H.; Turck, N. Exploring the human tear fluid: Discovery of new biomarkers in multiple sclerosis. Proteomics Clin. Appl. 2014, 8, 185–194. [Google Scholar] [CrossRef]
- Singh, V.; Stingl, C.; Stoop, M.P.; Zeneyedpour, L.; Neuteboom, R.F.; Smitt, P.S.; Hintzen, R.Q.; Luider, T.M. Proteomics urine analysis of pregnant women suffering from multiple sclerosis. J. Proteome Res. 2015, 14, 2065–2073. [Google Scholar] [CrossRef]
- Stoop, M.P.; Singh, V.; Dekker, L.J.; Titulaer, M.K.; Stingl, C.; Burgers, P.C.; Sillevis Smitt, P.A.; Hintzen, R.Q.; Luider, T.M. Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis. PLoS ONE 2010, 5, e12442. [Google Scholar] [CrossRef] [Green Version]
- Stoop, M.P.; Singh, V.; Stingl, C.; Martin, R.; Khademi, M.; Olsson, T.; Hintzen, R.Q.; Luider, T.M. Effects of natalizumab treatment on the cerebrospinal fluid proteome of multiple sclerosis patients. J. Proteome Res. 2013, 12, 1101–1107. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Koel-Simmelink, M.J.; Pham, T.V.; Knol, J.C.; Khalil, M.; Trentini, A.; Killestein, J.; Nielsen, J.; Vrenken, H.; Popescu, V.; et al. Identification of biomarkers for diagnosis and progression of MS by MALDI-TOF mass spectrometry. Mult. Scler. 2011, 17, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Tremlett, H.; Dai, D.L.; Hollander, Z.; Kapanen, A.; Aziz, T.; Wilson-McManus, J.E.; Tebbutt, S.J.; Borchers, C.H.; Oger, J.; Cohen Freue, G.V. Serum proteomics in multiple sclerosis disease progression. J. Proteomics 2015, 118, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Alt, C.; Duvefelt, K.; Franzen, B.; Yang, Y.; Engelhardt, B. Gene and protein expression profiling of the microvascular compartment in experimental autoimmune encephalomyelitis in C57Bl/6 and SJL mice. Brain Pathol. 2005, 15, 1–16. [Google Scholar] [CrossRef]
- Dagley, L.F.; Croft, N.P.; Isserlin, R.; Olsen, J.B.; Fong, V.; Emili, A.; Purcell, A.W. Discovery of novel disease-specific and membrane-associated candidate markers in a mouse model of multiple sclerosis. Mol. Cell. Proteomics 2014, 13, 679–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farias, A.S.; Martins-de-Souza, D.; Guimaraes, L.; Pradella, F.; Moraes, A.S.; Facchini, G.; Novello, J.C.; Santos, L.M. Proteome analysis of spinal cord during the clinical course of monophasic experimental autoimmune encephalomyelitis. Proteomics 2012, 12, 2656–2662. [Google Scholar] [CrossRef]
- Fazeli, A.S.; Nasrabadi, D.; Pouya, A.; Mirshavaladi, S.; Sanati, M.H.; Baharvand, H.; Salekdeh, G.H. Proteome analysis of post-transplantation recovery mechanisms of an EAE model of multiple sclerosis treated with embryonic stem cell-derived neural precursors. J. Proteomics 2013, 94, 437–450. [Google Scholar] [CrossRef]
- Fazeli, A.S.; Nasrabadi, D.; Sanati, M.H.; Pouya, A.; Ibrahim, S.M.; Baharvand, H.; Salekdeh, G.H. Proteome analysis of brain in murine experimental autoimmune encephalomyelitis. Proteomics 2010, 10, 2822–2832. [Google Scholar] [CrossRef]
- Gonzalez, C.G.; Tankou, S.K.; Cox, L.M.; Casavant, E.P.; Weiner, H.L.; Elias, J.E. Latent-period stool proteomic assay of multiple sclerosis model indicates protective capacity of host-expressed protease inhibitors. Sci. Rep. 2019, 9, 12460. [Google Scholar] [CrossRef]
- Hasan, M.; Min, H.; Rahaman, K.A.; Muresan, A.R.; Kim, H.; Han, D.; Kwon, O.S. Quantitative Proteome Analysis of Brain Subregions and Spinal Cord from Experimental Autoimmune Encephalomyelitis Mice by TMT-Based Mass Spectrometry. Proteomics 2019, 19, e1800355. [Google Scholar] [CrossRef]
- Jain, M.R.; Bian, S.; Liu, T.; Hu, J.; Elkabes, S.; Li, H. Altered proteolytic events in experimental autoimmune encephalomyelitis discovered by iTRAQ shotgun proteomics analysis of spinal cord. Proteome Sci. 2009, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.R.; Li, Q.; Liu, T.; Rinaggio, J.; Ketkar, A.; Tournier, V.; Madura, K.; Elkabes, S.; Li, H. Proteomic Identification of Immunoproteasome Accumulation in Formalin-Fixed Rodent Spinal Cords with Experimental Autoimmune Encephalomyelitis. J. Proteome Res. 2012, 11, 1791–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastorff, A.M.; Haegler, K.; Maccarrone, G.; Holsboer, F.; Weber, F.; Ziemssen, T.; Turck, C.W. Regulation of proteins mediating neurodegeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Proteomics Clin. Appl. 2009, 3, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Linker, R.A.; Brechlin, P.; Jesse, S.; Steinacker, P.; Lee, D.H.; Asif, A.R.; Jahn, O.; Tumani, H.; Gold, R.; Otto, M. Proteome profiling in murine models of multiple sclerosis: Identification of stage specific markers and culprits for tissue damage. PLoS ONE 2009, 4, e7624. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Donahue, K.C.; Hu, J.; Kurnellas, M.P.; Grant, J.E.; Li, H.; Elkabes, S. Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord. J. Proteome Res. 2007, 6, 2565–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raphael, I.; Webb, J.; Gomez-Rivera, F.; Chase Huizar, C.A.; Gupta, R.; Arulanandam, B.P.; Wang, Y.; Haskins, W.E.; Forsthuber, T.G. Serum Neuroinflammatory Disease-Induced Central Nervous System Proteins Predict Clinical Onset of Experimental Autoimmune Encephalomyelitis. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef]
- Stoop, M.P.; Rosenling, T.; Attali, A.; Meesters, R.J.; Stingl, C.; Dekker, L.J.; van Aken, H.; Suidgeest, E.; Hintzen, R.Q.; Tuinstra, T.; et al. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats. J. Proteome Res. 2012, 11, 4315–4325. [Google Scholar] [CrossRef] [PubMed]
- Vanheel, A.; Daniels, R.; Plaisance, S.; Baeten, K.; Hendriks, J.J.; Leprince, P.; Dumont, D.; Robben, J.; Brone, B.; Stinissen, P.; et al. Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. PLoS ONE 2012, 7, e35544. [Google Scholar] [CrossRef]
- Martin, N.A.; Molnar, V.; Szilagyi, G.T.; Elkjaer, M.L.; Nawrocki, A.; Okarmus, J.; Wlodarczyk, A.; Thygesen, E.K.; Palkovits, M.; Gallyas, F., Jr.; et al. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice. Front. Immunol. 2018, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Oveland, E.; Nystad, A.; Berven, F.; Myhr, K.M.; Torkildsen, O.; Wergeland, S. 1,25-Dihydroxyvitamin-D3 induces brain proteomic changes in cuprizone mice during remyelination involving calcium proteins. Neurochem. Int. 2018, 112, 267–277. [Google Scholar] [CrossRef]
- Partridge, M.A.; Gopinath, S.; Myers, S.J.; Coorssen, J.R. An initial top-down proteomic analysis of the standard cuprizone mouse model of multiple sclerosis. J. Chem. Biol. 2016, 9, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.K.; Almuslehi, M.S.M.; Gyengesi, E.; Myers, S.J.; Shortland, P.J.; Mahns, D.A.; Coorssen, J.R. Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells 2019, 8, 1314. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.R.; Saha, J.K.; Broderick, C.L.; Zhen, E.Y.; Higgs, R.E.; Duffin, K.L.; Smith, R.C. Proteomic analysis of demyelinated and remyelinating brain tissue following dietary cuprizone administration. J. Mol. Neurosci. 2010, 42, 210–225. [Google Scholar] [CrossRef]
- Rosenling, T.; Attali, A.; Luider, T.M.; Bischoff, R. The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: From rat to human. Clin. Chim. Acta 2011, 412, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Kroksveen, A.C.; Opsahl, J.A.; Guldbrandsen, A.; Myhr, K.-M.; Oveland, E.; Torkildsen, Ø.; Berven, F.S. Cerebrospinal fluid proteomics in multiple sclerosis. Biochim. Biophy. 2015, 1854, 746–756. [Google Scholar] [CrossRef]
- Singh, V.; Hintzen, R.Q.; Luider, T.M.; Stoop, M.P. Proteomics technologies for biomarker discovery in multiple sclerosis. J. Neuroimmunol. 2012, 248, 40–47. [Google Scholar] [CrossRef]
- Farias, A.S.; Pradella, F.; Schmitt, A.; Santos, L.M.; Martins-de-Souza, D. Ten years of proteomics in multiple sclerosis. Proteomics 2014, 14, 467–480. [Google Scholar] [CrossRef]
- Coorssen, J.R.; Yergey, A.L. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses. Proteomes 2015, 3, 440–453. [Google Scholar] [CrossRef] [Green Version]
- Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.; Fenselau, C.; Garcia, B.A.; et al. How many human proteoforms are there? Nat. Chem. Biol. 2018, 14, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Yang, H.; Peng, F.; Li, J.; Mu, Y.; Long, Y.; Cheng, T.; Huang, Y.; Li, Z.; Lu, M.; et al. How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome? Electrophoresis 2018, 39, 965–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, X.; Li, B.; Zhan, X.; Schlüter, H.; Jungblut, P.R.; Coorssen, J.R. Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level. Proteomes 2019, 7, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, W.; Zhang, Z.; Chan, D.W. The application of clinical proteomics to cancer and other diseases. Clin. Chem. Lab. Med. 2003, 41, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Sanchez, J.-C.; Gooley, A.A.; Appel, R.D.; Humphery-Smith, I.; Hochstrasser, D.F.; Williams, K.L. Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It. Biotechnol. Genet. Eng. Rev. 1996, 13, 19–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ter Horst, R.; Jaeger, M.; Smeekens, S.P.; Oosting, M.; Swertz, M.A.; Li, Y.; Kumar, V.; Diavatopoulos, D.A.; Jansen, A.F.M.; Lemmers, H.; et al. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell 2016, 167, 1111–1124.e1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, R.L. How does a protein’s structure spell the difference between health and disease? Our journey to understand glaucoma-associated myocilin. PLoS Biol. 2019, 17, e3000237. [Google Scholar] [CrossRef]
