Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease
Abstract
:1. Introduction
2. Glucose Metabolism in the Brain
2.1. Human Glucose Transporters
2.1.1. Characteristics of Human Sodium-Independent Glucose Transporters, GLUT Proteins
2.1.2. Characteristics of Human Sodium-Dependent Glucose Transporters, SGLT Proteins
2.1.3. Characteristics of Human SWEET Protein
3. Changes in Glucose Metabolism in Alzheimer’s Disease
3.1. Expression of Glucose Transporters in Alzheimer’s Disease
3.2. Metabolic Disorders in Alzheimer’s Disease
4. Alzheimer’s Disease as Type 3 Diabetes Mellitus
4.1. The Role of Insulin in the Central Nervous System
4.2. Impairment of the Brain Insulin/IGF Signaling Pathway
5. Brain Glucose Transporters as Targets for Alzheimer’s Disease
5.1. Role of Brain Glucose Transporters
5.1.1. Antidiabetic Drugs in AD
Metformin
Inhibitors of SGLT2
GLP-1 Agonist
Insulin
5.1.2. Other Compounds in Therapy of AD
5.2. Other Suggested Therapeutics for AD Treatment
5.2.1. Small Interfering RNAs
5.2.2. Liposomes
5.2.3. Regular Exercise
6. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Dementia: A Public Health Priority; WHO Library: Geneva, Switzerland, 2012. [Google Scholar]
- Hoyer, S. The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: An update. J. Neural Transm. 2002, 109, 341–360. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Y.; Zhang, B.; Gong, C.-X. Deregulation of brain insulin signaling in Alzheimer’s disease. Neurosci. Bull. 2014, 30, 282–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunnane, S.C.; Nugent, S.; Roy, M.; Courchesne-Loyer, A.; Croteau, E.; Tremblay, S.; Castellano, A.; Pifferi, F.; Bocti, C.; Paquet, N.; et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011, 27, 3–20. [Google Scholar] [CrossRef] [Green Version]
- De la Monte, S.M.; Tong, M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem. Pharmacol. 2014, 88, 548–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koepsell, H. Glucose transporters in brain in health and disease. Pflügers Arch. Eur. J. Physiol. 2020, 472, 1299–1343. [Google Scholar] [CrossRef] [PubMed]
- Matioli, M.N.P.S.; Nitrini, R. Mechanisms linking brain insulin resistance to Alzheimer’s disease. Dement. Neuropsychol. 2015, 9, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyer, S. Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol. Chem. Neuropathol. 1992, 16, 207–224. [Google Scholar] [CrossRef]
- Mukherji, S.; Jacobson, A. Effects of Glucose on the Brain (revision number 6). Semant. Sch. 2014, 6. [Google Scholar] [CrossRef]
- Wright, E.M. Glucose transport families SLC5 and SLC50. Mol. Asp. Med. 2013, 34, 183–196. [Google Scholar] [CrossRef]
- Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 2013, 34, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Uldry, M.; Ibberson, M.; Horisberger, J.-D.; Rider, B.M.; Thorens, B. Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J. 2001, 20, 4467–4477. [Google Scholar] [CrossRef]
- Uldry, M.; Thorens, B. The SLC2 family of hexose and polyol transporters. Pflügers Arch. 2004, 447, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joost, H.-G.; Thorens, B. The extent GLUT-family of sugar-polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol. 2001, 18, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Szablewski, L. Glucose transporters in brain: In health and in Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 55, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Szablewski, L. Expression of Glucose Transporters in Brain. In Human Glucose Transporters in Health and Diseases; Szablewski, L., Ed.; Cambridge Scholar Publishing, Lady Stephenson Library: Newcastle upon Tyne, UK, 2019; pp. 6–61. [Google Scholar]
- Vannucci, S.I.; Maher, F.; Simpson, I.A. Glucose transporter proteins in brain: Delivery of glucose to neurons and glia. Glia 1997, 21, 2–21. [Google Scholar] [CrossRef]
- Shah, K.; DeSilva, S.; Abbruscato, T. The role of glucose transporter in brain disease: Diabetes and Alzheimer’s disease. Int. J. Mol. Sci. 2012, 13, 12629–12655. [Google Scholar] [CrossRef] [PubMed]
- Šalkovic-Petrišic, M.; Riederer, P. Brain glucose transporter protein 2 and sporadic Alzheimer’s disease. Trans. Neurosci. 2010, 1, 200–206. [Google Scholar] [CrossRef]
- Manolescu, A.; Witkowska, K.; Kinnaird, T.; Cheeseman, C. Facilitated hexose transporters: New perspectives on form and function. Physiology 2007, 22, 234–240. [Google Scholar] [CrossRef]
- Garcia-Robles, M.A.; Giovanetti, C.M.; Balmaceda-Aguilera, C.; de Castro, T.M.; Pastor, P.; Montecinos, H.; Reinicke, K.; Zuñiga, F.A.; Vera, J.C.; Onate, S.; et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J. Neurochem. 2003, 86, 709–724. [Google Scholar] [CrossRef]
- Young, J.K.; McKenzie, J.C. GLUT2 immunoreactivity in Gomori-positive astrocytes of the hypothalamus. J. Histochem. Cytochem. 2004, 52, 1519–1524. [Google Scholar] [CrossRef] [Green Version]
