Transcranial Magnetic Stimulation Improves Muscle Involvement in Experimental Autoimmune Encephalomyelitis
Abstract
:1. Introduction
2. Results
2.1. Mobility Scale
2.2. Biochemistry
2.2.1. Reduced/Oxidized Glutathione Ratio (GSH/GSSG)
2.2.2. Carbonylated Proteins
2.2.3. Lipoperoxidation Products
2.2.4. AlamarBlue
2.3. Histology
2.3.1. Muscular Atrophy
Extensor Digitorum Longus Muscle
Soleus Muscle
2.3.2. Neurogenic Lesions in Muscle Fibers
Extensor Digitorum Longus Muscle
Soleus Muscle
3. Discussion
4. Materials and Methods
4.1. Experimental Animals and Groups
- (i)
- Control group: comprised of animals without any treatment.
- (ii)
- Vehicle group: EAE was not induced in these rats, but they were inoculated with the vehicle (complete Freund adjuvant) and subsequently maintained without further manipulation until day 36.
- (iii)
- EAE group: EAE was induced on day 1 by subcutaneously injecting a single 100 µL dose of 150 µg of myelin oligodendrocyte glycoprotein ((MOG; fragment 35–55; Sigma, St. Louis, MO, USA) in phosphate-buffered saline (PBS) emulsified 1:1 in a complete Freund adjuvant (Sigma, USA)) into the dorsal base of the tail. To complete the adjuvant, 400 µg of heat-inactivated Mycobacterium tuberculosis (H37Ra, DIFCO, Franklin Lakes, NJ, USA) were also added.
- (iv)
- EAE + NTZ group: EAE was induced, and natalizumab (Tysabri®, Biogen Idec, Inc. and Elan Pharmaceuticals, Inc. Cambridge, MA, USA) was intraperitoneally administered in doses of 5 mg/kg body weight on days 15 and 25 [50].
- (v)
- EAE + TMS group: EAE was induced, and animals were treated with TMS. These animals were placed into cylindrical plastic cages designed to keep them immobile. Each coil consisted of 1000 turns of enameled copper wire (7 cm in diameter) contained in plastic boxes (measuring 10.5, 10.5, and 3.5 cm). Two Helmholtz coils generated the electromagnetic fields (Magnetoterapia S.A. de C.V., Mexico D.F., Mexico). The two coils were placed dorsally and ventrally to the head, leaving approximately 6 cm between each coil and the midpoint of the head. The stimulation consisted of an oscillatory magnetic field in the form of a sinusoidal wave with a frequency of 60 Hz and an amplitude of 0.7 mT, applied for two hours in the morning, once a day, 5 days a week (Monday to Friday), for 3 weeks (days 15 to 35), to simulate the application of TMS in clinical practice [51].
4.2. Clinical Scoring
4.3. Biochemistry
4.4. Histology
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stassart, R.M.; Helms, G.; Garea-Rodríguez, E.; Nessler, S.; Hayardeny, L.; Wegner, C.; Schlumbohm, C.; Fuchs, E.; Brück, W. A New Targeted Model of Experimental Autoimmune Encephalomyelitis in the Common Marmoset. Brain Pathol. 2016, 26, 452–464. [Google Scholar] [CrossRef]
- Medina-Fernández, F.J.; Luque, E.; Aguilar-Luque, M.; Agüera, E.; Feijóo, M.; García-Maceira, F.I.; Escribano, B.M.; Pascual-Leone, A.; Drucker-Colín, R.; Túnez, I. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in experimental autoimmune encephalomyelitis. Life Sci. 2017, 169, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Medina-Fernandez, F.J.; Escribano, B.M.; Agüera, E.; Aguilar-Luque, M.; Feijoo, M.; Luque, E.; Garcia-Maceira, F.I.; Pascual-Leone, A.; Drucker-Colin, R.; Tunez, I. Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radic. Res. 2017, 51, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Tasset, I.; Medina, F.J.; Jimena, I.; Agüera, E.; Gascón, F.; Feijóo, M.; Sánchez-López, F.; Luque, E.; Peña, J.; Drucker-Colín, R.; et al. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: Effects on neurotrophic factors and neuronal density. Neuroscience 2012, 209, 54–63. [Google Scholar] [CrossRef]