- Kelly, J.W. The environmental dependency of protein folding best explains prion and amyloid diseases. Proc. Natl. Acad. Sci. USA 1998, 95, 930–932. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, T.; Ogiwara, A.; Fujii, K.; Kawakami, T.; Kawamura, T.; Anyouji, H.; Kato, H. Disease proteomics toward bedside reality. J. Gastroenterol. 2005, 40, 7–13. [Google Scholar] [CrossRef]
- Claverie, J.-M. What If There Are Only 30,000 Human Genes? Science 2001, 291, 1255–1257. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenko, E.A.; Poverennaya, E.V.; Ilgisonis, E.V.; Pyatnitskiy, M.A.; Kopylov, A.T.; Zgoda, V.G.; Lisitsa, A.V.; Archakov, A.I. The Size of the Human Proteome: The Width and Depth. Int. J. Analyt. Chem. 2016, 7436849. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.W.; Bennett, E.J. Proteome complexity and the forces that drive proteome imbalance. Nature 2016, 537, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, L.V.; Millikin, R.J.; Miller, R.M.; Anderson, L.C.; Fellers, R.T.; Ge, Y.; Kelleher, N.L.; LeDuc, R.D.; Liu, X.; Payne, S.H.; et al. Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics 2019, 19, e1800361. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.M.; Coorssen, J.R.; Martins-de-Souza, D. 2DE: The phoenix of proteomics. J. Proteomics 2014, 104, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Mastronardi, F.G.; Wood, D.D.; Lubman, D.M.; Zand, R.; Moscarello, M.A. Multiple Sclerosis: An Important Role for Post-Translational Modifications of Myelin Basic Protein in Pathogenesis. Mol. Cell. Proteomics 2003, 2, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Tan, D.; Piao, H. Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem. Res. 2016, 41, 1845–1856. [Google Scholar] [CrossRef]
- Raijmakers, R.; Vogelzangs, J.; Croxford, J.L.; Wesseling, P.; van Venrooij, W.J.; Pruijn, G.J.M. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. J. Com. Neurol. 2005, 486, 243–253. [Google Scholar] [CrossRef]
- Darrah, E.; Andrade, F. Rheumatoid arthritis and citrullination. Curr. Opin. Rheumatol. 2018, 30, 72–78. [Google Scholar] [CrossRef]
- Tseng, C.C.; Chang, S.J.; Tsai, W.C.; Ou, T.T.; Wu, C.C.; Sung, W.Y.; Hsieh, M.C.; Yen, J.H. Increased incidence of rheumatoid arthritis in multiple sclerosis: A nationwide cohort study. Medicine 2016, 95, e3999. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Gopinath, P.; Govindaraju, T. Role of Post-translational Modifications in Alzheimer’s Disease. Chem. Bio. Chem. 2020, 21, 1052–1079. [Google Scholar] [CrossRef]
- Shin, M.-K.; Vázquez-Rosa, E.; Koh, Y.; Dhar, M.; Chaubey, K.; Cintrón-Pérez, C.J.; Barker, S.; Miller, E.; Franke, K.; Noterman, M.F.; et al. Reducing acetylated tau is neuroprotective in brain injury. Cell 2021, 184, 2715–2732.e2723. [Google Scholar] [CrossRef]
- Skinner, O.S.; Do Vale, L.H.; Catherman, A.D.; Havugimana, P.C.; de Sousa, M.V.; Compton, P.D.; Kelleher, N.L. Native GELFrEE: A new separation technique for biomolecular assemblies. Anal. Chem. 2015, 87, 3032–3038. [Google Scholar] [CrossRef] [PubMed]
- Melani, R.D.; Seckler, H.S.; Skinner, O.S.; Do Vale, L.H.; Catherman, A.D.; Havugimana, P.C.; Valle de Sousa, M.; Domont, G.B.; Kelleher, N.L.; Compton, P.D. CN-GELFrEE—Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis. J. Vis. Exp. 2016, 53597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiede, B.; Koehler, C.J.; Strozynski, M.; Treumann, A.; Stein, R.; Zimny-Arndt, U.; Schmid, M.; Jungblut, P.R. High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture(SILAC), two-dimensional gel electrophoresis(2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Mol. Cell. Proteomics 2013, 12, 529–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, E.P.; Partridge, M.A.; Padula, M.P.; Gauci, V.J.; Malladi, C.S.; Coorssen, J.R. Top-down proteomics: Enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection. Proteomics 2014, 14, 872–889. [Google Scholar] [CrossRef]
- Wright, E.P.; Prasad, K.A.; Padula, M.P.; Coorssen, J.R. Deep imaging: How much of the proteome does current top-down technology already resolve? PLoS ONE 2014, 9, e86058. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fonslow, B.R.; Shan, B.; Baek, M.C.; Yates, J.R., 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 2013, 113, 2343–2394. [Google Scholar] [CrossRef] [Green Version]
- Amunugama, R.; Jones, R.; Ford, M.; Allen, D. Bottom-Up Mass Spectrometry-Based Proteomics as an Investigative Analytical Tool for Discovery and Quantification of Proteins in Biological Samples. Adv. Wound Care 2013, 2, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, Y.; Uo, T.; Jayadev, S.; Garden, G.A.; Conrads, T.P.; Veenstra, T.D.; Morrison, R.S. Potential Applications and Limitations of Proteomics in the Study of Neurological Disease. Arch. Neurol. 2006, 63, 1692–1696. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Ray, S.; Moiyadi, A.; Sridhar, E.; Srivastava, S. Quantitative Proteomic Analysis of Meningiomas for the Identification of Surrogate Protein Markers. Sci. Rep. 2014, 4, 7140. [Google Scholar] [CrossRef] [Green Version]
- Rogowska-Wrzesinska, A.; Le Bihan, M.C.; Thaysen-Andersen, M.; Roepstorff, P. 2D gels still have a niche in proteomics. J. Proteomics 2013, 88, 4–13. [Google Scholar] [CrossRef]
- Wiemer, J.C.; Prokudin, A. Bioinformatics in proteomics: Application, terminology, and pitfalls. Pathol. Res. Pract. 2004, 200, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Delmotte, P.; Gonsette, R. Biochemical findings in multiple sclerosis IV. Isoelectric focusing of the CSF gamma globulins in multiple sclerosis (262 cases) and other neurological diseases (272 cases). J. Neurol. 1977, 215, 27–37. [Google Scholar] [CrossRef]
- Sidén, A.; Kjellin, K.G. Isoelectric focusing of CSF and serum proteins in neurological disorders combined with benign and malignant proliferations of reticulocytes, lymphocytes and plasmocytes. J. Neurol. 1977, 216, 251–264. [Google Scholar] [CrossRef]
- Vandvik, B. Oligoclonal IgG and free light chains in the cerebrospinal fluid of patients with multiple sclerosis and infectious diseases of the central nervous system. Scand. J. Immunol. 1977, 6, 913–922. [Google Scholar] [CrossRef]
- Laurenzi, M.A.; Link, H. Comparison between agarose gel electrophoresis and isoelectric focusing of CSF for demonstration of oligoclonal immunoglobulin bands in neurological disorders. Acta Neurol. Scand. 1978, 58, 148–156. [Google Scholar] [CrossRef]
- Laurenzi, M.A.; Mavra, M.; Kam-Hansen, S.; Link, H. Oligoclonal IgG and free chains in multiple sclerosis demonstrated by thin-layer polyacrylamide gel isoelectric focusing and immunofixation. Ann. Nneurol. 1980, 8, 241–247. [Google Scholar] [CrossRef]
- Gat-Viks, I.; Geiger, T.; Barbi, M.; Raini, G.; Elroy-Stein, O. Proteomics-level analysis of myelin formation and regeneration in a mouse model for Vanishing White Matter disease. J. Neurochem. 2015, 134, 513–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procaccini, C.; De Rosa, V.; Pucino, V.; Formisano, L.; Matarese, G. Animal models of Multiple Sclerosis. Eur. J. Pharmacol. 2015, 759, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Denic, A.; Johnson, A.J.; Bieber, A.J.; Warrington, A.E.; Rodriguez, M.; Pirko, I. The relevance of animal models in multiple sclerosis research. Pathophysiology 2011, 18, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traka, M.; Arasi, K.; Avila, R.L.; Podojil, J.R.; Christakos, A.; Miller, S.D.; Soliven, B.; Popko, B. A genetic mouse model of adult-onset, pervasive central nervous system demyelination with robust remyelination. Brain 2010, 133, 3017–3029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ransohoff, R.M. Animal models of multiple sclerosis: The good, the bad and the bottom line. Nat. Neurosci. 2012, 15, 1074–1077. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, A.; Pontecorvo, S.; Colasanti, T.; Zamboni, S.; Francia, A.; Margutti, P. Peripheral blood biomarkers in multiple sclerosis. Autoimmunit. Rev. 2015, 14, 1097–1110. [Google Scholar] [CrossRef]
- Kuhle, J.; Kropshofer, H.; Haering, D.A.; Kundu, U.; Meinert, R.; Barro, C.; Dahlke, F.; Tomic, D.; Leppert, D.; Kappos, L. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 2019, 92, e1007–e1015. [Google Scholar] [CrossRef]
- He, Y.; Mohamedali, A.; Huang, C.; Baker, M.S.; Nice, E.C. Oncoproteomics: Current status and future opportunities. Clin. Chim. Acta 2019, 495, 611–624. [Google Scholar] [CrossRef]