- Piroli, G.G.; Grillo, C.A.; Reznikov, L.R.; Reagan, L.P. Expression and functional activities of glucose transporters in the central nervous system. In Handbook of Neurochemistry and Molecular Neurobiology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 388–404. [Google Scholar]
- Arluison, A.; Quinon, M.; Thorens, B.; Leloup, C.; Pénicaud, L. Immunohistochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II Electron microscopic study. J. Chem. Neuroanat. 2004, 28, 137–146. [Google Scholar] [CrossRef]
- Pénicaud, L.; Leloup, C.; Lorsignol, A.; Alquier, T.; Guillod, E. Brain glucose sensing mechanism and glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 539–543. [Google Scholar] [CrossRef]
- Maher, F.; Vannucci, S.J.; Simpson, I.A. Glucose transporter proteins in brain. FASEB J. 1994, 8, 1003–1011. [Google Scholar] [CrossRef]
- Mantych, G.J.; James, D.E.; Chung, H.D.; Devaskar, S.U. Cellular localization and characterization of Glut3 glucose transporter isoform in human brain. Endocrinology 1992, 131, 1270–1278. [Google Scholar] [CrossRef]
- Gerhart, D.Z.; Broderius, M.A.; Borson, N.D.; Drewes, L.R. Neurons and microvessels express the brain glucose transporter protein GLUT3. Proc. Natl. Acad. Sci. USA 1992, 89, 733–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, U.; Heese, K. Cardiovascular dementia—A different perspective. Open Biochem. J. 2010, 4, 29–52. [Google Scholar] [CrossRef] [PubMed]
- Uemura, E.; Greenlee, H.W. Insulin regulates neuronal glucose uptake by promoting translocation of glucoe transporter GLUT3. Exp. Neurol. 2006, 198, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Lelop, C.; Arluison, M.; Kassis, N.; Lepetit, N.; Cartier, N.; Ferré, P.; Pénicaud, L. Discrete brain areas express the insulin-responsible glucose transporter GLUT4. Mol. Brain Res. 1996, 38, 45–53. [Google Scholar] [CrossRef]
- Kobayashi, M.; Nikami, H.; Morimatsu, M.; Saito, M. Expression and localization of insulin-regulatable glucose transporter (GLUT4) in rat brain. Neurosci. Lett. 1996, 213, 103–106. [Google Scholar] [CrossRef]
- Vannucci, S.J.; Koehler-Stec, E.M.; Li, K.; Reynolds, T.H.; Clark, R.; Simpson, I.A. GLUT4 glucose transporter expression in rodent brain. Effect of diabetes. Brain Res. 1998, 797, 1–11. [Google Scholar] [CrossRef]
- Reagan, L.P. Glucose, stress and hippocampal neuronal vulnerability. Int. Rev. Neurobiol. 2002, 51, 289–324. [Google Scholar] [PubMed]
- El Messari, S.; Leloup, C.; Quignon, M.; Brisorqueil, M.J.; Penicaud, L.; Arluison, M. Immunocytochemical localization of the insulin-responsible glucose transporter 4 (Glut4) in the rat central nervous system. J. Comp. Neurol. 1998, 399, 492–512. [Google Scholar] [CrossRef]
- Payene, J.; Maher, F.; Simpson, I.; Mattice, L.; Davies, P. Glucose transporter Glut5 expression in microglial cells. Glia 1997, 21, 327–331. [Google Scholar] [CrossRef]
- Mantych, G.J.; James, D.E.; Devaskar, S.V. Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in human blood-brain barrier. Endocrinology 1993, 132, 35–40. [Google Scholar] [CrossRef]
- Nualart, F.; Godoy, A.; Reinicke, K. Expression of the hexose transporters GLUT1 and GLUT2 during the early development of the human brain. Brain Res. 1999, 824, 97–104. [Google Scholar] [CrossRef]
- Leloup, C.; Arluison, M.; Lepetit, N.; Cartier, N.; Marfaing-Jallat, P.; Ferré, P.; Pénicaud, L. Glucose transporter 2 (GLUT2) expression in specific brain nuclei. Brain Res. 1994, 638, 221–225. [Google Scholar] [CrossRef]
- Messier, C.; Whateley, K.; Liang, J.; Du, L.; Puissant, D. The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice. Behav. Brain 2007, 178, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Hessel, B.; Elsais, A.; Frøland, A.S.; Taubøll, E.; Gjerstad, L.; Quan, L.; Dingledine, E.; Rise, F. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro. J. Neurochem. 2015, 133, 572–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narita, H.; Tanji, K.; Miki, Y.; Mori, F.; Wakabayashi, K. Trehalose intake and exercise regulate a glucose transporter, GLUT8, in the brain. Biochem. Biophys. Res. Commun. 2019, 514, 672–677. [Google Scholar] [CrossRef]
- Ibberson, M.; Uldry, M.; Thorens, B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J. Biol. Chem. 2000, 275, 4607–4612. [Google Scholar] [CrossRef] [Green Version]
- Reagan, L.P.; Rosell, D.R.; Alves, S.E.; Hoskin, E.K.; McCall, A.L.; Charron, M.J.; McEwen, B.S. GLUT8 glucose transporter is localized to excitatory and inhibitory neurons in the rat hippocampus. Brain Res. 2002, 932, 129–134. [Google Scholar] [CrossRef]
- Piroli, G.G.; Grillo, C.A.; Hoskin, E.K.; Znamensky, V.; Katz, E.B.; Milner, T.; McEwen, B.S.; Charron, M.J.; Reagan, L.P. Peripheral administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol. 2002, 452, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Alquier, T.; Leloup, C.; Lorsignol, A.; Pénicaud, L. Translocable glucose transporters in the brain. Where are we in 2006. Diabetes 2006, 55 (Suppl. 2), S131–S138. [Google Scholar] [CrossRef] [Green Version]