- Dalise, S.; Azzollini, V.; Chisari, C. Brain and Muscle: How Central Nervous System Disorders Can Modify the Skeletal Muscle. Diagnostics 2020, 10, 1047. [Google Scholar] [CrossRef] [PubMed]
- de Haan, A.; de Ruiter, C.J.; van Der Woude, L.H.; Jongen, P.J. Contractile properties and fatigue of quadriceps muscles in multiple sclerosis. Muscle Nerve 2000, 23, 1534–1541. [Google Scholar] [CrossRef]
- Garner, D.J.; Widrick, J.J. Cross-bridge mechanisms of muscle weakness in multiple sclerosis. Muscle Nerve 2003, 27, 456–464. [Google Scholar] [CrossRef]
- Cruickshank, T.M.; Reyes, A.R.; Ziman, M.R. A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine 2015, 94, e411. [Google Scholar] [CrossRef]
- Halabchi, F.; Alizadeh, Z.; Sahraian, M.A.; Abolhasani, M. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC Neurol. 2017, 17, 185. [Google Scholar] [CrossRef]
- Wens, I.; Dalgas, U.; Vandenabeele, F.; Krekels, M.; Grevendonk, L.; Eijnde, B.O. Multiple sclerosis affects skeletal muscle characteristics. PLoS ONE 2014, 9, e108158. [Google Scholar] [CrossRef]
- Hansen, D.; Wens, I.; Vandenabeele, F.; Verboven, K.; Eijnde, B.O. Altered signaling for mitochondrial and myofibrillar biogenesis in skeletal muscles of patients with multiple sclerosis. Transl. Res. 2015, 166, 70–79. [Google Scholar] [CrossRef]
- Park, S.; Nozaki, K.; Guyton, M.K.; Smith, J.A.; Ray, S.K.; Banik, N.L. Calpain inhibition attenuated morphological and molecular changes in skeletal muscle of experimental allergic encephalomyelitis rats. J. Neurosci. Res. 2012, 90, 2134–2145. [Google Scholar] [CrossRef] [PubMed]
- Luque, E.; Ruz-Caracuel, I.; Medina, F.J.; Leiva-Cepas, F.; Agüera, E.; Sánchez-López, F.; Lillo, R.; Aguilar-Luque, M.; Jimena, I.; Túnez, I.; et al. Skeletal muscle findings in experimental autoimmune encephalomyelitis. Pathol. Res. Pract. 2015, 21, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Jimena, I.; Tasset, I.; López-Martos, R.; Rubio, A.J.; Luque, E.; Montilla, P.; Peña, J.; Túnez, I. Effects of magnetic stimulation on oxidative stress and skeletal muscle regeneration induced by mepivacaine in rat. Med. Chem. 2009, 5, 44–49. [Google Scholar] [CrossRef]
- Stölting, M.N.; Arnold, A.S.; Haralampieva, D.; Handschin, C.; Sulser, T.; Eberli, D. Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle Nerve 2016, 53, 598–607. [Google Scholar] [CrossRef]
- Chang, C.W.; Lien, I.N. Tardy effect of neurogenic muscular atrophy by magnetic stimulation. Am. J. Phys. Med. Rehabil. 1994, 73, 275–279. [Google Scholar] [CrossRef]