- Harpole, M.; Davis, J.; Espina, V. Current state of the art for enhancing urine biomarker discovery. Expert Rev. Proteomics 2016, 13, 609–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebregiworgis, T.; Nielsen, H.H.; Massilamany, C.; Gangaplara, A.; Reddy, J.; Illes, Z.; Powers, R. A Urinary Metabolic Signature for Multiple Sclerosis and Neuromyelitis Optica. J. Proteome Res. 2016, 15, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Raphael, I.; Webb, J.; Stuve, O.; Haskins, W.; Forsthuber, T. Body fluid biomarkers in multiple sclerosis: How far we have come and how they could affect the clinic now and in the future. Expert Rev. Clin. Immunol. 2015, 11, 69–91. [Google Scholar] [CrossRef]
- Wood, H. Could tear proteins be biomarkers for Alzheimer disease? Nat. Rev. Neurol. 2016, 12, 432. [Google Scholar] [CrossRef]
- Farah, R.; Haraty, H.; Salame, Z.; Fares, Y.; Ojcius, D.M.; Said Sadier, N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed. J. 2018, 41, 63–87. [Google Scholar] [CrossRef]
- Walton, E.L. Saliva biomarkers in neurological disorders: A “spitting image” of brain health? Biomed. J. 2018, 41, 59–62. [Google Scholar] [CrossRef]
- Varhaug, K.N.; Torkildsen, Ø.; Myhr, K.-M.; Vedeler, C.A. Neurofilament Light Chain as a Biomarker in Multiple Sclerosis. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahim, P.; Politis, A.; van der Merwe, A.; Moore, B.; Chou, Y.-Y.; Pham, D.L.; Butman, J.A.; Diaz-Arrastia, R.; Gill, J.M.; Brody, D.L.; et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology 2020, 95, e610–e622. [Google Scholar] [CrossRef] [PubMed]
- Akamine, S.; Marutani, N.; Kanayama, D.; Gotoh, S.; Maruyama, R.; Yanagida, K.; Sakagami, Y.; Mori, K.; Adachi, H.; Kozawa, J.; et al. Renal function is associated with blood neurofilament light chain level in older adults. Sci. Rep. 2020, 10, 20350. [Google Scholar] [CrossRef]
- Calabresi, P.A.; Austin, H.; Racke, M.K.; Goodman, A.; Choyke, P.; Maloni, H.; McFarland, H.F. Impaired renal function in progressive multiple sclerosis. Neurology 2002, 59, 1799–1801. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.K.; Almuslehi, M.S.M.; Coorssen, J.R.; Mahns, D.A.; Shortland, P.J. Behavioural and histological changes in cuprizone-fed mice. Brain Behav. Immunit. 2020, 87, 508–523. [Google Scholar] [CrossRef] [PubMed]
- Groebe, A.; Clarner, T.; Baumgartner, W.; Dang, J.; Beyer, C.; Kipp, M. Cuprizone treatment induces distinct demyelination, astrocytosis, and microglia cell invasion or proliferation in the mouse cerebellum. Cerebellum 2009, 8, 163–174. [Google Scholar] [CrossRef]
- Skripuletz, T.; Bussmann, J.H.; Gudi, V.; Koutsoudaki, P.N.; Pul, R.; Moharregh-Khiabani, D.; Lindner, M.; Stangel, M. Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol. 2010, 20, 301–312. [Google Scholar] [CrossRef]
- Doherty, C.M.; Forbes, R.B. Diagnostic Lumbar Puncture. Ulster Med. J. 2014, 83, 93–102. [Google Scholar]
- Vilming, S.T.; Kloster, R. Pain location and associated symptoms in post-lumbar puncture headache. Cephalalgia 1998, 18, 697–703. [Google Scholar] [CrossRef]
- You, J.S.; Gelfanova, V.; Knierman, M.D.; Witzmann, F.A.; Wang, M.; Hale, J.E. The impact of blood contamination on the proteome of cerebrospinal fluid. Proteomics 2005, 5, 290–296. [Google Scholar] [CrossRef]
- Barkovits, K.; Kruse, N.; Linden, A.; Tönges, L.; Pfeiffer, K.; Mollenhauer, B.; Marcus, K. Blood Contamination in CSF and Its Impact on Quantitative Analysis of Alpha-Synuclein. Cells 2020, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Magyari, M.; Sorensen, P.S. Comorbidity in Multiple Sclerosis. Front. Neurol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; O’Bryant, S.E.; Molinuevo, J.L.; Zetterberg, H.; Masters, C.L.; Lista, S.; Kiddle, S.J.; Batrla, R.; Blennow, K. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat. Rev. Neurol. 2018, 14, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Doecke, J.D.; Laws, S.M.; Faux, N.G.; Wilson, W.; Burnham, S.C.; Lam, C.P.; Mondal, A.; Bedo, J.; Bush, A.I.; Brown, B.; et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch. Neurol. 2012, 69, 1318–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, L.R.; Churchward, M.A.; Butt, R.H.; Coorssen, J.R. Assessing detection methods for gel-based proteomic analyses. J. Proteome Res. 2007, 6, 1418–1425. [Google Scholar] [CrossRef]
- Sejbaek, T.; Mendoza, J.P.; Penner, N.; Madsen, J.S.; Olsen, D.A.; Illes, Z. Comparison of neurofilament light chain results between two independent facilities. BMJ Neurol. Open 2020, 2, e000063. [Google Scholar] [CrossRef]
- Dayon, L.; Kussmann, M. Proteomics of human plasma: A critical comparison of analytical workflows in terms of effort, throughput and outcome. EuPA Open Proteomics 2013, 1, 8–16. [Google Scholar] [CrossRef] [Green Version]
- D’Silva, A.M.; Hyett, J.A.; Coorssen, J.R. A Routine ‘Top-Down’ Approach to Analysis of the Human Serum Proteome. Proteomes 2017, 5, 13. [Google Scholar] [CrossRef]
- Noaman, N.; Abbineni, P.S.; Withers, M.; Coorssen, J.R. Coomassie staining provides routine (sub)femtomole in-gel detection of intact proteoforms: Expanding opportunities for genuine Top-down Proteomics. Electrophoresis 2017, 38, 3086–3099. [Google Scholar] [CrossRef]
- Butt, R.H.; Coorssen, J.R. Postfractionation for enhanced proteomic analyses: Routine electrophoretic methods increase the resolution of standard 2D-PAGE. J. Proteome Res. 2005, 4, 982–991. [Google Scholar] [CrossRef]
- Colignon, B.; Raes, M.; Dieu, M.; Delaive, E.; Mauro, S. Evaluation of three-dimensional gel electrophoresis to improve quantitative profiling of complex proteomes. Proteomics 2013, 13, 2077–2082. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, A.M.; Hyett, J.A.; Coorssen, J.R. Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth. J. Proteomics 2018, 178, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Kurgan, N.; Noaman, N.; Pergande, M.R.; Cologna, S.M.; Coorssen, J.R.; Klentrou, P. Changes to the Human Serum Proteome in Response to High Intensity Interval Exercise: A Sequential Top-Down Proteomic Analysis. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Irani, D.N.; Anderson, C.; Gundry, R.; Cotter, R.; Moore, S.; Kerr, D.A.; McArthur, J.C.; Sacktor, N.; Pardo, C.A.; Jones, M.; et al. Cleavage of cystatin C in the cerebrospinal fluid of patients with multiple sclerosis. Ann. Neurol. 2006, 59, 237–247. [Google Scholar] [CrossRef]
- Del Boccio, P.; Pieragostino, D.; Lugaresi, A.; Di Ioia, M.; Pavone, B.; Travaglini, D.; D’Aguanno, S.; Bernardini, S.; Sacchetta, P.; Federici, G.; et al. Cleavage of cystatin C is not associated with multiple sclerosis. Ann. Neurol. 2007, 62, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Dabral, D.; Coorssen, J.R. Combined targeted Omic and Functional Assays Identify Phospholipases A2 that Regulate Docking/Priming in Calcium-Triggered Exocytosis. Cells 2019, 8, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deu, E.; Verdoes, M.; Bogyo, M. New approaches for dissecting protease functions to improve probe development and drug discovery. Nat. Struct. Mol. Biol. 2012, 19, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, E.; Herbert, B.; Righetti, P.G. The effect of protease inhibitors on the two-dimensional electrophoresis pattern of red blood cell membranes. Electrophoresis 2001, 22, 560–565. [Google Scholar] [CrossRef]
- Damodaran, S.; Wood, T.D.; Nagarajan, P.; Rabin, R.A. Evaluating Peptide Mass Fingerprinting-based Protein Identification. Genom. Proteom. Bioinform. 2007, 5, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Fenyö, D.; Eriksson, J.; Beavis, R. Mass spectrometric protein identification using the global proteome machine. Methods Mol. Biol. 2010, 673, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Lin, Y.H. Whole-cell protein identification using the concept of unique peptides. Genom. Proteom. Bioinform. 2010, 8, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.A.; Blank, P.S.; Searle, B.C.; Catlin, A.D.; Cologna, S.M.; Olson, M.T.; Backlund, P.S.; Coorssen, J.R.; Yergey, A.L. ProteinProcessor: A probabilistic analysis using mass accuracy and the MS spectrum. Proteomics 2016, 16, 2480–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosch, M.; Yu, L.; Hubbard, T.; Choudhary, J. Accurate and sensitive peptide identification with Mascot Percolator. J. Proteome Res. 2009, 8, 3176–3181. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.M. A ranking-based scoring function for peptide-spectrum matches. J. Proteome Res. 2009, 8, 2241–2252. [Google Scholar] [CrossRef] [Green Version]
- Gauci, V.J.; Noaman, N.; Coorssen, J.R. Gel-Staining Techniques—Dyeing to Know It All. eLS 2016, 1–10. [Google Scholar] [CrossRef]
- Gauci, V.J.; Wright, E.P.; Coorssen, J.R. Quantitative proteomics: Assessing the spectrum of in-gel protein detection methods. J. Chem. Biol. 2011, 4, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.; Young, G.W.; Wang, Y.; Lu, H.; Deng, N.; Drews, O.; Ping, P. Two-dimensional electrophoresis-based characterization of post-translational modifications of mammalian 20S proteasome complexes. Proteomics 2008, 8, 5025–5037. [Google Scholar] [CrossRef] [Green Version]
- Geiszler, D.J.; Kong, A.T.; Avtonomov, D.M.; Yu, F.; Leprevost, F.d.V.; Nesvizhskii, A.I. PTM-Shepherd: Analysis and Summarization of Post-Translational and Chemical Modifications From Open Search Results. Mol. Cell. Proteomics 2021, 20, 100018. [Google Scholar] [CrossRef]