- Coucke, P.J.; Willaert, A.; Wessels, M.W.; Callewaert, B.; Zoppi, N.; De Backer, J.; Fox, J.E.; Mancini, G.M.S.; Kambouris, M.; Gardella, R.; et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet. 2006, 38, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujol-Gimenez, J.; Martisova, E.; Perez-Mediavilla, A.; Lostao, M.P.; Ramirez, M.J. Expression of glucose transporter GLUT12 in Alzheimer’s disease patients. J. Alzheimer’s Dis. 2014, 42, 97–101. [Google Scholar] [CrossRef]
- Uldry, M.; Steiner, P.; Zurich, M.G.; Beguin, P.; Hirling, H.; Dolci, W.; Thorens, B. Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. EMBO J. 2004, 23, 531–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, L.; Diez-Sampedro, A. A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter. PLoS ONE 2010, 5, e10241. [Google Scholar] [CrossRef] [PubMed]
- Turk, E.; Wright, E.M. Membrane topology motifs in the SGLT cotransporter family. J. Membr. Biol. 1997, 159, 1–20. [Google Scholar] [CrossRef]
- Vemula, S.; Roderer, K.; Yang, T.; Bhat, G.J.; Thekkumkara, T.J.; Abbruscato, T.J. A functional role of sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation. J. Pharmacol. Exp. Ther. 2009, 328, 487–495. [Google Scholar] [CrossRef]
- Elfeber, K.; Koehler, A.; Lutzenburg, M.; Osswald, C.; Galla, H.J.; Witte, O.W.; Koepsel, H. Localization of the Na+-D-glucose cotransporter SGLT1 in the blood-brain barrier. Histochem. Cell. Biol. 2004, 121, 201–207. [Google Scholar] [CrossRef]
- Wright, E.M.; Loo, D.D.F.; Hirayama, B.A.; Turk, E. Surprising versatility of Na+/glucose cotransporters: SLC5. Physiology 2004, 19, 370–376. [Google Scholar] [CrossRef]
- Loo, D.D.F.; Wright, E.M.; Zeuthen, T. Water pumps. J. Physiol. 2002, 42, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Sala-Rabanal, M.; Hirayama, B.A.; Ghezzi, C.; Liu, J.; Huang, S.-C.; Kepe, V.; Koepsell, H.; Yu, A.; Powell, D.R.; Thorens, B.; et al. Revisiting the physiology role of SGLTs and GLUTs using positron emission tomography in mice. J. Physiol. 2016, 594, 4425–4438. [Google Scholar] [CrossRef] [PubMed]
- Poppe, R.; Karbach, U.; Gambaryan, S.; Wiesinger, H.; Lutzenburg, M.; Kraemer, M.; Witte, O.W.; Koepsel, H. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J. Neurochem. 1997, 69, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, T.; Matsuoka, T. Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke 1998, 29, 844–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Willials, S.; Ho, S.; Loraine, H.; Hagan, D.; Whaley, J.M.; Feder, J.N. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabet. Ther. 2010, 1, 57–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enerson, S.A.; Drewes, L.R. The rat blood-brain barrier transcriptome. J. Cereb. Blood Flow Metab. 2006, 26, 959–973. [Google Scholar] [CrossRef] [Green Version]
- Augustin, R.; Mayoux, E. Mammalian sugar transporters. In Glucose Homeostasis, 1st ed.; Szablewski, L., Ed.; InTech Open: Rijeka, Croatia, 2014; pp. 3–36. [Google Scholar]
- Tazawa, S.; Yamato, T.; Fujikura, H.; Hiratochi, M.; Itoh, F.; Tomae, M.; Takemura, Y.; Maruyama, H.; Sugiyama, T.; Wakamatsu, A.; et al. SLC5Ap/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci. 2005, 76, 1039–1050. [Google Scholar] [CrossRef]
- Coady, M.J.; Wallendorf, B.; Gagnon, D.G.; Lapointe, J.Y. Identification of a novel Na+/myo-inositol cotransporter. J. Biol. Chem. 2002, 277, 35219–35224. [Google Scholar] [CrossRef] [Green Version]
- Michaelis, T.; Helms, G.; Merboldt, K.D.; Hanicke, W.; Bruhn, H.; Frahm, J. Identification of Scyllo-inositol in proton NMR spectra in human brain in vivo. NMR Biomed. 1993, 6, 105–109. [Google Scholar] [CrossRef]
- Sokoloff, L. The metabolism of the central nervous system in vivo. In Handbook of Physiology, Section 1, Neurophysiology; Field, J., Magoun, H.W., Hale, V.E., Eds.; American Physiological Society: Washington, DC, USA, 1960; Volume 3, pp. 1843–1864. [Google Scholar]
- Hyder, F.; Rothman, D.L.; Bennett, M.R. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl. Acad. Sci. USA 2013, 110, 3549–3554. [Google Scholar] [CrossRef] [Green Version]
- Camandola, S.; Mattson, M.P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017, 36, 1474–1492. [Google Scholar] [CrossRef]
- Hoyer, S. The abnormally aged brain. Its blood flow and oxidative metabolism. A review—Part II. Arch. Gerontol. Geriatr. 1982, 1, 195–207. [Google Scholar] [CrossRef]
- DeKosky, S.T.; Scheff, S.W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann. Neurol. 1990, 27, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.J.; Wang, N.; Zhang, Y.; Xue, D.; Lou, H.; Liu, X. Alteration in the function and expression of SLC and ABC transporters in the neurovascular unit in Alzheimer’s disease and the clinical significance. Aging Dis. 2020, 11, 390–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlanga-Acosta, J.; Gerardo Guillén-Nieto, G.; Rodríguez-Rodríguez, N.; Bringas-Vega, N.L.; García-Del-Barco-Herrera, D.; Berlanga-Saez, J.O.; García-Ojalvo, A.; Valdés-Sosa, M.J.; Valdés-Sosa, P.A. Insulin resistance at the crossroad of Alzheimer disease pathology. A review. Front. Endocrinol. 2020, 11, 560375. [Google Scholar] [CrossRef] [PubMed]
