Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia
Abstract
:1. Introduction
2. Results
2.1. Expression of Phospholipid Signaling-Associated Molecules in PFC of Patients with Schizophrenia and Controls
2.2. Analysis of mRNA/Protein Expression Correlation of PIK4CA and Akt1
2.3. Effects of Phospholipid Signaling-Associated Molecule Genotype on Their Protein Expression
3. Discussion
4. Materials and Methods
4.1. Human Postmortem Brain Tissue
4.2. Protein Expression Analysis by Enzyme-Linked Immunosorbent Assay (ELISA) and Multiplex Assay
4.3. DNA Collection and SNP Genotyping
4.4. RNA Collection and mRNA Sequencing
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elert, E. Aetiology: Searching for schizophrenia’s roots. Nature 2014, 508, S2–S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.N.; Horrobin, D.F. Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorders: An update. Prostaglandins Leukot. Essent. Fatty Acids 2000, 63, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Horrobin, D.F.; Bennett, C.N. New gene targets related to schizophrenia and other psychiatric disorders: Enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins Leukot. Essent. Fatty Acids 1999, 60, 141–167. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.C.; Huang, Y.S.; Ouyang, W.C. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: Possible mechanisms. Lipids Health Dis. 2020, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Horrobin, D.F.; Glen, A.I.; Vaddadi, K. The membrane hypothesis of schizophrenia. Schizophr. Res 1994, 13, 195–207. [Google Scholar] [CrossRef]
- Horrobin, D.F. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr. Res. 1998, 30, 193–208. [Google Scholar] [CrossRef]
- Sasaki, T.; Takasuga, S.; Sasaki, J.; Kofuji, S.; Eguchi, S.; Yamazaki, M.; Suzuki, A. Mammalian phosphoinositide kinases and phosphatases. Prog. Lipid Res. 2009, 48, 307–343. [Google Scholar] [CrossRef]
- Liu, Y.; Bankaitis, V.A. Phosphoinositide phosphatases in cell biology and disease. Prog. Lipid Res. 2010, 49, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Kaiya, H. Second messenger imbalance hypothesis of schizophrenia. Prostaglandins Leukot. Essent. Fatty Acids 1992, 46, 33–38. [Google Scholar] [CrossRef]
- Feldberg, W. Possible association of schizophrenia with a disturbance in prostaglandin metabolism: A physiological hypothesis. Psychol. Med. 1976, 6, 359–369. [Google Scholar] [CrossRef]
- Horrobin, D.F. Schizophrenia as a prostaglandin deficiency disease. Lancet 1977, 1, 936–937. [Google Scholar] [CrossRef]
- van der Kemp, W.J.; Klomp, D.W.; Kahn, R.S.; Luijten, P.R.; Hulshoff Pol, H.E. A meta-analysis of the polyunsaturated fatty acid composition of erythrocyte membranes in schizophrenia. Schizophr. Res. 2012, 141, 153–161. [Google Scholar] [CrossRef]
- Hoen, W.P.; Lijmer, J.G.; Duran, M.; Wanders, R.J.; van Beveren, N.J.; de Haan, L. Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: A meta-analysis. Psychiatry Res. 2013, 207, 1–12. [Google Scholar] [CrossRef]
- Joy, C.B.; Mumby-Croft, R.; Joy, L.A. Polyunsaturated fatty acid supplementation for schizophrenia. Cochrane Database Syst. Rev. 2006, 2006, CD001257. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 2000, 14, 123–135. [Google Scholar] [CrossRef]
- Komoroski, R.A.; Pearce, J.M.; Griffin, W.S.; Mrak, R.E.; Omori, M.; Karson, C.N. Phospholipid abnormalities in postmortem schizophrenic brains detected by 31P nuclear magnetic resonance spectroscopy: A preliminary study. Psychiatry Res. 2001, 106, 171–180. [Google Scholar] [CrossRef]
- Pearce, J.M.; Komoroski, R.A.; Mrak, R.E. Phospholipid composition of postmortem schizophrenic brain by 31P NMR spectroscopy. Magn. Reson. Med. 2009, 61, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.K.; Leonard, S.; Reddy, R.D. Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophr. Res. 2000, 42, 7–17. [Google Scholar] [CrossRef]