- Zhu, K.; Zhao, J.; Lubman, D.M.; Miller, F.R.; Barder, T.J. Protein pI Shifts due to Posttranslational Modifications in the Separation and Characterization of Proteins. Analyt. Chem. 2005, 77, 2745–2755. [Google Scholar] [CrossRef]
- Rabilloud, T.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: A tutorial. J. Proteomics 2011, 74, 1829–1841. [Google Scholar] [CrossRef]
- Haq, I.; Irving, J.A.; Saleh, A.D.; Dron, L.; Regan-Mochrie, G.L.; Motamedi-Shad, N.; Hurst, J.R.; Gooptu, B.; Lomas, D.A. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization. Am. J. Respirat. Cell Mol. Biol. 2016, 54, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Clos, A.L.; Lasagna-Reeves, C.A.; Castillo-Carranza, D.L.; Sengupta, U.; Jackson, G.R.; Kelly, B.; Beachkofsky, T.M.; Kayed, R. Formation of immunoglobulin light chain amyloid oligomers in primary cutaneous nodular amyloidosis. Br. J. Dermatol. 2011, 165, 1349–1354. [Google Scholar] [CrossRef]
- Blancas-Mejia, L.M.; Misra, P.; Dick, C.J.; Cooper, S.A.; Redhage, K.R.; Bergman, M.R.; Jordan, T.L.; Maar, K.; Ramirez-Alvarado, M. Immunoglobulin light chain amyloid aggregation. Chem. Commun. 2018, 54, 10664–10674. [Google Scholar] [CrossRef]
- Hou, X.; Parkington, H.C.; Coleman, H.A.; Mechler, A.; Martin, L.L.; Aguilar, M.I.; Small, D.H. Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J. Neurochem. 2007, 100, 446–457. [Google Scholar] [CrossRef]
- Dasari, A.K.R.; Hughes, R.M.; Wi, S.; Hung, I.; Gan, Z.; Kelly, J.W.; Lim, K.H. Transthyretin Aggregation Pathway toward the Formation of Distinct Cytotoxic Oligomers. Sci. Rep. 2019, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaels, T.C.; Lazell, H.W.; Arosio, P.; Knowles, T.P. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. J. Chem. Phys. 2015, 143, 054901. [Google Scholar] [CrossRef] [PubMed]
- David, M.A.; Tayebi, M. Detection of Protein Aggregates in Brain and Cerebrospinal Fluid Derived from Multiple Sclerosis Patients. Front. Neurol. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Walter, J. Phosphorylation of amyloid beta (Aβ) peptides—A trigger for formation of toxic aggregates in Alzheimer’s disease. Aging 2011, 3, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Frieden, C. Protein aggregation processes: In search of the mechanism. Protein Sci. 2007, 16, 2334–2344. [Google Scholar] [CrossRef]
- Orrell, R.W. Multiple Sclerosis: The History of a Disease. J. R. Soc. Med. 2005, 98, 289. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.R.; Rostgaard, K.; Nielsen, N.M.; Koch-Henriksen, N.; Haahr, S.; Sørensen, P.S.; Hjalgrim, H. Multiple Sclerosis After Infectious Mononucleosis. Arch. Neurol. 2007, 64, 72–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahamyan, S.; Eberspächer, B.; Hoshi, M.-M.; Aly, L.; Luessi, F.; Groppa, S.; Klotz, L.; Meuth, S.G.; Schroeder, C.; Grüter, T.; et al. Complete Epstein-Barr virus seropositivity in a large cohort of patients with early multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 681–686. [Google Scholar] [CrossRef]
- Xia, Z.; Steele, S.U.; Bakshi, A.; Clarkson, S.R.; White, C.C.; Schindler, M.K.; Nair, G.; Dewey, B.E.; Price, L.R.; Ohayon, J.; et al. Assessment of Early Evidence of Multiple Sclerosis in a Prospective Study of Asymptomatic High-Risk Family Members. JAMA Neurol. 2017, 74, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luessi, F.; Siffrin, V.; Zipp, F. Neurodegeneration in multiple sclerosis: Novel treatment strategies. Expert Rev. Neurotherap. 2012, 12, 1061–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapp, B.D.; Nave, K.A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008, 31, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Correale, J.; Marrodan, M.; Ysrraelit, M.C. Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-J.; Chen, W.-W.; Zhang, X. Multiple sclerosis: Pathology, diagnosis and treatments. Experiment. Therap. Med. 2017, 13, 3163–3166. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.M.; Clyne, A.M. Sex differences in the blood–brain barrier and neurodegenerative diseases. APL Bioeng. 2021, 5, 011509. [Google Scholar] [CrossRef]
- Taylor, L.C.; Gilmore, W.; Ting, J.P.; Matsushima, G.K. Cuprizone induces similar demyelination in male and female C57BL/6 mice and results in disruption of the estrous cycle. J. Neurosci. Res. 2010, 88, 391–402. [Google Scholar] [CrossRef]
- Voskuhl, R.R.; Pitchekian-Halabi, H.; MacKenzie-Graham, A.; McFarland, H.F.; Raine, C.S. Gender differences in autoimmune demyelination in the mouse: Implications for multiple sclerosis. Ann. Neurol. 1996, 39, 724–733. [Google Scholar] [CrossRef]
- Rahn, E.J.; Iannitti, T.; Donahue, R.R.; Taylor, B.K. Sex differences in a mouse model of multiple sclerosis: Neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol. Sex Differ. 2014, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, R.; Linington, C.; Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006, 129, 1953–1971. [Google Scholar] [CrossRef]
- Krishnamoorthy, G.; Wekerle, H. EAE: An immunologist’s magic eye. Eur. J. Immunol. 2009, 39, 2031–2035. [Google Scholar] [CrossRef] [PubMed]
- Musio, S.; Costanza, M.; Poliani, P.L.; Fontana, E.; Cominelli, M.; Abolafio, G.; Steinman, L.; Pedotti, R. Treatment with anti-FcεRIα antibody exacerbates EAE and T-cell immunity against myelin. Neurol. Neuroimmunol. Neuroinflam. 2017, 4, e342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauthausen, M.; Saxe, S.; Zimmermann, J.; Emrich, M.; Heneka, M.T.; Müller, M. CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. J.Neuroinflam. 2014, 11, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Wang, K.K. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamermans, A.; Planting, K.E.; Jalink, K.; van Horssen, J.; de Vries, H.E. Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia 2019, 67, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Mestas, J.; Hughes, C.C. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, P. The Laboratory Rat: Relating Its Age With Human’s. Int. J. Prevent. Med. 2013, 4, 624–630. [Google Scholar]
- Perlman, R.L. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 2016, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onos, K.D.; Uyar, A.; Keezer, K.J.; Jackson, H.M.; Preuss, C.; Acklin, C.J.; O’Rourke, R.; Buchanan, R.; Cossette, T.L.; Sukoff Rizzo, S.J.; et al. Enhancing face validity of mouse models of Alzheimer’s disease with natural genetic variation. PLoS Genet. 2019, 15, e1008155. [Google Scholar] [CrossRef] [PubMed]
- Makowska, I.J.; Franks, B.; El-Hinn, C.; Jorgensen, T.; Weary, D.M. Standard laboratory housing for mice restricts their ability to segregate space into clean and dirty areas. Sci. Rep. 2019, 9, 6179. [Google Scholar] [CrossRef] [Green Version]
- Mertens, S.; Vogt, M.A.; Gass, P.; Palme, R.; Hiebl, B.; Chourbaji, S. Effect of three different forms of handling on the variation of aggression-associated parameters in individually and group-housed male C57BL/6NCrl mice. PLoS ONE 2019, 14, e0215367. [Google Scholar] [CrossRef] [Green Version]
- Nithianantharajah, J.; Hannan, A.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 2006, 7, 697–709. [Google Scholar] [CrossRef]
- Bitsch, A.; Brück, W. Differentiation of multiple sclerosis subtypes: Implications for treatment. CNS Drugs 2002, 16, 405–418. [Google Scholar] [CrossRef]
- Lassmann, H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9. [Google Scholar] [CrossRef]
- Lebrun, C.; Bensa, C.; Debouverie, M.; Wiertlevski, S.; Brassat, D.; de Seze, J.; Rumbach, L.; Pelletier, J.; Labauge, P.; Brochet, B.; et al. Association Between Clinical Conversion to Multiple Sclerosis in Radiologically Isolated Syndrome and Magnetic Resonance Imaging, Cerebrospinal Fluid, and Visual Evoked Potential: Follow-up of 70 Patients. Arch. Neurol. 2009, 66, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Bernard, C.C.; Kerlero de Rosbo, N. Multiple sclerosis: An autoimmune disease of multifactorial etiology. Curr. Opin. Immunol. 1992, 4, 760–765. [Google Scholar] [CrossRef]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef]
- Tejedor, L.S.; Wostradowski, T.; Gingele, S.; Skripuletz, T.; Gudi, V.; Stangel, M. The Effect of Stereotactic Injections on Demyelination and Remyelination: A Study in the Cuprizone Model. J. Mol. Neurosci. 2017, 61, 479–488. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, A.M.; Hyett, J.A.; Coorssen, J.R. First Trimester Protein Biomarkers for Risk of Spontaneous Preterm Birth: Identifying a Critical Need for More Rigorous Approaches to Biomarker Identification and Validation. Fetal Diagn. Ther. 2020, 47, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W.; Weisgraber, K.H.; Huang, Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2006, 103, 5644–5651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, I.J.; Hone, E.; Foster, J.K.; Sunram-Lea, S.I.; Gnjec, A.; Fuller, S.J.; Nolan, D.; Gandy, S.E.; Martins, R.N. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol. Psychiatry 2006, 11, 721–736. [Google Scholar] [CrossRef]