- De la Monte, S.M. Insulin Resistance and Neurodegeneration: Progress Towards the Development of New Therapeutics for Alzheimer’s Disease. Drugs 2017, 77, 47–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellar, D.; Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol. 2020, 19, 758–766. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Li, Y. Insulin resistance and cognitive dysfunction. Clin. Chim. Acta 2015, 444, 18–23. [Google Scholar] [CrossRef]
- Simpson, I.A.; Chundu, K.R.; Davies-Hill, T.; Honer, W.G.; Davies, P. Decreased concentrations of glut1 and glut3 glucose transporters in the brain of patients with Alzheimer’s disease. Ann. Neurol. 1994, 35, 546–551. [Google Scholar] [CrossRef]
- Simpson, I.A.; Davies, P. Reduced glucose transporter concentrations in brains of patients in Alzheimer’s disease. Ann. Neurol. 1994, 36, 800–801. [Google Scholar] [CrossRef]
- Harik, S.I. Changes in the glucose transporter of brain capillaries. Can. J. Physiol. Pharmacol. 1992, 70 (Suppl. 1), S113–S117. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Harik, S.I. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s diseases. J. Neurochem. 1989, 53, 1083–1088. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Grundke-Iqbal, I.; Gong, C.X. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett. 2008, 582, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, N.; Qian, W.; Yin, X.; Zhang, L.; Iqbal, K.; Grundke-Iqbal, I.; Gong, C.-X.; Liu, F. CREB regulates the expression of neuronal glucose transporter 3: A possible mechanism related to impaired brain glucose uptake in Alzheimer’s disease. Nucl. Acid Res. 2013, 41, 3240–3256. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Clifford, R.J., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosconi, L.; Mistur, R.; Switalski, R.; Tsui, W.H.; Glodzik, L.; Li, Y.; Pirraglia, E.; De Santi, S.; Reisberg, B.; Wisniewski, T.; et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imag. 2009, 36, 811–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, M.; Brendel, M.; Rizk-Jackson, A.; Rominger, A.; Bartenstein, P.; Schuff, N.; Weiner, M.W.; Alzheimer’s Disease Neuroimaging Initiative (ADNI). Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects. Neuroimage Clin. 2013, 4, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheef, L.; Spottke, A.; Daerr, M.; Joe, A.; Striepens, N.; Kölsch, K.; Popp, J.; Daamen, M.; Gorris, D.; Heneka, M.T.; et al. Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology 2012, 79, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Gardener, S.; Sohrabi, H.R.; Shen, K.-K.; Rainey-Smith, S.R.; Weinborn, M.; Bates, K.A.; Shah, T.; Foster, J.K.; Lenzo, N.; Salvado, O.; et al. Cerebral glucose metabolism is associated with verbal but not visual memory performance in community-dwelling older adults. J. Alzheimers Dis. 2016, 52, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Hohman, T.J.; Beason-Held, L.L.; Lamar, M.; Resnick, S.M. Subjective cognitive complaints and longitudinal changes in memory and brain function. Neuropsychology 2011, 25, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwangoff, P.; Armbruster, R.; Enz, A.; Meier-Ruge, W. Glycolytic enzymes from human autoptic brain cortex: Normal aged and demented cases. Mech. Ageing Dev. 1980, 14, 203–209. [Google Scholar] [CrossRef]
- Sorbi, S.; Bird, E.D.; Blass, J.P. Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann. Neurol. 1983, 13, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Kish, S.J.; Bergeron, C.; Rajput, A.; Dozic, S.; Mastrogiacomo, F.; Chang, L.J.; Wilson, J.M.; Di Stefano, L.M.; Nobrega, J.N. Brain cytochrome oxidase in Alzheimer’s disease. J. Neurochem. 1992, 59, 776–779. [Google Scholar] [CrossRef]
- Gibson, G.E.; Sheu, K.F.; Blass, J.P.; Baker, A.; Carlson, K.C.; Harding, B.; Perrino, P. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch. Neurol. 1988, 45, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.A.; Nishida, Y.; Sagare, A.P.; Rege, S.V.; Bell, R.D.; Perlmutter, D.; Sengillo, J.D.; Hillman, S.; Kong, P.; Nelson, A.R.; et al. Glut1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 2015, 18, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Kashiwaya, Y.; Bergman, C.; Lee, J.H.; Wan, R.; King, M.T.; Mughal, M.R.; Okun, E.; Clarke, K.; Mattson, M.P.; Veech, R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s diseases. Neurobiol. Aging 2013, 34, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Pitta, M.; Jiang, H.; Lee, J.H.; Zhang, G.; Chen, X.; Kawamoto, E.M.; Mattson, M.P. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: Evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol. Aging 2013, 34, 1564–1580. [Google Scholar] [CrossRef] [Green Version]