- Musarò, A.; Dobrowolny, G.; Cambieri, C.; Onesti, E.; Ceccanti, M.; Frasca, V.; Pisano, A.; Cerbelli, B.; Lepore, E.; Ruffolo, G.; et al. Neuromuscular magnetic stimulation counteracts muscle decline in ALS patients: Results of a randomized, double-blind, controlled study. Sci. Rep. 2019, 9, 2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Ito, T.; Okada, Y.; Hiraoka, T.; Hanayama, K.; Tsubahara, A. Preventive Effects of Repetitive Peripheral Magnetic Stimulation on Muscle Atrophy in the Paretic Lower Limb of Acute Stroke Patients: A Pilot Study. Prog. Rehabil. Med. 2020, 5, 20200008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, K.; Sakamoto, J.; Honda, A.; Honda, Y.; Kataoka, H.; Nakano, J.; Okita, M. Effects of Twitch Contraction Induced by Magnetic Stimulation on Expression of Skeletal Muscle Fibrosis Related Genes and Limited Range of Motion in Rats. Am. J. Phys. Med. Rehabil. 2019, 98, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Khoy, K.; Mariotte, D.; Defer, G.; Petit, G.; Toutirais, O.; Le Mauff, B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front. Immunol. 2020, 11, 549842. [Google Scholar] [CrossRef]
- Bannerman, P.G.; Hahn, A.; Ramirez, S.; Morley, M.; Bönnemann, C.; Yu, S.; Zhang, G.X.; Rostami, A.; Pleasure, D. Motor neuron pathology in experimental autoimmune encephalomyelitis: Studies in THY1-YFP transgenic mice. Brain 2005, 128, 1877–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recks, M.S.; Stormanns, E.R.; Bader, J.; Arnhold, S.; Addicks, K.; Kuerten, S. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Clin. Immunol. 2013, 149, 32–45. [Google Scholar] [CrossRef]
- Matsumoto, H.; Hanajima, R.; Terao, Y.; Ugawa, Y. Magnetic-motor-root stimulation: Review. Clin. Neurophysiol. 2013, 124, 1055–1067. [Google Scholar] [CrossRef]
- Soellner, I.A.; Rabea, J.; Mauri, V.; Kaufmann, J.; Addicks, K.; Kuerten, S. Differential aspects of immune cell infiltration and neurodegeneration in acute and relapse experimental autoimmune encephalomyelitis. Clin. Immunol. 2013, 149, 519–529. [Google Scholar] [CrossRef]
- Subramaniam, S.R.; Federoff, H.J. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease. Front. Aging Neurosci. 2017, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Dong, Y.; Li, Y.; Yang, B.; Tucker, L.; Zhao, N.; Brann, D.W.; Yan, X.; Hu, S.; Zhang, Q. Beneficial Effects of Theta-Burst Transcranial Magnetic Stimulation on Stroke Injury via Improving Neuronal Microenvironment and Mitochondrial Integrity. Transl. Stroke Res. 2020, 11, 450–467. [Google Scholar] [CrossRef] [PubMed]
- Magistris, M.R.; Rosler, K.M.; Truffert, A.; Myers, J.P. Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain 1998, 121, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Medina-Fernandez, F.J.; Escribano, B.M.; Padilla-del-Campo, C.; Drucker-Colín, R.; Pascual-Leone, A.; Túnez, I. Transcranial magnetic stimulation as an antioxidant. Free Radic. Res. 2018, 52, 381–389. [Google Scholar] [CrossRef]
- Talmadge, R.J. Myosin heavy chain isoform expression following reduced neu-romuscular activity: Potential regulatory mechanisms. Muscle Nerve 2000, 23, 661–679. [Google Scholar] [CrossRef]
- Banker, B.Q.; Engel, A.G. Basic reactions of muscle. In Myology, 3rd ed.; Engel, A.G., Franzini-Armstrong, C., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 691–747. [Google Scholar]
- Jesse, C.M.; Bushuven, E.; Tripathi, P.; Chandrasekar, A.; Simon, C.M.; Drepper, C.; Yamoah, A.; Dreser, A.; Katona, I.; Johann, S.; et al. ALS-associated endoplasmic reticulum proteins in denervated skeletal muscle: Implications for motor neuron disease pathology. Brain Pathol. 2017, 27, 781–794. [Google Scholar] [CrossRef]