- Emamzadeh, F.N. Role of Apolipoproteins and alpha-Synuclein in Parkinson’s Disease. J. Mol. Neurosci. 2017, 62, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Tannu, N.S.; Hemby, S.E. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat. Protoc. 2006, 1, 1732–1742. [Google Scholar] [CrossRef]
- Berggard, T.; Linse, S.; James, P. Methods for the detection and analysis of protein-protein interactions. Proteomics 2007, 7, 2833–2842. [Google Scholar] [CrossRef]
- De Las Rivas, J.; Fontanillo, C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 2010, 6, e1000807. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Noris, M.; Remuzzi, G. Overview of complement activation and regulation. Semin. Nephrol. 2013, 33, 479–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mana, P.; Fordham, S.A.; Staykova, M.A.; Correcha, M.; Silva, D.; Willenborg, D.O.; Linares, D. Demyelination caused by the copper chelator cuprizone halts T cell mediated autoimmune neuroinflammation. J. Neuroimmunol. 2009, 210, 13–21. [Google Scholar] [CrossRef]
- Solti, I.; Kvell, K.; Talaber, G.; Veto, S.; Acs, P.; Gallyas, F., Jr.; Illes, Z.; Fekete, K.; Zalan, P.; Szanto, A.; et al. Thymic Atrophy and Apoptosis of CD4+CD8+ Thymocytes in the Cuprizone Model of Multiple Sclerosis. PLoS ONE 2015, 10, e0129217. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, D.A.; Camp, D.M.; Conant, S.B. Complement activation in the Parkinson’s disease substantia nigra: An immunocytochemical study. J. Neuroinflam. 2006, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasojima, K.; Schwab, C.; McGeer, E.G.; McGeer, P.L. Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am. J. Pathol. 1999, 154, 927–936. [Google Scholar] [CrossRef]
- Xia, C.; Braunstein, Z.; Toomey, A.C.; Zhong, J.; Rao, X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front. Immunol. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Xue, P.; Chen, L.; Lu, X.; Zhang, J.; Bao, G.; Xu, G.; Sun, Y.; Guo, X.; Jiang, J.; Gu, H.; et al. Vimentin Promotes Astrocyte Activation After Chronic Constriction Injury. J. Mol. Neurosci. 2017, 63, 91–99. [Google Scholar] [CrossRef]
- Farah, M.E.; Sirotkin, V.; Haarer, B.; Kakhniashvili, D.; Amberg, D.C. Diverse protective roles of the actin cytoskeleton during oxidative stress. Cytoskeleton 2011, 68, 340–354. [Google Scholar] [CrossRef] [Green Version]
- Ong, M.S.; Deng, S.; Halim, C.E.; Cai, W.; Tan, T.Z.; Huang, R.Y.; Sethi, G.; Hooi, S.C.; Kumar, A.P.; Yap, C.T. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers 2020, 12, 238. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.Q.; Yamamoto, M.; Mejillano, M.; Yin, H.L. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 1999, 274, 33179–33182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamburg, J.R.; Bloom, G.S. Cytoskeletal pathologies of Alzheimer disease. Cell Motil. Cytoskelet. 2009, 66, 635–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, L.; Wetzel, A.; Grannó, S.; Heaton, G.; Harvey, K. Back to the tubule: Microtubule dynamics in Parkinson’s disease. Cell Mol. Life Sci. 2017, 74, 409–434. [Google Scholar] [CrossRef] [Green Version]
- Cash, A.D.; Aliev, G.; Siedlak, S.L.; Nunomura, A.; Fujioka, H.; Zhu, X.; Raina, A.K.; Vinters, H.V.; Tabaton, M.; Johnson, A.B.; et al. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am. J. Pathol. 2003, 162, 1623–1627. [Google Scholar] [CrossRef]
- Van Schependom, J.; Guldolf, K.; D’hooghe, M.B.; Nagels, G.; D’haeseleer, M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl. Neurodegen. 2019, 8, 37. [Google Scholar] [CrossRef]
- Preissner, K.T. Structure and Biological Role of Vitronectin. Ann. Rev. Cell Biol. 1991, 7, 275–310. [Google Scholar] [CrossRef]
- Padmanabhan, J.; Levy, M.; Dickson, D.W.; Potter, H. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer’s disease brain, induces tau phosphorylation in neurons. Brain 2006, 129, 3020–3034. [Google Scholar] [CrossRef]
- Serban, K.A.; Petrache, I. Alpha-1 Antitrypsin and Lung Cell Apoptosis. Ann. Am. Thorac. Soc. 2016, 13, 146–149. [Google Scholar] [CrossRef]
- Peri, P.; Hukkanen, V.; Nuutila, K.; Saukko, P.; Abrahamson, M.; Vuorinen, T. The cysteine protease inhibitors cystatins inhibit herpes simplex virus type 1-induced apoptosis and virus yield in HEp-2 cells. J. Gen. Virol. 2007, 88, 2101–2105. [Google Scholar] [CrossRef]
- Yousef, G.M.; Kishi, T.; Diamandis, E.P. Role of kallikrein enzymes in the central nervous system. Clin. Chim. Acta 2003, 329, 1–8. [Google Scholar] [CrossRef]
- Ellis, R.J.; van der Vies, S.M.; Hemmingsen, S.M. The molecular chaperone concept. Biochem. Soc. Symp. 1989, 55, 145–153. [Google Scholar]
- Sami, N.; Rahman, S.; Kumar, V.; Zaidi, S.; Islam, A.; Ali, S.; Ahmad, F.; Hassan, M.I. Protein aggregation, misfolding and consequential human neurodegenerative diseases. Int. J. Neurosci. 2017, 127, 1047–1057. [Google Scholar] [CrossRef]
- Hinault, M.-P.; Ben-Zvi, A.; Goloubinoff, P. Chaperones and proteases. J. Mol. Neurosci. 2006, 30, 249–265. [Google Scholar] [CrossRef]
- Javid, B.; MacAry, P.A.; Lehner, P.J. Structure and Function: Heat Shock Proteins and Adaptive Immunity. J. Immunol. 2007, 179, 2035–2040. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, C.S.; Ryder, L.R.; Steino, A.; Hojrup, P.; Hansen, J.; Beyer, N.H.; Heegaard, N.H.; Houen, G. Dimerization and oligomerization of the chaperone calreticulin. Eur. J. Biochem. 2003, 270, 4140–4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-González, P.; Cabral-Miranda, F.; Hetz, C.; Osorio, F. Interplay Between the Unfolded Protein Response and Immune Function in the Development of Neurodegenerative Diseases. Front. Immunol. 2018, 9, 2541. [Google Scholar] [CrossRef]
- Bradl, M.; Lassmann, H. Oligodendrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 37–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischbach, F.; Nedelcu, J.; Leopold, P.; Zhan, J.; Clarner, T.; Nellessen, L.; Beissel, C.; van Heuvel, Y.; Goswami, A.; Weis, J.; et al. Cuprizone-induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damage-inducible transcript 3. Glia 2018. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.; Hossain, M. Oligodendrocyte specific mechanism of myelin thinning: Implications for neurodegenerative diseases. Front. Neurosci. 2021, 15, 663053. [Google Scholar] [CrossRef]
- Bauer, J.; Bradl, M.; Klein, M.; Leisser, M.; Deckwerth, T.L.; Wekerle, H.; Lassmann, H. Endoplasmic reticulum stress in PLP-overexpressing transgenic rats: Gray matter oligodendrocytes are more vulnerable than white matter oligodendrocytes. J. Neuropathol. Exp. Neurol. 2002, 61, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Matías-Guiu, J.A.; Oreja-Guevara, C.; Cabrera-Martín, M.N.; Moreno-Ramos, T.; Carreras, J.L.; Matías-Guiu, J. Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyloid-PET Imaging. Front. Neurol. 2016, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasgupta, A.; Zheng, J.; Perrone-Bizzozero, N.I.; Bizzozero, O.A. Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis. ASN Neuro 2013, 5, e00111. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004, 10, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, P.; Park, H.; Baumann, M.; Dunlop, J.; Frydman, J.; Kopito, R.; McCampbell, A.; Leblanc, G.; Venkateswaran, A.; Nurmi, A.; et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegen. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Popescu, B.F.; Pirko, I.; Lucchinetti, C.F. Pathology of multiple sclerosis: Where do we stand? Continuum 2013, 19, 901–921. [Google Scholar] [CrossRef] [PubMed]
- Bitsch, A.; Schuchardt, J.; Bunkowski, S.; Kuhlmann, T.; Brück, W. Acute axonal injury in multiple sclerosis: Correlation with demyelination and inflammation. Brain 2000, 123, 1174–1183. [Google Scholar] [CrossRef]
- Oluich, L.J.; Stratton, J.A.; Xing, Y.L.; Ng, S.W.; Cate, H.S.; Sah, P.; Windels, F.; Kilpatrick, T.J.; Merson, T.D. Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J. Neurosci. 2012, 32, 8317–8330. [Google Scholar] [CrossRef]
- Lee, J.Y.; Taghian, K.; Petratos, S. Axonal degeneration in multiple sclerosis: Can we predict and prevent permanent disability? Acta Neuropathol. Commun. 2014, 2, 97. [Google Scholar] [CrossRef]
- Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 2016, 54, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Skillbäck, T.; Zetterberg, H.; Blennow, K.; Mattsson, N. Cerebrospinal fluid biomarkers for Alzheimer disease and subcortical axonal damage in 5542 clinical samples. Alzheimer’s Res. Ther. 2013, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Papuć, E.; Rejdak, K. Increased CSF NFL in Non-demented Parkinson’s Disease Subjects Reflects Early White Matter Damage. Front. Aging Neurosci. 2020, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Mosleth, E.F.; Vedeler, C.A.; Liland, K.H.; McLeod, A.; Bringeland, G.H.; Kroondijk, L.; Berven, F.S.; Lysenko, A.; Rawlings, C.J.; Eid, K.E.-H.; et al. Cerebrospinal fluid proteome shows disrupted neuronal development in multiple sclerosis. Sci. Rep. 2021, 11, 4087. [Google Scholar] [CrossRef] [PubMed]