- Hamazaki, K.; Choi, K.H.; Kim, H.Y. Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: No changes in docosahexaenoic acid species. J. Psychiatr. Res. 2010, 44, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Hamazaki, K.; Hamazaki, T.; Inadera, H. Fatty acid composition in the postmortem amygdala of patients with schizophrenia, bipolar disorder, and major depressive disorder. J. Psychiatr. Res. 2012, 46, 1024–1028. [Google Scholar] [CrossRef]
- Hamazaki, K.; Hamazaki, T.; Inadera, H. Abnormalities in the fatty acid composition of the postmortem entorhinal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder. Psychiatry Res. 2013, 210, 346–350. [Google Scholar] [CrossRef]
- Matsumoto, J.; Sugiura, Y.; Yuki, D.; Hayasaka, T.; Goto-Inoue, N.; Zaima, N.; Kunii, Y.; Wada, A.; Yang, Q.; Nishiura, K.; et al. Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 1933–1943. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, J.; Nakanishi, H.; Kunii, Y.; Sugiura, Y.; Yuki, D.; Wada, A.; Hino, M.; Niwa, S.I.; Kondo, T.; Waki, M.; et al. Decreased 16:0/20:4-phosphatidylinositol level in the post-mortem prefrontal cortex of elderly patients with schizophrenia. Sci. Rep. 2017, 7, 45050. [Google Scholar] [CrossRef]
- Akiba, Y.; Suzuki, R.; Saito-Saino, S.; Owada, Y.; Sakagami, H.; Watanabe, M.; Kondo, H. Localization of mRNAs for phosphatidylinositol phosphate kinases in the mouse brain during development. Brain Res. Gene Expr. Patterns 2002, 1, 123–133. [Google Scholar] [CrossRef]
- Wenk, M.R.; Pellegrini, L.; Klenchin, V.A.; Di Paolo, G.; Chang, S.; Daniell, L.; Arioka, M.; Martin, T.F.; De Camilli, P. PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 2001, 32, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Abeyrathna, P.; Su, Y. The critical role of Akt in cardiovascular function. Vascul. Pharmacol. 2015, 74, 38–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, W.; Myers, K.R.; Rui, Y.; Hladyshau, S.; Tsygankov, D.; Zheng, J.Q. Phosphoinositide-dependent enrichment of actin monomers in dendritic spines regulates synapse development and plasticity. J. Cell Biol. 2017, 216, 2551–2564. [Google Scholar] [CrossRef] [Green Version]
- Raghu, P.; Joseph, A.; Krishnan, H.; Singh, P.; Saha, S. Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Front. Mol. Neurosci. 2019, 12, 208. [Google Scholar] [CrossRef] [Green Version]
- Antal, C.E.; Newton, A.C. Spatiotemporal dynamics of phosphorylation in lipid second messenger signaling. Mol. Cell Proteom. 2013, 12, 3498–3508. [Google Scholar] [CrossRef] [Green Version]
- Manning, E.E.; Ransome, M.I.; Burrows, E.L.; Hannan, A.J. Increased adult hippocampal neurogenesis and abnormal migration of adult-born granule neurons is associated with hippocampal-specific cognitive deficits in phospholipase C-beta1 knockout mice. Hippocampus 2012, 22, 309–319. [Google Scholar] [CrossRef]
- Lo Vasco, V.R.; Cardinale, G.; Polonia, P. Deletion of PLCB1 gene in schizophrenia-affected patients. J. Cell Mol. Med. 2012, 16, 844–851. [Google Scholar] [CrossRef]
- Hasan, A.; Falkai, P.; Wobrock, T.; Lieberman, J.; Glenthoj, B.; Gattaz, W.F.; Thibaut, F.; Moller, H.J.; WFSBP Task Force on Treatment Guidelines for Schizophrenia. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia. Part 3: Update 2015 Management of special circumstances: Depression, Suicidality, substance use disorders and pregnancy and lactation. World J. Biol. Psychiatry 2015, 16, 142–170. [Google Scholar] [CrossRef]
- Brown, K.M.; Tracy, D.K. Lithium: The pharmacodynamic actions of the amazing ion. Ther. Adv. Psychopharmacol. 2013, 3, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Jungerius, B.J.; Hoogendoorn, M.L.; Bakker, S.C.; Van’t Slot, R.; Bardoel, A.F.; Ophoff, R.A.; Wijmenga, C.; Kahn, R.S.; Sinke, R.J. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol. Psychiatry 2008, 13, 1060–1068. [Google Scholar] [CrossRef] [Green Version]