- Chou, S.M. Core-genic neuromyopathies. In Churchill Livingstone; Heffner, R.R., Jr., Ed.; Muscle Pathology: New York, NY, USA, 1984; pp. 83–108. [Google Scholar]
- Nonaka, K.; Une, S.; Tatsuta, N.; Ito, K.; Akiyama, J. Changes in antioxidant enzymes and lipid peroxidation in extensor digitorum longus muscles of streptozotocin-diabetic rats may contribute to muscle atrophy. Acta Physiol. Hung. 2014, 101, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Pigna, E.; Greco, E.; Morozzi, G.; Grottelli, S.; Rotini, A.; Minelli, A.; Fulle, S.; Adamo, S.; Mancinelli, R.; Bellezza, I.; et al. Denervation does not induce muscle atrophy through oxidative stress. Eur. J. Transl. Myol. 2017, 27, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [Green Version]
- Mensch, A.; Zierz, S. Cellular Stress in the Pathogenesis of Muscular Disorders-From Cause to Consequence. Int. J. Mol. Sci. 2020, 21, 5830. [Google Scholar] [CrossRef]
- Terrill, J.R.; Radley-Crabb, H.G.; Iwasaki, T.; Lemckert, F.A.; Arthur, P.G.; Grounds, M.D. Oxidative stress and pathology in muscular dystrophies: Focus on protein thiol oxidation and dysferlinopathies. FEBS J. 2013, 280, 4149–4164. [Google Scholar] [CrossRef]
- Fulle, S.; Pietrangelo, T.; Mancinelli, R.; Saggini, R.; Fano, G. Specific correlations between muscle oxidative stress and chronic fatigue syndrome: A working hypothesis. J. Muscle Res. Cell Motil. 2007, 28, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.G.; Banker, B.Q. Ultrastructural changes in diseased muscle. In Myology, 3rd ed.; Engel, A.G., Franzini-Armstrong, C., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 749–887. [Google Scholar]
- O’Leary, M.F.; Vainshtein, A.; Carter, H.N.; Zhang, Y.; Hood, D.A. Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. Am. J. Physiol. Cell Physiol. 2012, 303, C447–C454. [Google Scholar] [CrossRef] [Green Version]
- Filippin, L.I.; Cuevas, M.J.; Lima, E.; Marroni, N.M.; Gonzalez-Gallego, J.; Xavier, R.M. Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide 2011, 24, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T.; Sadayappan, S. Featured characteristics and pivotal roles of satellite cells in skeletal muscle regeneration. J. Muscle Res. Cell Motil. 2020, 41, 341–353. [Google Scholar] [CrossRef]
- Schiaffino, S.; Reggiani, C.; Akimoto, T.; Blaauw, B. Molecular Mechanisms of Skeletal Muscle Hypertrophy. J. Neuromuscul. Dis. 2021, 8, 169–183. [Google Scholar] [CrossRef]
- Farup, J.; Dalgas, U.; Keytsman, C.; Eijnde, B.O.; Wens, I. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients. Front. Physiol. 2016, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Wens, I.; Dalgas, U.; Verboven, K.; Kosten, L.; Stevens, A.; Hens, N.; Eijnde, B.O. Impact of high intensity exercise on muscle morphology in EAE rats. Physiol. Res. 2015, 64, 907–923. [Google Scholar] [CrossRef]