- Jankovska, E.; Lipcseyova, D.; Svrdlikova, M.; Pavelcova, M.; Kubala Havrdova, E.; Holada, K.; Petrak, J. Quantitative proteomic analysis of cerebrospinal fluid of women newly diagnosed with multiple sclerosis. Int. J. Neurosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Elkjaer, M.L.; Nawrocki, A.; Kacprowski, T.; Lassen, P.; Simonsen, A.H.; Marignier, R.; Sejbaek, T.; Nielsen, H.H.; Wermuth, L.; Rashid, A.Y.; et al. CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes. Sci. Rep. 2021, 11, 4132. [Google Scholar] [CrossRef]
- Szilagyi, G.T.; Nawrocki, A.M.; Eros, K.; Schmidt, J.; Fekete, K.; Elkjaer, M.L.; Hyrlov, K.H.; Larsen, M.R.; Illes, Z.; Gallyas, F., Jr. Proteomic changes during experimental de- and remyelination in the corpus callosum. PLoS ONE 2020, 15, e0230249. [Google Scholar] [CrossRef]
- Marcus, K.; Lelong, C.; Rabilloud, T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020, 8, 17. [Google Scholar] [CrossRef]
Sample | MS | EAE | CPZ |
---|---|---|---|
CSF | [59,60,61,63,64,65,66,67,68,69,70,71,72,73,75,77,78,82,83,84] | [99] | - |
Blood | [57,62,74,79,84,85] | [98] | [103] |
Tear | [80] | - | - |
Urine | [81] | - | - |
Cerebrum | [58,76] | [86,90,92,95] | [101,102,103,104,105] |
Cerebellum | - | [92] | - |
Brain stem | - | [92,100] | - |
Spinal cord | - | [87,88,89,92,93,94,95,96,97] | - |
Spleen | - | - | [103] |
Stool | - | [91] | - |
Canonical Proteins | Blood | Tear | Urine | CSF | Brain |
---|---|---|---|---|---|
14-3-3 protein | - | - | [81] | [67] | - |
Actin | [62] | - | - | [63,64,75] | - |
Albumin | [84] | [80] | - | [61,63,64,68,70,75] | - |
Alpha-1-antichymotrypsin | - | [80] | - | [60,64,66,67,69,78] | - |
Alpha-enolase | [62] | - | - | - | [76] |
Annexin | [57,62] | [80] | - | [77] | - |
Apolipoprotein | [79] | [80] | - | [59,60,63,64,69,70,71,72,75] | - |
Brevican core protein | - | - | - | [60] | [76] |
Clusterin | [79] | - | - | [64,69,70,75] | - |
Complement | [79,84] | [80] | - | [63,64,69,70,72,75,84] | - |
Contactin 1 | - | - | - | [69,70,78] | [76] |
Corticosteroid-binding globulin | [85] | - | - | [60] | - |
Creatine kinase | [62] | - | - | [77] | [58] |
Cystatin | [57] | [80] | - | [63,64,69,70,75,77] | - |
Fatty acid-binding protein | [57] | [80] | - | - | - |
Fibrinogen | [84] | - | - | [63,73,75,84] | - |
Gelsolin | [79] | - | - | [63,64,70,72] | - |
Glutathione S-transferase | [57] | [80] | - | - | - |
Hemoglobin | - | - | [81] | [75] | [58] |
Heat shock protein | [62] | [80] | - | - | - |
Immunoglobulin | [57] | [80] | [81] | [60,63,64,70,75,83] | - |
Lipocalin | - | [80] | - | [63] | - |
Neutral alpha-glucosidase | [62] | [80] | - | - | - |
Phosphatidylethanolamine binding protein | - | - | [81] | [63] | - |
Protein S100 | [57,85] | [80] | - | - | - |
Receptor-type tyrosine-protein phosphatase | [57] | - | [81] | - | - |
Secretogranin | [84] | - | - | [60,73,84] | - |
Vitamin D-binding protein | [79] | - | - | [60,63,64,70,75,82] | - |
Canonical Proteins | Gene ID | Molecular Function | Experimental Group and Sample Analysed | |||||
---|---|---|---|---|---|---|---|---|
MS | EAE | CPZ | ||||||
Methodology | TD | BU | TD | BU | TD | BU | ||
2′-5′-oligoadenylate synthase | Oasl2 | Metabolic | - | ↓[57]; blood | - | ↑[92]; spinal cord | - | ↑[101]; cerebrum |
5′(3′)-deoxyribonucleotidase | Nt5m | Metabolic | - | ↑[57]; blood | ↑[95]; cerebrum | ↓[92]; spinal cord | - | - |
Aconitate hydratase | Aco2 | Metabolic | - | - | ↑[100]; brain stem | ↓[94]; spinal cord | ↑[104]; cerebrum | - |
Acyl carrier protein | Ndufab1 | Metabolic | - | ↑[57]; blood | - | ↓[92]; spinal cord | - | - |
Acyl-CoA synthetase | Acsm1 | Metabolic | - | ↑[57]; blood | - | ↓[92]; spinal cord | - | ↑[102,105]; cerebrum |
Adenine phosphoribosyl transferase | Aprt | Metabolic | - | ↑[57]; blood | - | ↑[92]; spinal cord | - | - |
Aldehyde dehydrogenase | Aldh2 | Metabolic | ↑[80]; tear | - | - | ↑↓[92,94]; spinal cord | - | - |
Aldose reductase | Akr1b1 | Metabolic | - | - | - | ↑[92]; spinal cord | ↑↓[103]; cerebrum, spleen | - |
Apolipoprotein | Apo | Metabolic | ↑↓[59,63,64,71,72,75,79,80]; CSF, blood, tear | ↑↓[60,69,70]; CSF | ↑[88,89,95]; brain, spinal cord | ↑↓[92,94,97,99]; cerebrum, spinal cord | - | ↑[105]; cerebrum |
Arginase-1 | Arg1 | Metabolic | - | - | - | ↑[87]; spinal cord | ↑[103]; spleen | - |
Aspartate aminotransferase | Got1 | Metabolic | - | - | ↓[100]; brain stem | ↓[92,94]; spinal cord | ↓[104]; cerebrum | - |
ATP synthase subunit | Atp5 | Metabolic | - | - | ↑[100]; brain stem | ↑↓[92,94]; spinal cord | ↑[104]; cerebrum | - |
ATP-citrate synthase | Acly | Metabolic | - | - | - | ↓[92,94]; spinal cord | ↑[103]; cerebrum | - |
cAMP-dependent protein kinase | Prkar | Metabolic | - | ↑[57]; blood | - | ↓[92]; spinal cord | - | - |
Carbamoyl-phosphate synthase | Cps1 | Metabolic | - | - | - | ↓[92]; cerebrum | ↑[103]; spleen | - |
Carbonic anhydrase-2 | Ca2 | Metabolic | - | - | - | ↑↓[92]; cerebrum, cerebellum | - | ↓[105]; cerebrum |
Ceruloplasmin | CP | Metabolic | ↑↓[64,75]; CSF | ↑↓[60,70]; CSF | - | ↑[92,94,97]; spinal cord | - | - |
Alpha-enolase | Enoa | Metabolic | ↑[62]; blood | ↑[76]; cerebrum | ↑[88,100]; brain stem, spinal cord | ↓[94]; spinal cord | - | - |
Corticosteroid-binding globulin | Serpina6 | Metabolic | - | ↑[60,85]; CSF, blood | - | ↑[99]; spinal cord | - | - |
Creatine kinase | Ckb | Metabolic | ↑[62]; blood | ↑[58,77]; cerebrum, CSF | ↑↓[88,89,95]; spinal cord | ↓[94]; spinal cord | ↑[104]; cerebrum | ↑[102]; cerebrum |
Dihydrolipoyl lysine-residue succinyl transferase | Dlst | Metabolic | - | - | ↓[100]; brain stem | ↓[92]; spinal cord | ↓[103]; cerebrum | - |
Cytochrome C oxidase | Cox | Metabolic | - | ↓[58]; cerebrum | ↓[89,90]; cerebrum, spinal cord | ↑↓[92,94]; spinal cord | - | - |
Dual specificity phosphatase | Dusp | Metabolic | - | ↓[57]; blood | - | ↓[92]; spinal cord | - | - |
Dynactin | Dctn | Metabolic | ↑[62]; blood | - | - | ↑↓[92]; spinal cord | - | - |
Glucosamine-6-phosphate isomerase | Gnpda | Metabolic | - | ↑[57]; blood | - | ↑[92]; spinal cord | - | - |
Glutamate dehydrogenase | Glud | Metabolic | - | - | ↑↓[96,100]; brain stem, spinal cord | ↓[92,94]; spinal cord | ↑[104]; cerebrum | - |
Glutathione peroxidase | Gpx3 | Metabolic | ↑[63]; CSF | - | - | ↑[92]; spinal cord | - | - |
Glutathione S-transferase | GSTs | Metabolic | ↑[80]; tear | ↓[57]; blood | - | ↑↓[92,94]; spinal cord | - | - |
Glyceraldehyde-3-phosphate dehydrogenase | Gapdhs | Metabolic | - | - | ↑[88]; spinal cord | ↓[92]; spinal cord | - | ↓[105]; cerebrum |
Glycogen phosphorylase | Pygm | Metabolic | - | - | - | ↓[92,94]; spinal cord | - | ↑[105]; cerebrum |
Hexokinase | Hk | Metabolic | - | - | - | ↑↓[92,94]; spinal cord | ↓[104]; cerebrum | - |
Ubiquitin carboxyl terminal hydrolase | Ubp | Metabolic | ↓[75]; CSF | - | - | ↓[92]; cerebrum | - | - |
L-lactate dehydrogenase B chain | Ldhb | Metabolic | ↑[63]; CSF | - | ↑[100]; brain stem | ↓[94]; spinal cord | - | - |
Malate dehydrogenase | Mdh2 | Metabolic | - | - | ↑[88,89,100]; brain stem, spinal cord | ↓[92,94]; spinal cord | ↑[104]; cerebrum | - |
NAD-dependent protein deacetylase sirtuin-2 | Sirt2 | Metabolic | - | - | - | ↑↓[92,94]; spinal cord | ↓[104]; cerebrum | - |
NADH dehydrogenase [ubiquinone] 1 α | Ndufa | Metabolic | - | - | - | ↓[92]; spinal cord | ↑[104]; cerebrum | ↑[105]; cerebrum |
NADH dehydrogenase iron-sulfur protein | Ndufs | Metabolic | - | ↑[57]; blood | - | ↑↓[92,94]; spinal cord | ↑[104]; cerebrum | - |
Myeloblastin | Prtn3 | Metabolic | - | ↓[57]; blood | - | ↓[87]; blood | - | - |
Peptidyl-prolyl cis–trans isomerase | Ppi | Metabolic | - | ↓[57]; blood | - | ↑↓[92,94,97]; spinal cord | - | - |
Peroxiredoxin | Prdx | Metabolic | - | ↑[76]; cerebrum | ↑↓[89,95,100]; cerebrum, brain stem, spinal cord | ↑↓[92,94]; spinal cord | - | ↑[105]; cerebrum |
Phosphatidylinositol 3-kinase | Pik3r | Metabolic | - | ↑[57]; blood | - | ↓[92]; spinal cord | - | - |
Phosphoglycerate kinase 1 | Pgk1 | Metabolic | ↑[62]; blood | - | ↑[88]; spinal cord | ↓[94]; spinal cord | - | - |
Prostaglandin-H2 D-isomerase | Ptgds | Metabolic | ↑[66]; CSF | - | - | ↑[92]; spinal cord | - | - |
Protein phosphatase 1 regulatory subunit | PP1R | Metabolic | - | - | ↑↓[89,90]; cerebrum, spinal cord | ↑↓[92]; spinal cord | - | ↑[102]; cerebrum |
Pyruvate kinase isozymes M1/M2 | Kpym | Metabolic | ↑[62]; blood | - | - | ↑[94]; spinal cord | - | - |
Receptor-type tyrosine-protein phosphatase | Ptprj | Metabolic | - | ↓[57,81]; blood, urine | - | ↑↓[92]; spinal cord | - | - |
Paraoxonase/arylesterase 1 | Pon1 | Metabolic | - | ↑[60]; CSF | - | ↑[92]; spinal cord | - | - |
Superoxide dismutase | Sod | Metabolic | ↑↓[63,64,75,78]; CSF | - | ↓[95]; spinal cord | ↑↓[92,94]; cerebrum, spinal cord | - | ↓[105]; cerebrum |
Tyrosine-protein phosphatase non-receptor type | Ptpn | Metabolic | - | - | ↑[100]; brain stem | ↑[87,92]; spinal cord | ↑[103]; spleen | - |
Transketolase | Tkt | Metabolic | - | ↑[57]; blood | ↑[88]; spinal cord | - | - | ↓[105]; cerebrum |
Actin | Actg | Structural | ↑↓[62,63,64,75]; blood, CSF | - | ↑↓[88,95,100]; cerebrum, brain stem, spinal cord | ↑↓[92,94]; spinal cord | ↓[104]; cerebrum | - |