- Vorstman, J.A.; Chow, E.W.; Ophoff, R.A.; van Engeland, H.; Beemer, F.A.; Kahn, R.S.; Sinke, R.J.; Bassett, A.S. Association of the PIK4CA schizophrenia-susceptibility gene in adults with the 22q11.2 deletion syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Jajodia, A.; Grover, S.; Baghel, R.; Jain, S.; Kukreti, R. Synergistic association of PI4KA and GRM3 genetic polymorphisms with poor antipsychotic response in south Indian schizophrenia patients with low severity of illness. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165B, 635–646. [Google Scholar] [CrossRef]
- Kanahara, N.; Iyo, M.; Hashimoto, K. Failure to confirm the association between the PIK4CA gene and schizophrenia in a Japanese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 450–452. [Google Scholar] [CrossRef]
- Balu, D.T.; Carlson, G.C.; Talbot, K.; Kazi, H.; Hill-Smith, T.E.; Easton, R.M.; Birnbaum, M.J.; Lucki, I. Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus 2012, 22, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Ksiezak-Reding, H.; Riggio, S.; Haroutunian, V.; Pasinetti, G.M. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr. Res. 2006, 84, 1–14. [Google Scholar] [CrossRef]
- Ide, M.; Ohnishi, T.; Murayama, M.; Matsumoto, I.; Yamada, K.; Iwayama, Y.; Dedova, I.; Toyota, T.; Asada, T.; Takashima, A.; et al. Failure to support a genetic contribution of AKT1 polymorphisms and altered AKT signaling in schizophrenia. J. Neurochem. 2006, 99, 277–287. [Google Scholar] [CrossRef]
- Hino, M.; Kunii, Y.; Matsumoto, J.; Wada, A.; Nagaoka, A.; Niwa, S.; Takahashi, H.; Kakita, A.; Akatsu, H.; Hashizume, Y.; et al. Decreased VEGFR2 expression and increased phosphorylated Akt1 in the prefrontal cortex of individuals with schizophrenia. J. Psychiatr. Res. 2016, 82, 100–108. [Google Scholar] [CrossRef]
- Chadha, R.; Meador-Woodruff, J.H. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology 2020, 45, 1059–1067. [Google Scholar] [CrossRef]
- Komatsu, H.; Takeuchi, H.; Kikuchi, Y.; Ono, C.; Yu, Z.; Iizuka, K.; Takano, Y.; Kakuto, Y.; Funakoshi, S.; Ono, T.; et al. Ethnicity-Dependent Effects of Schizophrenia Risk Variants of the OLIG2 Gene on OLIG2 Transcription and White Matter Integrity. Schizophr. Bull. 2020, 46, 1619–1628. [Google Scholar] [CrossRef]
DOI | CPZeq | |
---|---|---|
Spearman’s Rank Test | Spearman’s Rank Test | |
PIK4CA (μg/mg) | rs = −0.18 (p = 0.47) | rs = 0.13 (p = 0.57) |
PIP5K1C (μg/mg) | rs = −0.28 (p = 0.25) | rs = −0.11 (p = 0.65) |
PTEN (μg/mg) | rs = −0.11 (p = 0.66) | rs = 0.32 (p = 0.19) |
Akt (μg/mg) | rs = −0.14 (p = 0.58) | rs = 0.26 (p = 0.28) |
GSK3β (μg/mg) | rs = −0.08 (p = 0.75) | rs = 0.23 (p = 0.35) |
Variables | Controls | Schizophrenia | p-Value |
---|---|---|---|
Number of samples | 47 | 23 | |
Gender | |||
Female | 21 | 9 | 0.28 b |
Male | 26 | 14 | |
Race | |||
Asian | 47 (100%) | 23 (100%) | |
Age at death a (years) | 75.5 (SD 15.8) | 69.2 (SD 10.7) | 0.05 d |
PMI a (hour) | 12.0 (SD 16.3) | 16.8 (SD 11.9) | 0.21 c |
DOI (years) | 40.4 (SD 15.0) | ||
CPZeq (mg/day) | 528.3 (SD 647.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunii, Y.; Matsumoto, J.; Izumi, R.; Nagaoka, A.; Hino, M.; Shishido, R.; Sainouchi, M.; Akatsu, H.; Hashizume, Y.; Kakita, A.; et al. Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. Int. J. Mol. Sci. 2021, 22, 8280. https://doi.org/10.3390/ijms22158280
Kunii Y, Matsumoto J, Izumi R, Nagaoka A, Hino M, Shishido R, Sainouchi M, Akatsu H, Hashizume Y, Kakita A, et al. Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. International Journal of Molecular Sciences. 2021; 22(15):8280. https://doi.org/10.3390/ijms22158280
Chicago/Turabian StyleKunii, Yasuto, Junya Matsumoto, Ryuta Izumi, Atsuko Nagaoka, Mizuki Hino, Risa Shishido, Makoto Sainouchi, Hiroyasu Akatsu, Yoshio Hashizume, Akiyoshi Kakita, and et al. 2021. "Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia" International Journal of Molecular Sciences 22, no. 15: 8280. https://doi.org/10.3390/ijms22158280
APA StyleKunii, Y., Matsumoto, J., Izumi, R., Nagaoka, A., Hino, M., Shishido, R., Sainouchi, M., Akatsu, H., Hashizume, Y., Kakita, A., & Yabe, H. (2021). Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. International Journal of Molecular Sciences, 22(15), 8280. https://doi.org/10.3390/ijms22158280