- Cunnane, S.C.; Courchesne-Loyer, A.; Vandenberghe, C.; St-Pierre, V.; Fortier, M.; Hennebelle, M.; Croteau, E.; Bocti, C.; Fulop, T.; Castellano, C.-A. Can ketones help rescue brain fuel supply in later life? Implication for cognitive health during aging and the treatment of Alzheimer’s disease. Front. Mol. Neurosci. 2016, 9, 53. [Google Scholar] [CrossRef]
- Prodiet Journal. Prodiet Medical Nutrition. Prodiet Alzheimer’s Dis. Ed. 2019, 1, 1–10. [Google Scholar]
- Moreira, P.I.; Duarte, A.I.; Santos, M.S.; Rego, A.C.; Oliveira, C.R. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J. Alzheimer’s Dis. 2009, 16, 741–761. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, C.; Sun, H.; Wang, H.; Peng, W.; Zhou, Z.; Wang, H.; Pi, C.; Shi, Y.; He, X. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease. J. Diabetes Res. 2020, 2020, 4981814. [Google Scholar] [CrossRef]
- Neth, B.J.; Craft, S. Insulin resistance and Alzheimer’s disease: Bioenergetic linkages. Front. Aging Neurosci. 2017, 9, 345. [Google Scholar] [CrossRef]
- Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—Is this type 3 diabetes. J. Alzheimer’s Dis. 2005, 7, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Rivera, E.J.; Goldin, A.; Fulmer, N.; Tavares, R.; Wands, J.R.; de la Monte, S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. J. Alzheimer’s Dis. 2005, 8, 247–268. [Google Scholar] [CrossRef]
- Yu, Y.; Kastin, J.; Pan, W. Reciprocal interactions of insulin and insulin-like growth factor 1 in receptor-mediated transport across the blood-brain barrier. Endocrinology 2006, 147, 2611–2615. [Google Scholar] [CrossRef] [Green Version]
- Baskin, D.G.; Figlewicz, D.P.; Woods, S.C.; Porte, D., Jr.; Dorsa, D.M. Insulin in the brain. Ann. Rev. Physiol. 1987, 49, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Šalkovic-Petrišic, M.; Hoyer, S. Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: An experimental approach. J. Neural Transm. Suppl. 2007, 72, 217–233. [Google Scholar]
- Hoyer, S. Memory function and brain glucose metabolism. Pharmacopsychiatry 2003, 36, S62–S67. [Google Scholar]
- Schechter, R.; Beju, D.; Gaffney, T.; Schaefer, F.; Whetsell, L. Preproinsulin I and II mRNA and insulin electron microscopic immunoreaction are present within the rat fetal nervous system. Brain Res. 1996, 736, 16–27. [Google Scholar] [CrossRef]
- Blázquez, E.; Velázquez, E.; Hurtado-Carneiro, V.; Ruiz-Albusac, J.M. Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front. Endocrinol. 2014, 5, 161. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J. Pathol. 2011, 225, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerozissis, K. Brain insulin, energy and glucose homeostasis; genes environment and metabolic pathologies. Eur. J. Pharmacol. 2008, 585, 38–49. [Google Scholar] [CrossRef]
- De la Monte, S.M.; Wands, J.R. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: Relevance to Alzheimer’s disease. J. Alzheimer’s Dis. 2005, 7, 45–61. [Google Scholar] [CrossRef] [Green Version]
- D’Ercole, A.J.; Ye, P. Expanding the mind: Insulin-like growth factor 1 and brain development. Endocrinology 2008, 149, 5958–5962. [Google Scholar]
- Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russel, J.W. Diabetes and cognitive impairment. Curr. Diabetes Rep. 2016, 16, 87. [Google Scholar] [CrossRef] [Green Version]
- De la Monte, S.M. Relationship between diabetes and cognitive impairment. Endocrinol. Metab. Clin. N. Am. 2014, 43, 245–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, R.; Haeri, A.; Dargahi, L.; Mohamed, Z.; Ahmadiani, A. Insulin in the brain: Sources, localization and functions. Mol. Neurobiol. 2013, 47, 145–171. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, J.E.; Nam, S.H.; Goo, J.S.; Choi, S.I.; Choi, Y.H.; Bae, C.J.; Woo, J.M.; Cho, J.S.; Hwang, D.Y. Differential regulation of the biosynthesis of glucose transporters by the PI3-K and MAPK pathways of insulin signaling by treatment with the novel compounds from Liriope platyphyla. Int. J. Mol. Med. 2011, 27, 319–327. [Google Scholar]
- Talbot, K.; Wang, H.-Y.; Kazi, H.; Han, L.-Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Investig. 2012, 122, 1316–1338. [Google Scholar] [CrossRef] [Green Version]
- De la Monte, S.M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer Res. 2012, 9, 35–66. [Google Scholar] [CrossRef]
- Hoyer, S.; Lannert, H. Inhibition of the neuronal insulin receptor causes Alzheimer-like disturbances in oxidative/energy brain metabolism and in behavior in adult rats. Ann. New York Acad. Sci. 1999, 893, 301–303. [Google Scholar] [CrossRef] [PubMed]
- De la Monte, S.M. Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer’s disease. Drugs 2012, 72, 49–66. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Lim, Y.A.; Rhein, V.; Baysang, G.; Meier, E.; Poljak, A.; Raftery, M.J.; Guilhaus, M.; Ittner, L.M.; Eckert, A.; Götz, J. Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics 2010, 10, 1621–1633. [Google Scholar] [CrossRef]