Cofilin 1 | Cof1 | Structural | ↓[62]; blood | - | - | ↓[94]; spinal cord | - | - |
Collagen alpha-1(I) chain | Co1a1 | Structural | - | ↓[81]; urine | - | ↑↓[92,94]; spinal cord | ↑[103]; spleen | ↑[102]; cerebrum |
Brevican core protein | Bcan | Structural | - | ↓[60,76]; CSF, cerebrum | - | ↓[92]; spinal cord | - | - |
Cadherin | Cad | Structural | - | ↑[67]; CSF | - | ↓[92]; spinal cord | - | - |
Cell adhesion molecule | Cadm1 | Structural | ↑[64]; CSF | - | - | ↓[92]; spinal cord | - | - |
Alpha-adducin | Add1 | Structural | - | ↑[57]; blood | - | ↓[92]; spinal cord | - | - |
ADP-ribosylation factor 4 | Arf4 | Structural | - | ↓[57]; blood | - | - | - | ↑[105]; cerebrum |
Coronin-1A | Coro1a | Structural | - | ↑[57]; blood | ↑[88]; spinal cord | - | - | - |
Cytokeratin | Krt | Structural | ↑[68]; CSF | - | ↓[90]; cerebrum | - | - | - |
Desmoplakin | Dsp | Structural | ↑[66]; CSF | - | ↑[100]; brain stem | - | - | - |
DnaJ homolog subfamily C member 1 | Dnajc | Structural | - | - | - | ↑↓[92]; spinal cord | ↑[103]; spleen | - |
Fibulin | Fbln | Structural | ↑↓[64,78]; CSF | - | - | ↑[92]; spinal cord | - | - |
Filamin A | Flna | Structural | - | ↑[57]; blood | - | ↑[92,97]; spinal cord | - | - |
Integrin | Itg | Structural | - | ↓[57]; blood | - | ↑↓[87,92]; blood, cerebrum, spinal cord | - | ↑[101]; cerebrum |
Intercellular adhesion molecule 1 | Icam1 | Structural | - | - | - | ↑[92]; spinal cord | - | ↑[101]; cerebrum |
Lysosome-associated membrane glycoprotein | Lamp | Structural | - | ↑[81]; urine | - | ↑[92]; spinal cord | - | - |
Lamin | Lmn | Structural | - | ↑[57]; blood | ↑[88]; spinal cord | ↑[92]; spinal cord | - | - |
Myosin | Myh | Structural | ↑[63]; CSF | - | ↓[90]; cerebrum | ↑[92,94,97]; spinal cord | ↑↓[103]; spleen | ↑[105]; cerebrum |
Prelamin-A/C | Lmna | Structural | - | - | - | ↑[92]; spinal cord | ↑[103]; spleen | - |
Ribosome-binding protein 1 | Rrbp1 | Structural | - | - | - | ↑[92]; spinal cord | ↓[103]; spleen | - |
Septin | Sept | Structural | ↓[62]; blood | - | ↑↓[89,90,95,100]; cerebrum, brain stem, spinal cord | ↑↓[92,94]; spinal cord | ↓[104]; cerebrum | - |
Transmembrane protein | Tmem | Structural | - | ↑[67]; CSF | - | ↑↓[92]; cerebrum, spinal cord | - | - |
Tubulin | Tub | Structural | ↑[62]; blood | - | ↑↓[88,95,100]; cerebrum, brain stem, spinal cord | ↑↓[92,94]; spinal cord | ↓[103]; spleen | - |
Thymosin beta-4 | Tmsb4x | Structural | - | ↓[73]; CSF | - | ↓[92]; cerebrum | - | - |
Vinculin | Vinc | Structural | ↓[62]; blood | ↓[57]; blood | - | ↑[92]; spinal cord | - | - |
Zinc finger protein | Zn | Structural | ↓[75]; CSF | ↓[82]; CSF | - | ↑↓[92]; cerebrum | - | - |
Annexin | Anxa | Immune response | ↑[62,80]; blood, tear | ↑↓[57,77]; blood, CSF | ↑[88,89,100]; brain stem, spinal cord | ↑↓[87,92,94,97]; blood, cerebrum, spinal cord | - | ↑[105]; cerebrum |
Complement (e.g., C3, C4) | C3 | Immune response | ↑↓[63,64,72,75,79,80]; CSF, blood, tear | ↑↓[69,70,84]; CSF, blood, cerebrum, cerebellum, brain stem, spinal cord | - | ↑↓[87,92,97,99]; spinal cord | ↓[103]; blood | - |
Dedicator of cytokinesis | Doc | Immune response | - | ↑[57]; blood | - | ↑↓[92]; cerebrum, spinal cord | - | - |
Gasdermin-D | Gsdmd | Immune response | - | ↓[57]; blood | - | ↓[92]; spinal cord | - | - |
Glial fibrillary acidic protein | Gfap | Immune response | - | ↑[76]; cerebrum | ↑[88,89,96,100]; brain stem, spinal cord | ↑[92,94]; spinal cord | ↑[104]; cerebrum | ↑[105]; cerebrum |
Immunoglobulin | Ig | Immune response | ↑↓[59,61,63,64,71,75,80]; CSF, tear | ↑↓[57,60,70,81,83]; blood, CSF, urine | - | ↑↓[92,97]; cerebrum, brain stem, spinal cord | - | ↑[102,105]; cerebrum |
Interferon-induced 35 kDa protein | IN35 | Immune response | ↑[62]; blood | - | - | ↑[92]; brain stem | - | - |
Macrophage migration inhibitory factor | Mif | Immune response | - | ↑[57]; blood | - | - | - | ↓[105]; cerebrum |
Monocyte differentiation antigen CD14 | CD14 | Immune response | - | ↓[70]; CSF | - | ↑[92]; spinal cord | - | - |
Neuronal cell adhesion molecule | Nrcam | Immune response | ↓[78]; CSF | ↑[67]; CSF | - | ↓[92,94]; spinal cord | - | - |
Nuclear factor NF-kappa-B | Nfkb | Immune response | - | ↑[57]; blood | - | ↑[92]; spinal cord | - | - |
Osteopontin | Spp1 | Immune response | - | ↑[67]; CSF | - | ↑[92]; spinal cord | - | ↑[101]; cerebrum |
Protein S100 | S100 | Immune response | ↑[80]; tear | ↑↓[57,85]; blood | - | - | - | ↑[102,105]; cerebrum |
Ras-related C3 botulinum toxin substrate 3 | Rac1 | Immune response | - | - | - | ↑↓[92]; spinal cord | - | ↑[105]; cerebrum |
Ras-related protein Rab | Rab | Immune response | - | - | - | ↑↓[92,94]; spinal cord | - | ↑[105]; cerebrum |
T-complex protein | Tcp | Immune response | - | - | ↑[89]; spinal cord | - | ↑[103]; spleen | - |
Tumor necrosis factor-α | Tnf | Immune response | - | ↑[57]; blood | - | ↑↓[92]; spinal cord | - | - |
Toll-like receptor | Tlr | Immune response | - | - | - | ↑[92]; spinal cord | - | ↑[101]; cerebrum |
Vimentin | Vim | Immune response | - | ↑[77]; CSF | ↑[89]; spinal cord | ↑[92,94,97]; cerebrum, spinal cord | - | ↑[105]; cerebrum |
Albumin | Alb | Blood-related | ↑↓[61,63,64,68,75,80]; CSF, tear | ↓[70,84]; CSF, blood | ↑[88,96,100]; cerebrum, brain stem, spinal cord | ↑↓[87,92,97]; spinal cord | - | - |
Alpha-2-HS-glycoprotein | Ahsg | Blood-related | - | ↓[70]; CSF | - | ↑[87]; spinal cord | - | - |
Antithrombin | Serpinc1 | Blood-related | ↑[64,75]; CSF | ↓[70]; CSF | ↑[91]; stool | - | - | - |
Beta-2-microglobulin | B2m | Blood-related | ↑[64,75,176]; CSF | ↑[82]; CSF | - | ↑[92]; spinal cord | - | - |
Chitinase-3 like protein 1 | Chi3l1 | Blood-related | ↑[64]; CSF | ↑[60]; CSF | - | ↑[87,92]; spinal cord | - | - |
Haptoglobin | Hp | Blood-related | ↑↓[63,64,72,75]; CSF | ↑[60,82]; CSF | ↑[90]; cerebrum | - | - | - |
Fibrinogen | Fgl1 | Blood-related | ↑↓[63,75]; CSF | ↑[73,84]; CSF, blood | ↑↓[89,95]; cerebrum, spinal cord | ↑↓[92,94,99]; cerebrum, spinal cord | - | - |
Hemoglobin | Hb | Blood-related | - | ↑[58,81]; cerebrum, urine | - | ↓[92,94]; cerebrum, spinal cord | - | - |
Hemopexin | Hpx | Blood-related | ↑[79]; blood | - | ↑[88,89]; spinal cord | ↑↓[92,94,97]; cerebrum, spinal cord | - | - |
Macroglobulin-α2 | A2m | Blood-related | ↑[63]; CSF | - | - | ↑[97]; spinal cord | - | - |
Plasminogen | Plmn | Blood-related | ↑↓[64,65,75]; CSF | ↑↓[60,77]; CSF | - | ↑[92]; spinal cord | - | - |
Prothrombin | F2 | Blood-related | ↑[64]; CSF | - | - | ↑[99]; spinal cord | - | - |
Serotransferrin | Tf | Blood-related | ↑[75]; CSF | ↑↓[69,70,77]; CSF | ↑[96,100]; brain stem, spinal cord | ↑↓[87,92,97]; blood, spinal cord | - | - |
Thrombospondin 1 | Thbs1 | Blood-related | - | ↑[85]; blood | - | ↑[87]; blood | - | - |
Transthyretin | Ttr | Blood-related | ↑↓[63,64,67,71,75]; CSF | - | - | ↓[92]; cerebrum | - | - |
Vitamin D binding protein | Gc | Blood-related | ↑↓[63,64,75,79]; CSF, blood | ↑↓[60,70,82]; CSF | - | ↑[87]; spinal cord | - | - |
Galectin-related protein | Lgalsl | Signalling | - | ↓[57]; blood | - | ↓[92]; spinal cord | - | - |
Guanine nucleotide binding protein | Gnao | Signalling | - | ↑↓[57]; blood | ↑↓[86,100]; cerebral microvessel, brain stem | ↑↓[92,94]; spinal cord | ↑[104]; cerebrum | ↓[105]; cerebrum |
LIM and senescent cell antigen-like domains 1 | Lims1 | Signalling | - | ↓[57]; blood | - | ↑[92]; spinal cord | - | - |
Myristoylated alanine-rich C-kinase substrate | Marcks | Signalling | - | - | - | ↑[92,94]; spinal cord | - | ↓[105]; cerebrum |
40S ribosomal protein S3 | Rps | Signalling | - | - | - | ↑[92,94,97]; spinal cord | - | ↑[105]; cerebrum |
AP2-associated protein kinase 1 | AAK1 | Signalling | - | ↑[57]; blood | - | ↓[92]; spinal cord | - | - |
Calcium/calmodulin-dependent protein kinase | Camk | Signalling | - | ↑[57]; blood | - | ↓[92,94]; spinal cord | ↓[104]; cerebrum | ↑[101,105]; cerebrum |
Protein kinase C | Prkc | Signalling | - | - | - | ↑↓[92]; cerebellum, spinal cord | - | ↑[105]; cerebrum |
Regulator of G-protein signalling | Rgs | Signalling | - | ↑[57]; blood | - | ↑[92]; cerebellum, spinal cord | - | - |
Thioredoxin | Thio | Signalling | ↑[62]; blood | - | - | ↑↓[92,94]; spinal cord | - | - |
Voltage-dependent anion-selective channel protein | Vdac2 | Signalling | - | - | - | ↑↓[92,94]; cerebrum, spinal cord | ↓[104]; cerebrum | - |
14-3-3 protein epsilon | Ywhae | Myelin component | - | ↑↓[67,81]; CSF, urine | ↑↓[89,90]; cerebrum, spinal cord | ↓[94]; spinal cord | ↓[104]; cerebrum | - |
Amyloid beta | App | Myelin component | ↑[64,79]; CSF, blood | ↓[70]; CSF | ↑[91,95]; spinal cord, stool | ↑↓[92]; cerebrum, spinal cord | - | - |
Contactin 1 | Cntn1 | Myelin component | ↑[78]; CSF | ↓[69,70,76]; CSF, cerebrum | - | ↓[92]; spinal cord | - | ↓[105]; cerebrum |
Myelin basic protein | Mbp | Myelin component | - | ↑[58]; cerebrum | - | ↑↓[87,92,94]; cerebrum, cerebellum, brain stem, spinal cord | - | ↓[105]; cerebrum |
Myelin proteolipid protein | Plp | Myelin component | - | - | - | ↑[94]; spinal cord | - | ↓[105]; cerebrum |
Myelin-associated glycoprotein | Mag | Myelin component | - | ↓[76]; cerebrum | - | ↓[92,94]; spinal cord | - | ↓[105]; cerebrum |