- Han, T.R.; Shin, H.I.; Kim, I.S. Magnetic stimulation of the quadriceps femoris muscle: Comparison of pain with electrical stimulation. Am. J. Phys. Med. Rehabil. 2006, 85, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Mosole, S.; Carraro, U.; Kern, H.; Loefler, S.; Fruhmann, H.; Vogelauer, M.; Burggraf, S.; Mayr, W.; Krenn, M.; Paternostro-Sluga, T.; et al. Long-term high-level exercise promotes muscle reinnervation with age. J. Neuropathol. Exp. Neurol. 2014, 73, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Piasecki, M.; Ireland, A.; Piasecki, J.; Degens, H.; Stashuk, D.W.; Swiecicka, A.; Rutter, M.K.; Jones, D.A.; McPhee, J.S. Long-term endurance and power training may facilitate motor unit size expansion to compensate for declining motor unit numbers in older age. Front. Physiol. 2019, 10, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalgas, U.; Langeskov-Christensen, M.; Stenager, E.; Riemenschneider, M.; Hvid, L.G. Exercise as Medicine in Multiple Sclerosis-Time for a Paradigm Shift: Preventive, Symptomatic, and Disease-Modifying Aspects and Perspectives. Curr. Neurol. Neurosci. Rep. 2019, 19, 88. [Google Scholar] [CrossRef] [PubMed]
- Escribano, B.M.; Medina-Fernández, F.J.; Aguilar-Luque, M.; Agüera, E.; Feijoo, M.; Garcia-Maceira, F.I.; Lillo, R.; Vieyra-Reyes Giraldo, P.A.I.; Luque, E. Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model. Neurotherapeutics 2017, 14, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Medina-Fernandez, F.J.; Escribano, B.M.; Luque, E.; Caballero-Villarraso, J.; Gomez-Chaparro, J.L.; Feijoo, M.; Garcia-Maceira, F.I.; Pascual-Leone, A.; Drucker-Colin, R.; Tunez, I. Comparative of transcranial magnetic stimulation and other treatments in experimental autoimmune encephalomyelitis. Brain Res. Bull. 2018, 137, 128–145. [Google Scholar] [CrossRef]
- Perez-Nievas, B.G.; Garcia-Bueno, B.; Madrigal, J.L.; Leza, J.C. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: Mechanisms implicated. J. Neuroinflamm. 2010, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Montilla, P.; Tunez, I.; Munoz, M.C.; Salcedo, M.; Feijoo, M.; Munoz-Castaneda, J.R.; Bujalance, I. Effect of glucocorticoids on 3-nitropropionic acid-induced oxidative stress in synaptosomes. Eur. J. Pharmacol. 2004, 488, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, V.; Sewry, C.A.; Oldfords, A. Muscle Biopsy: A Practical Approach, 5th ed.; Elsevier: London, UK, 2021; pp. 140–182. [Google Scholar]
GSH/GSSG | GSH (nMol/mg Protein × 10) | GSSG (nMol/mg Protein × 10) | ||||
---|---|---|---|---|---|---|
EDL | Soleus | EDL | Soleus | EDL | Soleus | |
Control | 3.71 ± 0.32 | 3.83 ± 0.22 | 0.0098 ± 0.00015 | 0.0102 ± 0.00078 | 0.0027 ± 0.00034 | 0.0027 ± 0.00041 |
Vehicle | 3.68 ± 0.26 | 3.99 ± 0.35 | 0.0098 ± 0.00026 | 0.0104 ± 0.00093 | 0.0028 ± 0.00036 | 0.0026 ± 0.00051 |
EAE | 0.63 ±0.11 *,† | 0.51 ±0.07 *,† | 0.0047 ± 0.00017 *,† | 0.0043 ± 0.00031 *,† | 0.0075 ± 0.00041 *,† | 0.0085 ± 0.00059 *,† |
EAE + NTZ | 1.35 ± 0.14 *,†,§ | 1.25 ± 0.25 *,†,§ | 0.0073 ± 0.00037 *,†,§ | 0.0064 ± 0.00037 *,†,§ | 0.0054 ± 0.00042 *,†,§ | 0.0058 ± 0.00042 *,†,§ |
EAE + TMS | 3.23 ± 0.48 §,# | 3.18 ± 0.21 *,†,§,# | 0.0097 ± 0.00055 §,# | 0.0102 ± 0.00086 §,# | 0.0030 ± 0.00031 §,# | 0.0032 ± 0.00034 §,# |
CP (nMol/mg Protein) | LPO (nMol/mg Protein) | |||
---|---|---|---|---|
EDL | Soleus | EDL | Soleus | |
Control | 0.015 ± 0.002 | 0.014 ± 0.03 | 0.125 ± 0.012 | 0.121 ± 0.007 |
Vehicle | 0.016 ± 0.001 | 0.015 ±0.002 | 0.117 ± 0.010 | 0.111 ± 0.015 |
EAE | 0.068 ± 0.003 *,† | 0.059 ±0.004 *,† | 0.219 ± 0.034 *,† | 0.288 ± 0.018 *,† |
EAE + NTZ | 0.032 ± 0.003 *,†,§ | 0.038 ± 0.002 *,†,§ | 0.154 ± 0.006 | 0.303 ± 0.031 *,† |