- Devi, L.; Alldred, M.J.; Ginsberg, S.D.; Ohno, M. Mechanism underlying insulin deficiency-induced acceleration of β-amyloids in a mouse model of Alzheimer’s disease. PLoS ONE 2012, 7, e32792. [Google Scholar] [CrossRef] [Green Version]
- Phiel, C.J.; Wilson, C.A.; Lee, V.M.-Y.; Klein, P.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 2003, 423, 435–439. [Google Scholar] [CrossRef]
- Gasparini, L.; Gouras, G.K.; Wang, R.; Gross, R.S.; Beal, M.F.; Greengard, P.; Hu, X. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated kinase signaling. J. Neurosci. 2001, 21, 2561–2570. [Google Scholar] [CrossRef]
- Plum, L.; Schubert, M.; Bruning, J.C. The role of insulin receptor signaling in the brain. Trends Endocrinol. Metab. 2005, 16, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Rhein, V.; Eckert, A. Effects of Alzheimer’s amyloid-beta and tau protein on mitochondrial function—Role of glucose metabolism and insulin signaling. Arch. Physiol. Biochem. 2007, 113, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-Q.; Chen, H.; Quon, M.J.; Alkon, D.L. Insulin and the insulin receptor in experimental models of learning and memory. Eur. J. Pharmacol. 2004, 490, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, T.R.; Forny-Germano, L.; Sathler, L.B.; Brito-Moreira, J.; Houzel, J.C.; Decker, H.; Silverman, M.A.; Kazi, H.; Melo, H.M.; McClean, P.L.; et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J. Clin. Investig. 2012, 122, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Forny-Germano, L.; Lyra e Silva, N.M.; Batista, A.F.; Brito-Moreira, J.; Gralle, M.; Boehnke, S.E.; Coe, B.C.; Lablans, A.; Marques, S.A.; Martinez, A.M.B.; et al. Alzheimer’s disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 2014, 34, 13629–13643. [Google Scholar] [CrossRef]
- Xie, L.; Helmerhorst, E.; Taddei, K.; Plewright, B.; van Bronswijk, W.; Martins, R. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci. 2002, 22, Rc221. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.; Brazil, D.P.; Burks, D.J.; Kushner, J.A.; Ye, J.; Flint, C.L.; Farhang-Fallah, J.; Dikkes, P.; Warot, X.M.; Rio, C.; et al. Insulin receptor substrate-2 deficiency impairs brain growth and promote tau phosphorylation. J. Neurosci. 2003, 23, 7084–7092. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.; Gautam, D.; Surjo, D.; Ueki, K.; Baudler, S.; Schubert, D.; Kondo, T.; Alber, J.; Galldiks, N.; Küstermann, E.; et al. Role of neuronal insulin resistance in neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 2004, 101, 3100–3105. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hölscher, C. Common pathological processes in Alzheimer disease and type 2 diabetes: A review. Brain Res. Rev. 2007, 56, 384–402. [Google Scholar] [CrossRef]
- Grilli, M.; Ferrari Toninelli, G.; Uberti, D.; Spano, P.F.; Memo, M. Alzheimer’s disease linking neurodegeneration with neurodevelopment. Funct. Neurol. 2003, 18, 145–148. [Google Scholar]
- Lace, G.L.; Wharton, S.B.; Ince, P.G. A brief history of tau: The evolving view of the microtubule-associated protein tau in neurodegenerative diseases. Clin. Neuropathol. 2007, 26, 43–58. [Google Scholar] [CrossRef]
- Hang, M.; Lee, V.M. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J. Biol. Chem. 1997, 272, 19547–19553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolli, T.; Cabecinha, M.; Tillmann, A.; Kerr, F.; Wong, C.T.; Cardenes, D.; Vincent, A.J.; Bettedi, L.; Li, L.; Grönke, S.; et al. Increased glucose transport into neurons rescues Aβ toxicity in Drosophila. Curr. Biol. 2016, 26, 2291–2300. [Google Scholar] [CrossRef] [Green Version]
- Duran-Aniotz, C.; Hetz, C. Glucose metabolism: A sweet relief of Alzheimer’s disease. Curr. Biol. 2016, 26, R794–R815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog. Neurobiol. 2015, 108, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des. Devel. Ther. 2014, 8, 1335–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hierro-Bujalance, C.; Infante-Garcia, C.; Del Marco, A.; Herrera, M.; Carranza-Naval, M.J.; Suarez, J.; Alves-Martinez, P.; Lubian-Lopez, S.; Garcia-Alloza, M. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimer’s Res. Ther. 2020, 12, 40. [Google Scholar] [CrossRef]
- Gejl, M.; Lerche, S.; Egefjord, L.; Brock, B.; Møller, N.; Vang, K.; Rodell, A.B.; Bibby, B.M.; Holst, J.J.; Rungby, J.; et al. Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain. Front. Neuroenerget. 2013, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Gejl, M.; Rungby, J.; Brock, B.; Gjede, A. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose. Basic Clin. Pharmacol. Toxicol. 2014, 115, 162–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölscher, C. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide analogues as novel treatments for Alzheimer’s and Parkinson’s disease. Cardiovasc. Endocrinol. 2016, 5, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Gejl, M.; Brock, B.; Egefjord, L.; Vang, K.; Rungby, J.; Gjedde, A. Blood-brain glucose transfer in Alzheimer’s disease. Effect of GLP-1 analog treatment. Sci. Rep. 2017, 1, 17490. [Google Scholar] [CrossRef] [Green Version]