Myelin-associated oligodendrocytic basic protein | Mobp | Myelin component | - | - | - | ↓[94]; spinal cord | - | ↓[105]; cerebrum |
Neurofilament | Nef | Myelin component | ↑[75]; CSF | ↑[67]; CSF | ↑[88]; spinal cord | ↑↓[92,93,94,98]; blood, spinal cord | ↓[104]; cerebrum | - |
Alpha-1-antitrypsin | Serpina1a | Protease inhibitor | ↑↓[64,75]; CSF | - | ↑[91]; stool | - | - | - |
Angiotensinogen | Agt | Protease inhibitor | ↑↓[64,78]; CSF | - | - | ↑[92]; spinal cord | - | - |
Cystatin (e.g., A) | Cyta | Protease inhibitor | ↑↓[63,64,75,80]; CSF, tear | ↑↓[57,69,70,77]; blood, CSF | ↑[95]; spinal cord | ↑↓[92,97]; spinal cord | - | - |
Phosphatidylethanolamine binding protein | Pebp | Protease inhibitor | ↑[63]; CSF | ↓[81]; urine | ↑↓[88,90]; cerebrum, spinal cord | ↓[94]; spinal cord | - | - |
Serine proteinase inhibitor | Serpina | Protease inhibitor | ↓[71]; CSF | - | ↑[91]; stool | - | - | - |
Leukocyte elastase inhibitor A | Serpinb1a | Protease inhibitor | - | - | ↑[100]; brain stem | ↓[92]; spinal cord | ↑↓[103,104]; spleen, cerebrum | - |
Calnexin | Calx | Molecular chaperone | - | ↓[57]; blood | - | ↑[94]; spinal cord | - | - |
Calreticulin | Calr | Molecular chaperone | - | - | ↓[89,90]; cerebrum, spinal cord | ↑[92,94]; spinal cord | ↑[104]; cerebrum | - |
Clusterin | Clu | Molecular chaperone | ↑↓[64,75,79]; CSF, tear | ↑↓[69,70]; CSF | - | ↑[92]; spinal cord | - | - |
Heat shock protein | Hsp | Molecular chaperone | ↑[62,80]; blood, tear | - | ↑↓[88,89,95,100]; brain stem, spinal cord | ↑↓[87,92,94]; spinal cord | - | ↓[105]; cerebrum |
Protein disulfide-isomerase | Pdia | Molecular chaperone | ↑[62]; blood | ↓[57]; blood | ↑↓[88,96,100]; brain stem, spinal cord | ↑[92]; spinal cord | ↓[103]; spleen | - |
Ubiquitin-like protein ISG15 | Isg15 | Molecular chaperone | - | - | - | ↓[92]; spinal cord | - | ↑[101]; cerebrum |
Cathepsin | Cts | Protease | - | - | - | ↑[92,97]; cerebrum, spinal cord | - | ↑[105]; cerebrum |
Chromogranin-A | Chga | Protease | - | ↓[69]; CSF | - | ↓[92]; cerebrum | - | - |
Vitronectin | Vtn | Protease | ↑[64]; CSF | ↑[60]; CSF | - | ↑[92]; spinal cord | - | - |
Kallikrein 6 | Klk6 | Protease | ↑↓[63,64,65,75]; CSF | ↓[69,70]; CSF | - | ↑[92]; spinal cord | - | - |
Charged multivesicular body protein | Chmp4b | Exocytosis | - | ↑↓[57]; blood | - | ↓[92]; cerebrum, spinal cord | ↓[104]; cerebrum | - |
Clathrin light chain A | Cltc | Exocytosis | - | ↓[57]; blood | - | ↑↓[92,94]; spinal cord | - | - |
Syntaxin-binding protein | Stxbp | Exocytosis | - | ↑[57]; blood | ↑[96,100]; brain stem, spinal cord | ↓[92,94]; spinal cord | ↓[104]; cerebrum | - |
Vesicle-fusing ATPase | Nsf | Exocytosis | - | - | - | ↓[92,94]; spinal cord | ↓[104]; cerebrum | - |
Amphiphysin | Amph | Endocytosis | - | - | - | ↓[92]; spinal cord | - | ↑[105]; cerebrum |
Dynamin 1 | Dnm1 | Endocytosis | - | - | ↓[100]; spinal cord | ↓[92,94]; spinal cord | ↓[103,104]; cerebrum | - |
Elongation factor 2 | Eef2k | Translation | - | - | ↑[100]; spinal cord | - | - | ↑[105]; cerebrum |
Heterogeneous nuclear ribonucleoprotein | Hnrp | Translation | ↓[62]; blood | - | ↑[86] | ↑↓[92,94]; spinal cord | - | - |
Fatty acid-binding protein | Fabp5 | Transportation | ↑[80]; tear | ↓[57]; blood | ↓[89]; spinal cord | ↑↓[92,94]; cerebrum, spinal cord | - | - |
Sideroflexin | Sfxn | Transportation | - | - | - | ↓[92]; spinal cord | - | ↑[105]; cerebrum |
Signal transducer and activator of transcription | Stat | Transcription | - | - | - | ↑[87,92]; spinal cord | - | ↑[101]; cerebrum |
Paired amphipathic helix protein Sin3a | Sin3a | Transcription | - | ↑[57]; blood | - | ↑[92]; spinal cord | - | - |
Rab GDP dissociation inhibitor | Gdi | Neurotransmission | - | - | - | ↓[94]; spinal cord | ↓[104]; cerebrum | - |
Synaptosomal-associated protein | Snap | Neurotransmission | - | - | ↓[89,90]; cerebrum, spinal cord | ↓[92,94]; spinal cord | - | ↓[101]; cerebrum |
Copine | Cpne | Binding | - | ↑[57]; blood | - | ↑↓[92]; spinal cord | - | - |
Caspase | Casp | Apoptosis | - | ↑[77]; CSF | - | ↑[92]; spinal cord | - | - |
Canonical proteins | Molecular Function | PPMS | SPMS | RRMS | UMS | CIS | PMS |
---|---|---|---|---|---|---|---|
Albumin | Blood-related | ↑↓[80,84] | ↑↓[63,80,84] | ↑↓[61,63,64,68,70,75,80] | - | - | - |
Alpha 2-HS glycoprotein | Blood-related | - | ↑[65] | ↑↓[65,70,71] | - | ↓[71] | - |
Alpha-1-acid glycoprotein | Blood-related | - | - | ↓[69] | - | ↓[69] | ↑[79] |
Alpha-1B glycoprotein | Blood-related | - | - | ↑↓[70,75] | - | - | ↑[79] |
Alpha-2-macroglobulin | Blood-related | - | - | ↓[69,70] | - | ↓[69] | - |
Beta-2-microglobulin | Blood-related | ↑[65,82] | ↑[65] | ↑[64,75,82] | - | - | - |
Chitinase-3 like protein 1 | Blood-related | - | - | ↑[64] | - | ↑[60] | - |
Corticosteroid-binding globulin | Blood-related | - | - | - | ↑[85] | ↑[60] | - |
Fibrinogen | Blood-related | ↑[73,84] | ↑[63,84] | ↑↓[63,73,75,84] | - | ↑[73] | - |
Haptoglobin | Blood-related | ↓[80] | ↑↓[63,80] | ↑↓[63,64,72,75,80,83] | - | ↑[60] | - |
Pigment epithelium derived factor | Blood-related | - | ↑[63] | ↑↓[63,64,75] | - | - | - |
Plasminogen | Blood-related | ↓[65] | ↓[65] | ↑↓[64,75,77] | - | ↑[60] | - |
Platelet basic protein | Blood-related | - | - | ↓[57] | ↑[85] | - | - |
Serotransferrin | Blood-related | - | - | ↑↓[69,70,75,77] | - | ↑[69] | - |
Transferrin | Blood-related | ↓[65] | ↑↓[63,65] | ↑↓[63,64,71] | - | ↓[71] | - |
Transthyretin | Blood-related | - | ↑[63] | ↑↓[63,64,71,75] | - | ↓[71] | - |
Vitamin D binding protein | Blood-related | ↓[82] | ↑[63] | ↑↓[63,64,70,75,82] | - | ↑[60] | ↑[79] |
Alpha-enolase | Metabolic | - | - | ↑[62] | ↑[76] | - | - |
Apolipoprotein | Metabolic | ↑[80] | ↑[63,80] | ↑↓[59,63,64,69,71,72,75,80] | - | ↑↓[60,69,71] | ↑[79] |
Beta-Ala-His dipeptidase | Metabolic | - | - | ↓[70] | - | ↓[60] | - |
Ceruloplasmin | Metabolic | - | - | ↑[64,70,75] | - | ↓[60] | - |
Creatine kinase | Metabolic | - | - | ↑[62,77] | ↑[58] | - | - |
Glutathione S-transferase | Metabolic | ↑[80] | ↑[80] | ↑↓[57,80] | - | - | - |
Prostaglandin D2-synthase | Metabolic | - | ↑[63] | ↑[64,66] | - | - | - |
Receptor-type tyrosine-protein phosphatase | Metabolic | - | - | ↓[81] | ↓[57] | - | - |
Superoxide dismutase | Metabolic | - | ↑↓[63,78] | ↑↓[63,64,75,78] | - | - | - |
Annexin | Immune response | ↑[80] | ↑[80] | ↑↓[57,62,77,80] | - | - | - |
Complement | Immune response | ↑[80,84] | ↑[63,80,84] | ↑↓[63,64,69,70,72,75,80,84] | - | ↓[69] | - |
Immunoglobulin | Immune response | ↑[80] | ↑[63,80] | ↑↓[57,59,61,63,64,70,71,75,80,83] | ↓[81] | ↑↓[60,71] | - |
Lipocalin | Immune response | ↑[63,80] | ↑[80] | ↑[63,80] | - | - | - |
Neuronal cell adhesion molecule | Immune response | - | ↑↓[67,78] | ↓[78] | - | - | - |
Protein S100 | Immune response | ↑[80] | ↑[80] | ↑↓[57,80] | ↑[85] | - | - |
Actin | Structural | - | ↑[63] | ↑↓[62,63,64,75] | - | - | - |
Brevican core protein | Structural | - | - | - | ↓[76] | ↓[60] | - |
Fibulin 1 | Structural | - | ↓[78] | ↑↓[64,78] | - | - | - |
Gelsolin | Structural | - | ↑[63] | ↑↓[63,64,70,72] | - | - | ↑[79] |
Zinc finger protein | Structural | ↓[82] | - | ↓[75,82] | - | - | - |
Kallikrein 6 | Protease | ↓[65] | ↑↓[63,65] | ↑↓[63,64,69,70,75] | - | ↓[69] | - |
Vitronectin | Protease | - | - | ↑[64] | - | ↑[60] | - |
Antichymotrypsin | Protease inhibitor | ↑[80] | ↑[67,78,80] | ↑↓[64,66,69,78,80] | - | ↓[60,69] | - |
Angiotensinogen | Protease inhibitor | - | ↓[78] | ↑↓[64,78] | - | - | - |
Cystatin | Protease inhibitor | ↑[80] | ↑[63,80] | ↑↓[57,63,64,69,70,75,77,80] | - | ↓[69] | - |
Phosphatidylethanolamine binding protein | Protease inhibitor | - | ↑[63] | ↑[63] | ↓[81] | - | - |
14-3-3 protein | Myelin component | - | ↑[67] | - | ↓[81] | - | - |
Contactin 1 | Myelin component | - | ↑[78] | ↑↓[69,70,78] | ↓[76] | ↓[69] | - |
Clusterin | Molecular chaperone | - | - | ↑↓[64,69,70,75] | - | ↑[69] | ↑[79] |
Heat shock protein | Molecular chaperone | ↑[80] | ↑[80] | ↑[62,80] | - | - | - |
Fatty acid-binding protein | Transportation | ↑[80] | ↑[80] | ↑↓[57,80] | - | - | - |
Secretogranin | Exocytosis | ↓[73,84] | ↓[84] | ↓[73,84] | - | ↓[60,73] | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sen, M.K.; Almuslehi, M.S.M.; Shortland, P.J.; Mahns, D.A.; Coorssen, J.R. Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. Int. J. Mol. Sci. 2021, 22, 7377. https://doi.org/10.3390/ijms22147377
Sen MK, Almuslehi MSM, Shortland PJ, Mahns DA, Coorssen JR. Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. International Journal of Molecular Sciences. 2021; 22(14):7377. https://doi.org/10.3390/ijms22147377
Chicago/Turabian StyleSen, Monokesh K., Mohammed S. M. Almuslehi, Peter J. Shortland, David A. Mahns, and Jens R. Coorssen. 2021. "Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers" International Journal of Molecular Sciences 22, no. 14: 7377. https://doi.org/10.3390/ijms22147377
APA StyleSen, M. K., Almuslehi, M. S. M., Shortland, P. J., Mahns, D. A., & Coorssen, J. R. (2021). Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. International Journal of Molecular Sciences, 22(14), 7377. https://doi.org/10.3390/ijms22147377