EAE + TMS | 0.017 ± 0.002 §,# | 0.013 ± 0.002 §,# | 0.131 ± 0.012 § | 0.126 ± 0.014 §,# |
AB Fluorescence (Arbritary Units) | ||
---|---|---|
EDL | Soleus | |
Control | 225.20 ± 14.97 | 240.60 ± 23.00 |
Vehicle | 213.20 ± 22.68 | 213.20 ± 22.69 |
EAE | 98.20 ± 9.44 *,† | 98.20 ± 9.45 *,† |
EAE + NTZ | 161.00 ± 22.12 *,†,§ | 168.33 ± 11.14 *,†,§ |
EAE + TMS | 219.80 ± 14.16 §,# | 218.67 ± 17.62 §,# |
Cross-Sectional Area (µm2) | Fiber Number/Area | % Angulated Atrophic Fibers | |||
---|---|---|---|---|---|
Type 1 Fiber | Type 2a Fiber | Type 2b Fiber | |||
Control | 926.64 ± 84.07 | 1175.61 ± 178.27 | 2139.04 ± 191.42 | 28.33 ± 2.23 | 0 |
Vehicle | 836.39 ± 101.81 | 1142.05 ± 128.09 | 2065.31 ±210.03 | 29.28 ± 3.53 | 0 |
EAE | 460.96 ± 71.50 *,† | 605.12 ± 85.3 *,† | 1462.07 ± 402.08 * | 45.01 ± 6.3 *,† | 26.03 ± 4.30 *,† |
EAE + NTZ | 640.53 ± 58.53 *,†,§ | 1096.35 ± 140.22 § | 1504.12 ± 242.21 *,† | 37.62 ± 4.34 *,† | 7.16 ± 2.18 *,†,§ |
EAE + TMS | 827.03 ± 89.67 §,# | 1200.23 ± 164.69 § | 1952.91 ± 196.62 §,# | 29.75 ±2,41 §,# | 0.92 ± 1.80 *,†,§,# |
Cross-Sectional Area (µm2) | Fiber Number/Area | % Angulated Atrophic Fiber | % Fiber Type 1 | % Fiber Type 2 | % Intermediate Fiber Type | |||
---|---|---|---|---|---|---|---|---|
Fiber Type 1 | Fiber Type 2 | Intermediate Fiber Type | ||||||
Control | 1845.28 ± 166.80 | 1717.23 ± 244.85 | 0 | 41.11 ± 3.79 | 0 | 91.11 ± 2.31 | 8.89 ± 1.23 | 0 |
Vehicle | 1689.23 ± 147.16 | 1629.24 ± 194.54 | 0 | 39.29 ± 4.21 | 0 | 89.41 ± 2.33 | 10.58 ± 2.20 | 0 |
EAE | 1322.90 ± 132. 71 *,† | 1032. 49 ± 132.83 *,† | 1125. 02 ± 174.33 *,† | 87.31± 7.80 *,† | 26.79 ± 3.22 *,† | 60.15 ± 3.94 *,† | 31.64 ± 2.78 *,† | 8.21 ± 1.12 *,† |
EAE + NTZ | 1450.31 ± 173. 02 | 1422.26 ± 198.03 § | 1486.69 ± 204.74 *,† | 54.22 ± 4.31 *,†,§ | 20.29 ±3.71 *,† | 68.79 ± 2.68 *,†,§ | 26.01 ± 3.29 *,† | 6.10 ± 0.40 *,†,§ |
EAE + TMS | 1737.35 ± 152.04 § | 1634.09 ± 234.41 § | 1696.27 ± 237. 39 *,†,§ | 41.71 ± 4.32 §,# | 9.43 ± 4.12 *,†,§,# | 81.36 ± 2.12 *,†,§,# | 14.61 ± 2.71 *,§,# | 2. 03 ± 0.32 *,†,§,# |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Toledo, M.A.; Luque, E.; Ruz-Caracuel, I.; Agüera, E.; Jimena, I.; Peña-Amaro, J.; Tunez, I. Transcranial Magnetic Stimulation Improves Muscle Involvement in Experimental Autoimmune Encephalomyelitis. Int. J. Mol. Sci. 2021, 22, 8589. https://doi.org/10.3390/ijms22168589
Peña-Toledo MA, Luque E, Ruz-Caracuel I, Agüera E, Jimena I, Peña-Amaro J, Tunez I. Transcranial Magnetic Stimulation Improves Muscle Involvement in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences. 2021; 22(16):8589. https://doi.org/10.3390/ijms22168589
Chicago/Turabian StylePeña-Toledo, Maria Angeles, Evelio Luque, Ignacio Ruz-Caracuel, Eduardo Agüera, Ignacio Jimena, Jose Peña-Amaro, and Isaac Tunez. 2021. "Transcranial Magnetic Stimulation Improves Muscle Involvement in Experimental Autoimmune Encephalomyelitis" International Journal of Molecular Sciences 22, no. 16: 8589. https://doi.org/10.3390/ijms22168589
APA StylePeña-Toledo, M. A., Luque, E., Ruz-Caracuel, I., Agüera, E., Jimena, I., Peña-Amaro, J., & Tunez, I. (2021). Transcranial Magnetic Stimulation Improves Muscle Involvement in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 22(16), 8589. https://doi.org/10.3390/ijms22168589