- Millar, P.; Pathak, N.; Parthsarathy, V.; Bjourson, A.J.; O’Kane, M.; Pathak, V.; Moffett, R.C.; Flatt, P.R.; Gault, V.A. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. J. Endocrinol. 2017, 234, 255–267. [Google Scholar] [CrossRef]
- Watson, G.F.; Craft, S. Modulation of memory by insulin and glucose: Neuropsychological observations in Alzheimer’s disease. Eur. J. Pharmacol. 2004, 490, 97–113. [Google Scholar] [CrossRef]
- Craft, S.; Asthana, S.; Newcomer, J.W.; Wilkinson, C.W.; Matos, I.T.; Baker, L.D.; Cherrier, M.; Lofgreen, C.; Latendresse, S.; Petrova, A.; et al. Enhancement of memory in Alzheimer’s disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatr. 1999, 56, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wang, J.; Hu, X.; Huang, X.-J.; Chen, G.-X. Current understanding of glucose transporter expression and functional mechanisms. World J. Biol. Chem. 2020, 11, 76–98. [Google Scholar] [CrossRef]
- Šalkovic-Petrišic, M.; Osmanovic-Barilar, J.; Knezovic, A.; Hoyer, S.; Mosseter, K.; Reutter, W. Long term oral galactose treatment prevent cognitive deficits in male Wistar rats, treated intracerebroventricularly with streptozotocin. Neuropharmacology 2014, 77, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Šalkovic-Petrišic, M. Oral galactose provides a different approach to incretin-based therapy in Alzheimer’s disease. J. Neurol. Neuromed. 2018, 3, 101–107. [Google Scholar]
- Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Novotny, N.A.; Geldenhuys, W.J.; Van der Schyf, C. Curcumin and neurodegenerative diseases: A perspective. Expert Opin. Investig. Drug 2012, 21, 1123–1140. [Google Scholar] [CrossRef] [PubMed]
- Marathe, S.A.; Dasgupt, I.; Gnanadhas, D.P. Multifaceted roles of curcumin: Two sides of a coin. Expert Opin. Biol. Ther. 2011, 11, 1485–1499. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Su, C.; Li, R.; Wang, P.; Su, C.; Li, R.; Wang, H.; Ren, Y.; Sun, H.; Yang, J.; et al. Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9. J. Neurosci. Res. 2014, 92, 218–231. [Google Scholar] [CrossRef]
- Wang, P.; Su, C.; Feng, H.; Chen, X.; Dong, Y.; Rao, Y.; Ren, Y.; Yang, J.; Shi, J.; Tian, J.; et al. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int. J. Immunopathol. Pharmacol. 2017, 30, 25–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Zheng, X.; Guo, Q.; Yang, P.; Pang, X.; Qian, K.; Lu, W.; Zhang, Q.; Jiang, X. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J. Control. Release 2018, 279, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, F.; Liu, Y.; Zheng, M.; Wang, Y.; Zhang, D.; Anraku, Y.; Zou, Y.; Li, J.; Wu, H.; et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 2020, 6, eabc7031. [Google Scholar] [CrossRef]
- Arora, S.; Sharma, D.; Singh, J. GLUT-1: An effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier. ACS Chem. Neurosci. 2020, 11, 1620–1633. [Google Scholar] [CrossRef]
- Mattson, M.P. lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Res. Rev. 2015, 20, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berchicci, M.; Lucci, G.; Di Russo, F. Benefits of physical exercise on the aging brain: The role of the prefrontal cortex. J. Gerontol. Ser. A: Biomed. Sci. Med Sci. 2013, 68, 1337–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, K.I.; Leckie, R.L.; Weinstein, A.M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 2014, 35 (Suppl. 2), S20–S28. [Google Scholar] [CrossRef] [Green Version]
- Kerr, A.L.; Steuer, E.L.; Pochtarev, V.; Swain, R.A. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 2010, 171, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012, 16, 706–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, R.; Wang, X.; Pei, F.; Zhang, W.; Shen, J.; Gao, X.; Chang, C. Regular exercise enhances cognitive function and intracephalic GLUT expression in Alzheimer’s disease model mice. J. Alzheimer’s Dis. 2019, 72, 83–96. [Google Scholar] [CrossRef]
Therapeutic Agent | Therapeutic Effects |
---|---|
Metformin | In animal models, metformin increased the lifespan and rescued deficits of experimental AD lifespan, ameliorates the cardinal features of AD and reduces protein aggregation in the disease by restoring proteostasis. It increases glucose uptake in the brain. |
Inhibitors of SGLT2 | The treatment with empagliflozin in AD-T2DM mice improved brain atrophy by a reduction of neuronal loss, which significantly reduced hyperglycemia and reduced the burden of spontaneous hemorrhages. EMP also decreased levels of soluble and insoluble Aβ40 and Aβ42 in the cortex and hippocampus and reduction of tau phosphorylation in these brain regions. The inhibitor improved learning and memory in the AD-T2DM mice, as observed in the Morris water maze. |
Agonists of GLP-1 | Human studies performed on patients with AD treated with liraglutide for 6 months revealed in these patients a significant increase in the blood–brain glucose transfer capacity (Tmax) estimates of the cerebral cortex, equal to Tmax estimates in healthy subjects. The researchers also observed that the Tmax declined with the duration of AD, and the agonist of GLP-1 enhanced the activity of GLUT1 in the BBB. Treatment with a GLP-1 analog reduces the effects of disease duration. The increased Tmax may be associated with an increase in the levels of GLUTs or increased postprandial insulin levels. Animal studies revealed that the use of this agonist increases the number of immature neurons in dental gyrus and the synaptic density in the stratum pyramidale. |
Insulin | Intracerebroventricular administration of insulin improves memory performance. Increased levels of insulin enhances memory in adults patients with AD. |
D-galactose | Oral galactose was found to increase the activity of the mitochondrial respiratory chain complex in the prefrontal cortex and hippocampus in animal models. As revealed in animal studies, oral administration of galactose increases the expression of hippocampal GLUT3. In cells, galactose is metabolized to glucose. Therefore, when the intracellular glucose level is decreased, galactose may be an alternative source of energy in neurons. In the brain, galactose is metabolized into amino acids, increasing the level of glutamate and GABA, which play a role in normal cognitive functioning, increase the intracellular concentration of galactose or its derivatives, and may normalize O-GlcNAcylation of the regulatory proteins, as in the case of tau protein. |
Curcumin | Administration of curcumin significantly increases Aβ- and insulin-degrading enzymes, and significantly decreases Aβ40, Aβ42 and aggregation of Aβ-derived diffusible ligand (ADDL) expression in the hippocampus. Spatial learning and memory ability were improved in animal model of AD. Administration of curcumin significantly improved the expression of Glut1 and Glut3 in the brain of AD mice. High glucose cerebral metabolism was found in these mice. Curcumin ameliorates the impaired insulin signaling in the IR/IRS-1/PI3-K/Akt and IGF-1R/IRS-2/PI3-K/Akt pathways. |
Small interfering RNAs | Administration of Gal-NP@siRNA, a glycosylated “triple-interaction,” stabilized polymeric siRNA in a APP/PS1 transgenic AD mouse model and was reported to ameliorate AD-like pathology and restore detoriation of cognitive capacity in these mice without side effects. |
Liposomes | The levels of BDNF in AD patients is significantly reduced; therefore, it is suggested that delivery of BDNF to the brain may potentially ameliorate AD pathology. Researchers described the targeted delivery of the BDNF gene to the brain using modified liposome nanoparticle. The surface of liposomes used in the experiments was modified with glucose transporter-1 targeting ligand (mannose) and cell penetrating peptides (penetratin or rabies virus glycoprotein). These modifications caused selective and enhanced delivery to the brain, and showed significantly higher transfection of BDNF in primary astrocytes and neurons. This strategy to increase BDNF protein levels in the brain may reverse AD pathophysiology. |
Regular exercise | Regular exercise increases the expression of various proteins, for example, antioxidant enzymes, antiapoptotic proteins, proteins involved in mitochondrial biogenesis, protein chaperones, neurotrophic factors and fibroblast growth factor 2. Importantly, neurotrophic factor BDNF increases the expression of GLUT3, causing stimulation of energy metabolism. Exercise also triggers the intracellular signaling pathway, which is similar to the signaling pathway triggered by insulin, causing, e.g., translocation of GLUT4 from the intracellular compartment into the plasma membrane. An animal study has revealed that regular exercise decreases the expression of Aβ and phosphorylated tau production, with increased production of ATP in the brain. Researchers have found an increased number of synapses and improved expression levels of Glut1 and Glut3 expression in the central nervous system in a mouse model of AD. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szablewski, L. Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 8142. https://doi.org/10.3390/ijms22158142
Szablewski L. Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease. International Journal of Molecular Sciences. 2021; 22(15):8142. https://doi.org/10.3390/ijms22158142
Chicago/Turabian StyleSzablewski, Leszek. 2021. "Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease" International Journal of Molecular Sciences 22, no. 15: 8142. https://doi.org/10.3390/ijms22158142
APA StyleSzablewski, L. (2021). Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease. International Journal of Molecular Sciences, 22(15), 8142. https://doi.org/10.3390/ijms22158142